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function 68,, and that
(15) lim inf #® (0, &;,) = (0, 5,)

g
for each k(k = 1, 2, --- ) and all 8 ¢ 2. Furthermore, the decision function 8,
can be taken to be in the class A. It will be shown that

(16) r(0, 8,) < r(0,5) forall eQ.

Choose and fix 6 € Q. It follows from (13) that (16) will be proven if it can
be shown that

(17) (6, 8,) < r(0,8) for k=1,2, ---.

Accordingly, let & be any positive integer and let ¢ > 0 be an arbitrary positive
number. By (15), an integer ¢ can be chosen large enough so that ¢ = & and

(18) r®(8, 8:) > r'M(6,8,) — e
Hence, from (18), (11), (14), and (12),

r®(8,8,) — e < r®(6,8,) = (6, 8:;) = r7(8,5) = (9, ).
Since ¢ was arbitrary, **¥ (6, 8,) < (6, §). This completes the proof.

REFERENCES

[1] MiLTON SOBEL, ‘‘An essentially complete class of decision functions for certain standard
sequential problems,” Ann. Math. Stat., Vol. 24(1953), pp. 319-337.
[2] ABrAHAM WaALD, Statistical Decision Functions, John Wiley and Sons, New York, 1950.

D e

A PROBLEM IN SURVIVAL!

By James B. MacQUEEN
University of California, Los Angeles

1. Introduction. Suppose that at a given time an individual has certain re-
sources. These are used up at a specified rate, but from time to time
“opportunities” arrive; at an opportunity a decision is made and the resources
are changed—increased or decreased—in a random manner depending on the de-
cision. If the resources ever fall to zero, the individual “perishes.” The problem
is to make the decision at each opportunity which will minimize the probability
of ultimately perishing.
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A model for approximating certain situations of this type is described below
and the optimal policy is established. The problem is well suited for treatment
by means of the “principle of optimality” [1], and an elegant theorem due to
Blackwell [2].

2. The Model. Let z(t) be the resources of the individual at time ¢. Should
z(t) = O for the first time at ¢*, let (t) = O for ¢ = #*. Let the rate at which
resources are used be a constant which without loss of generality may be taken
to be unity. Thus in time ¢ the resources will be reduced by an amount ¢. Op-
portunities are distributed in time in accordance with a Poisson process with
constant intensity which may be taken to be unity, again without loss of gen-
erality, so that on the average one opportunity arrives per unit time. Each such
opportunity is characterized by a family of distributions which depends on the
resources available when the opportunity arrives. A decision consists of selecting
a distribution from this family. Then a number w is randomly chosen according
to this distribution and the resources are changed instantaneously by that amount
so that if an opportunity arrives at ¢ and w is chosen, z({4+) = 2(¢) + w. The
family of distributions available if an opportunity arrives when the resources
are z, ¥, , consists of all distributions {F(w;z)} on the interval [—x, «) with
fixed positive expectation p. Thus the individual cannot lose more than all his
resources at the time the opportunity arrives. Since the individual perishes with
probability 1 if p < 1, it will be assumed that p > 1.

A policy is a rule R specifying for every x the choice of a single distribution
F(w; z, R) € ¥, to be used should an opportunity arrive when the amount of
resources is z. (Clearly the policy does not depend on time.)

It will be shown that the policy which is optimal in the sense that it mini-
mizes the probability of perishing consists of always choosing the distribution
with zero variance; i.e., the individual always prefers a sure thing among the
class of risks with equal expectations.

3. The Optimal Policy. Let ¢, be the time at which the problem starts and let
t:;,1 = 1,2, -+, be the time at which the sth opportunity arrives. Let z, be
the capital at ¢ and let z; be the resources at ¢; after they are changed by the
outcome of the venture at that time. In case z(¢) = 0 at some time t* < ¢;,
then 2; = 0, 2,11 = 0, - - - . For convenience define Fo(y; z, R) = F(y — z;, R)
and let Fo(y; 0, B) = 1 for y = 0. Then, for a fixed policy R, the sequence
Zo, T1, - -+ forms a Markov process on the state space [0, ) with constant
transition distribution,

1 forz =y =0,
(1) Gro(y) =Pri{zgn S yla: =, R} ="+ _{ Fo(y; ¢ — &, R)e™" dt
forz > 0,y = 0.

