THE GAP TEST FOR RANDOM SEQUENCES

By Eve BorFINGER' AND V. J. BOFINGER?
North Carolina State College

Summary. This paper is concerned with the gap test for random sequences,
first proposed by Kendall and Babington-Smith [7], and with various extensions
to this test. One of these extensions is the test proposed by Meyer, éephart and
Rasmussen [8], another is, asymptotically, a partitioning of the x? statistic of
Kendall and Babington-Smith [7], and others are likelihood ratio tests based on
Markov chain models.

Notation. Consider a long chain of observations, a;, a2, - - - , ax , arising from
a Markov process of order » — 1, with two states denoted by 0 and 1, and with
positive transition probabilities ps,...., . That is, py,...r, is the conditional prob-
ability of the state 7, given that the preceding » — 1 states are r1, 72, ++* , o1
Assume the process starts in a stationary state (although this can easily be
seen not to affect the asymptotic results given), so that the occupation prob-
abilities P(ry - -+ r,_;) may be derived from the transition probabilities by the
relation Y ., P(r1 +** 79—1)Dryeeer, = P12+ 7).

Let 7y,...,, be the number of times that 7, - -+, r, appears as a connected
sequence within the observation chain a;, -+, ax. In the case where » = 1
(the case of independent observations or random binary numbers) it seems
reasonable (so that the algebra will be tidier) to follow Kendall and Babington-
Smith [7] and consider a “cyclic”’ sequence in which a;.» = a;. In this case we
define n,,...,, as the number of times r,, - - - , . appears as a connected sequence
in one cycle of the observation chain. The difference in #,,...,, under the cyclic
or non-cyclic definitions is at most ¢ — 1.

The gap test is concerned with the number of non-zero digits (all denoted
here by 1) between zero digits, but we could easily apply the results to gaps
between any particular class of digits, for example, between even digits. For
random decimal digits we have » = 1 and po = 0.1 while p, = 0.9.

Let No = Nryryeorpyirays A0 My = Npypyenr,,, , Wherery = rp40 = Oandry = -+
= rzq1 = 1. That is, if there are at least two zeros in the sequence a;, - -« ,-ax,
then N is the number of gaps of length x and, in the cyclic case, M is the number
of gaps of length x or greater.

Since we may wish to pool some classes to give ‘‘reasonably large expecta-
tions”, let

8
No—>z+s = Z':] Na:+1
=
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and

M:o—o:c—l-c = ;)Mx+i .

For small values of x, s will probably be taken as zero and may always be
taken as zero if we are concerned only with gaps of small size rather than all
possible gap sizes. We shall, of course, choose values of  and s so that we have
non-overlapping classes.

Since we shall mainly be concerned with an independent sequence, we take
Po=pand p = ¢ Let g. = pg° and gozss = D im0 guti = ¢°(1 — ¢").

In what follows, Y, with no superseripts or subscripts, is taken to mean sum-
mation over all appropriate pairs of values of z and s. That is, the summation is
over all classes considered, which may be numbered 0, 1, - - - , L.

Formulation of the Problem. We shall consider the following possible tests of
the null hypothesis pr,...,, = p,, = p when r, = 0, where p has a specified value:
Test A: Kendall and Babington-Smith [7] suggested using

Xi — E (N:v-vz—l-: — nogx-»z-i-a)z

T g.’c—b;r,-{-a

which they considered to be asymptotically (with respect to N) distributed as
x* with L degrees of freedom, where the L + 1 classes include all possible gap
sizes, the last class including all those from a certain convenient finite size up
to size N — 2.

Test B: Meyer, Gephart and Rasmussen [8] have suggested their “strong”
gap test using

Na:—»z 8 Npgz-v:c 3)2

X2 = ( + +

? Z Npgszis

which they have taken to be asymptotically distributed as x* with L + 1 degrees

of freedom. We shall show that this is not quite the case.
Test C: We suggest that it may be more useful to base a test on

N — pMaiis)’
XZ = ( z->2+8 p x>2+8 .
=2 NDggorzie
We shall show that this is asymptotically distributed as x* with L + 1 degrees
of freedom, and, in fact, that for each of the L 4 1 classes
(N z>zts pr-»:H-o)z
NpQgzzre
is asymptotically distributed as x* with 1 degree of freedom.
An alternative procedure is to use
(Na»rr}-a - pMz-»z+a)2
qu Tzt
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which, by Cramér [5], 20.6, is asymptotically equivalent (that is, has the same
asymptotic distribution) under the null hypothesis.

The advantage of test C is that we may examine each of these separate con-
tributions, since these are asymptotically independent. It is difficult, however,
to relate these separate contributions to likelihood ratio tests in the way that
(as will be seen later) we can relate the total X% .