Let S™ be the event that z; > Ofor¢ = 0, 1, ---, n. Let F" be the event that
z; = 0 for at least one ¢ < n. Let P(F" |z, R) = 1 — P(8" |z, R) be the prob-
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ability of F™ when z, = z and policy R is used. Let
(2) p(z, R) = lim,., P(F" |z, R).

The principle of optimality provides a necessary condition for a policy R* to
minimize p(z, R):

p(z, R*) = min, {fow p(y, R*) dGR,:c(y)} -
3) R 1
= mina {90, &) + [ [ o0 B9 By 2 = 4, R) ).

This relation is satisfied by

(4) p(z, B*) =%,

where « is the positive solution to the equation 1 — a = ¢~*™. A policy R* cor-
responding to (4) is given by

1forw = u,

(5) F(’w; z, R*) = Fo(’w + x; Z, R) ={0 forw < .

A proof that policy (5) yields (4) can be obtained from Kendall [3].
For equation (4) to be a solution to (3) requires

6) p(z, R¥) = f p(y, B* dGre ()
and
) p(z, %) < [ " p(y, B*) dGra(y).

Equation (6) is the less informative condition on p(x, B*) since it must hold
for any probability that depends only on the state of the process. However, if
(6) fails, certainly p(z, R*) is not the desired function. From (4) and (5) the
right side of (6) is

—(1—a)z
- 1 —e _
e z + e a(x+u),
l—a

azr

and using the condition 1 — & = ¢ *, this reduces to ¢”**, showing (6) is satis-

fied.
Equation (4) will satisfy (7) if, for any distribution F, with expectation

m=z—1t+ u
(8) ola) = f ™ dFy(y) = 1.
0

Unless F, is degenerate at m, ¢(a) is convex and has a unique minimum. Dif-
ferentiation is permissible and shows that the minimum is achieved at a = 0.
But ¢(0) = 1. In case F, is degenerate at m, o(a) = 1.
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On the other hand, for any distribution Fo minimizing (8), ¢(a) = 1 and
[ e ¥ dFo(y) = ¢ "™, hence the uniqueness theorem for Laplace transforms
implies F, is degenerate at m. Consequently, among those policies R for which
p(z, R) satisfies (3), p(x, B) = ¢ “ only for R = R* given by (5). This means
that if R* is optimal, it is also unique.

As it happens, any constant satisfies (3), as well as equation (4), so that it
is not yet clear that (4) provides an optimal policy. However, by means of the
previously mentioned theorem of Blackwell, optimality can readily be estab-
lished. A convenient, special version of this theorem is given below as Theorem 1.
Theorem 2 provides a condition under which the hypotheses of Theorem 1 are
satisfied. »

Let 29, 71, - - - be a Markov process with arbitrary state space @ and transi-
tion probabilities P, z(A) = Pr {zn41 © A | zn = z and policy R is used at .}
defined for every z, every set A C ©, and every policy R. Suppose that for every
R there is a certain class of states T for which P, z(T) = 1 for x C T. Let F"
by the event that z; & T for some ¢ < n. Let S" be the event that
To, X, *+, tn € @ — T. Let p(z, R) = limp.ee P(F"|z, R)
limpw Pr{F"|z = z and R 4s used .at zo,x:, ---}. Let pi(z, RV)
limo P(F" | 2, R") = liMpw Pr{F" | 2o = z and R is used N times, at o, 21,
e+, Ty_1, and R* is used thereafter}.

TaeoreM 1. If (i) p(x, R*) satisfies the equation

(e, k%) = min{ [ (s B*) dPact)}

and (ii) for an arbitrary policy R,
limN—wo pl(x, RN) = p(x, R),

then p(z, R*) = p(z, R); i.e., R* is optimal.
Proor. Let Pz .(4) = Priz; S A | 20 = z and R is used at xo, 21, -+ , Ti-1};
that is, Py 2(A) = fa -+ Jof4 @Pr;_(%:) APrz;_y(%iza) -+ dPro(21). Then

(9) pi(z, RY) = fn p(y, R*) dPz.(y).
But p(y, R*) < [ap(z, B*) dPry(z) by (i). Using this inequality in (9),
10)  p@ ) = [ [ 90 BY) dPry(2) dPRy) = pila, B,

Thus
p(x) R*) = p(x, Ro) = p1(1', Rl) = pl(xy Rz) = - pl(x’ RN) ctt .
This sequence is non-decreasing and has a limit. By (ii),

p(x, R*) é limN—»eo pl(x, RN) = p(x, R).
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TueoreM 2. If there is a monotone sequence of sets in Q, 9 D L 2D -+, such
that (1) limiow SUPsce, P(T, R*) = 0 and (ii) Pro(T) Z vx > 0forz &S Q@ — &
and for every R, then limy—.. p1(z, R") = p(z, R).