Asymptotic Distributions of X% , X3 and X~ . Now Bartlett [2] has shown that
the N *[n.,...,, — E(n,,...,,)] for various ry, - - - , 7, have asymptotically a joint nor-
mal distribution. Hence each of the sets of variables

a. N_%(NM-H - nogz-m:+a)
b. N} (Neozte — ND garsata)
C. N_i(Nz—»z+a il 4 M»—»:c+s)

for various finite values of x and s, being linear combinations (or very nearly so
in the non-cyelic case) of the N [n,,...,, — E(n,,....,)], for ¢ at least as large as
the largest value of £ + s 4+ 2 considered, have asymptotically a joint normal
distribution. We may easily see that the expected value of any one of the three
variables (labelled a, b, or ¢) is zero and so we only need to find the variance-
covariance matrix for the above sets of variables to find the asymptotic dis-
tributions of X%, X3 and X% .
Following Billingsley [3] we let

1 if the sequence a;, Gip1,y *** 5 Qipe
o = is the sequence 7, 72, =+ , 7y
0 otherwise

and let
1 if the sequence a;, @j41, *** , Qjtt4x1
B; = is the sequence s;, sz, *++, 8ipx Where K is a finite non-
negative integer
0 otherwise

—t 41 o
NOW ryor, = D imp i (Or D 3ot T @ for the non-cyclic case) and ny....,, x =

> ~1B;. Hence
N
COV(Tryeory s Mogeresgyr) = .Zl Cov(a:, B;)-
4=

The evaluation of this expression is greatly simplified in the case we are con-
sidering of an independent sequence and is further simplified here, since we con-
sider such sequences as 7y, +-- ,r;withm =r, =0andr, = --- = r.y = 1.

We find that

Var(N.) = Np'¢*(1 + 2pg" — (2¢ + 3)p’¢")

Cov(N.,N,) = Np'¢"*"(2 — (z + y + 3)p)
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and
Cov(N.,n) = Np'¢"(2 — (z + 2)p)
Hence
Var(N, — n.) = Npga(1 — ¢.)
and
Cov(N: — nogz, Ny — nagy) = —Npgagy .
Hence
Var(Neazts — Noffaszts) = NPGazts(l — Gomsots)

and

CoV(Naszte — Nofaszts » Nyoytt — Mfyoy+t) = —NPGorsztafyyse -

The variance covariance matrix of the N, — pM, may be obtained by noticing
that

COV(Tupyerer, — Drforyeeers_y s Magersy — DoMsyoross_y)
—_ T Ti1 e re
- Na‘!""t—-l P, pfc(att pu)

where

ST 1 ifr =8, ;70 =8
o1 e gt

0 otherwise.

This may be seen by a slight modification of the work of Anderson and Good
man [1] or by expressing the above covariance as > Y1 (3, 7), where £(4, 7)
contains four terms of the type Cov(a;, B8;) corresponding to the four terms
of the product

(Mryeoery = Drefryererg_y) (Mageeisy — DoMayeeese_y)-
We find that f(, j) is zero unless 2 = j and that
F(3,4) = 8352 Py o D (84 — Day).
Hence
COV(Tryvery = Prifiryeeery_y » Moyecsyx — PoryrMor---ssik-1)

—_ 10 Te-1 e U —
= N68x+1"-0e+x_1 Dsy ps:+x(6u+x p'c)

and so
Cov(N, — pM,,N, — pM,) =0 for z #y.
Hence
CoV(Nesets — PMacsets s Nymytrt — PMyoyr) = 0 for o+ s < y.
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Also
Var(N. — pM,) = Np'¢""
and hence
Var(Noozys — PMaoczts) = NDPQGoorots -

Now' we may find the asymptotic distributions of X% , X3 and X% .

Test A: Consider classes numbered 0, 1, 2, --- , L with associated variates
fosfiofey oo+ ,frsuch thatfors, 7 =0,1,2, .-+ Lwehave E(f;) = 0, Var(f;) =
Kpi(1 — p;) and Cov(f;, f;) = —Kpwp; for 1 = j and p; is a positive number
with Zf’_op,' = P _S_ 1.

We may easily show that the variance covariance matrix of z; = fi(Kp;)™
has L latent roots equal to 1 and one equal to 1 — P.

To apply this to the variates N *(N,.s4s — 7ofsrsis) We notice that
P =1 — ¢"if all gap sizes are included and hence, by Cochran [4],

Z (Nm-»z+¢ — Ny g:—>x+a)2
’ Npga:-»z-i-.s

’

(and also, by Cramér [5], 20.6,
Z (Nx*x—l-c — nogz-»z+c)2)

o g::—»a:+c

is asymptotically distributed as x* with L degrees of freedom.