Proor. Since §**" < 8%,

p(z, R) — pu(z, BY) = limuu {P(8"*" | 2, R) — P(8"™ | 2, R)}
(11) = limpe {P(S™ | 87, 2, RY) — P(8™™ | 8", 2, R)}P(8"" | z, R)

~{ [ m aP"@) - [ 90 R%) P} PS5,

where P¥(4) = Prizy € A|S8"™, 2 = =, and R is used at o, 1, -+ , Tu-}.
Suppose p(z, R) = 1. Then limy..., P(S"™ | z, R) = 0 and limx.,, p1(z, R") = 1.
Suppose p(z, R) = a < 1. Since

{1 - [ oW dP”(y>} P(S"|5,R) = 1—a.
and P(8"| 2, R) is non-increasing and tends to 1 — a,
(12) - timues [ (s, R) aP(y) = 0.

1t is also true that
lims-o | 2(s, B*) dPY(y) = 0.

Let « and e be arbitrary positive numbers. By (i) there exists a k. such that for
k = ko, p(z, R¥) < a/2forz C @ .By(ii), p(z, R) 2 v > Oforz S @ — & .
From (12) there exists an N, such that for N = N, [o p(y, B) dP(y) £ e
Take ¢ = vr,a/2. Then

13wtz [ pwRPW 2w [ P W)
-0, . -,

and

1w [P w s [

—Qk,

aP ) +3 [ aP"w).

Canceling vi, in (13) and using (14), fo p(y, B*) dPY(y) £ a. This completes
the proof of Theorem 2.

To apply Theorems 1 and 2 to the model under consideration, & = [0, ),
T consists of the single point z = 0, and P, is taken to be Gz . defined by (1).
The sequence of sets @1, 2, -, can be a sequence of intervals {lx:, ©)},
Big1 — ;2 8> 0,7 =1,2, ---. Since p(z, R*) = ¢ =, condition (i) of
Theorem 2 is satisfied, as is condition (ii), since Pr.(T') is then at least e * for
£ C Q — O . Theorem 1 may then be applied and R* defined by (5) is optimal.
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FIRST PASSAGE TIME FOR A PARTICULAR GAUSSIAN PROCESS

By D. SLEpIAN

Bell Telephone Laboratories, Murray Hill, New Jersey

1. Introduction. Let z(t) be a stationary Gaussian process with Ez(f) = 0 and
Elz(t)z(t')] = p(t — t'). Denote by Q.(T | o) dT the conditional probability
that for ¢ > 0, z(¢) first assumes the value a in the interval T < ¢t £ T + dT
given that £(0) = . It is well known that the determination of the first pas-
sage time probability Q.(T | zo) dT is not an easy matter in general. To the
author’s knowledge, Q.(T |xo) is known explicitly for stationary Gaussian
processes with continuous spectral densities only in the Markovian case o(7) =
¢! See [1], [2], [3] and [4]. This note points out that an elementary solution
exists for the process with covariance

M ) = {5 =

for0=T=1.

2. Markoff-Like Property. The determination of the first passage time proba-
bility density Q.(T | zo) for the process with covariance (1) follows from a
peculiar Markoff-like property it possesses which may be described roughly as
follows. Let 0 < ¢ < t» < 1 be two instants in the unit interval. Denote the
open interval (¢, ;) by A and the set (0, &) U (£, 1) by B. Then for the
process at hand, given the values of z(t;) and z(¢;), events defined on A are
statistically independent of events defined on B.

More precisely, we show the following. Let

0<th<t< << <h< - <t <L
Then
@) P(T1, oty Theay Trqay ** 0 5 Tity Tiaa, *** 5 Tn | Tk, T1)
=p(@1, o0, L1, Tigr,t Ta | By, 2)P(Thaa, o0, Tior | T, @)
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