This may also be seen by usual multinomial theory.

If, however, not all gap sizes are considered, but only, say, those of sizes 0 to k&
in the L + 1 classes (L = k), then L latent roots still equal 1 but the (L 4+ 1)th
equals ¢**'. Provided k is large enough this would have a small effect, but in
dealing with decimal numbers ¢ = 0.9 and with L = k = 4, say, the fifth latent
root is 0.59, which constitutes an appreciable effect.

Test B: From the variances and covariances determined above we find that

Var{N./(Npg.)} = 1 + 2p¢" — (2¢ + 3)p’¢"

and

CW{W&»’ Wﬁm}=wmmﬂ-%w+y+wm.

First let us consider the case where no poolihg takes place. That is, we con-
sider the statistic ‘
i (Nx - sz qx)Z
0 Np2 q:: °
We can easily find that the corresponding variance-covariance matrix has L — 1

of its latent roots equal to 1 and, after some algebra, we find that the remaining
2 latent roots are given by the expressions 3(a == ), where

a=14 ¢+ (2L + 3)pg"™
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and
B={(1—¢"1+ A = ¢"™) — 4L + 1)L + 2)p""h

If we pool so that the Lth class consists of all those gaps of length L or greater
the variance-covariance matrix is modified in the following way. Let

N* = NL+NL+1+"‘+NN—2, M* = ML+ML+1+"‘+ MN—2

and g« = g1 + g1 + - + groa.

In practice, many of the components of N4 will be small or zero and N« may
be calculated as ny — Zﬁ;},lN z .

We have considered the above method for pooling classes since it seems to be
a reasonable one and any general pooling scheme as in Test A is too awkward
algebraically.

The asymptotic expected value of N is Npg” and so the test statistic is now

L—1 2 z\2 L\2
(N. — Np'¢")* | (N+ — Npg")
zo: Np¢ + Npg* '

We can easily show that Var{N«(Npg“)™" is asymptotically equal to 1 —
(2L + 1)pg” and that

Cov{N.(Np'¢") ™}, N+(Npg") ™}
is asymptotically equal to
p'¢"2 — (L + 2+ 3)p — ql.

It follows that the corresponding variance-covariance matrix has L — 1 of
its latent roots equal to 1 as before, and, after some algebra, has the remaining 2
latent roots equal to

314+ {1 £ (1 — 4¢"7'(1 + 90O},

This means that, for large L, one of the latent roots is approximately 1 + ¢ and
the other is approximately zero.
Test C: For each class denoted by z — = + s,

(Nz->z+s _ pMz-»z+s)2
Npggz-rzis
is asymptotically independent of similar contributions from the other L classes

and is asymptotically distributed as x* with 1 degree of freedom. Hence X¢ is
asymptotically distributed as x* with L 4 1 degrees of freedom.

Discussion of Tests A, B and C. In the following we restrict ourselves to the
case where we consider gaps of sizes 0, 1, 2, --- , L — 1 and pool gaps of size L
or greater.

Now

= (N. — noga) "
= Npg. Npg, 0 Npqg.

C*k.

(N* — Ny g*)2 — LZ—I (Nz - PMz)z = X2
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This can easily be seen to be true for L = 1 and may be proved by induction,
remembering that M, = Ny . Hence X&« is asymptotically equivalent to X% .
Asymptotically then, X%« is a partitioning of X% into independent x* variates,
each with one degree of freedom. Notice that X%« is a modified form of X% .

Also we may show (using the asymptotic likelihood found by Bartlett [2])
that the likelihood ratio test of the null hypothesis

Dry-orpyy, = D (a specified value) if rp4y = 0

against the alternative

Pricerppr = Prgeerpya # 4 if r: = Tpya = 0 and Tx41 = *°* =T = 1 for
x =1, 2,---, L (where these probabilities are
unspecified)

and

Priverpyr = P (specified) if ;, = -+ = r, = land rpn = 0,

is given by

L—1
N, : M, — N,
—2log\ = 2 ; {N, log (pM) + (M, — N,) log (TM——» .

This may be shown (using methods similar to those used by Anderson and
Goodman [1]) to be asymptotically equivalent, under the null hypothesis, to
LZ—I (N z PM a:)2
=0 qu z

’

which is asymptotically equivalent to X%« and hence to X% .
In the case where the null hypothesis does not specify the value p the likeli-
hood ratio test for the null and alternative hypotheses above is given by

L—1 NzN> ( M., N )
—2log\ =2 ;{N, log <n0 . + M1 log N = no)M,

N« N (Ms — N4)N
o og (57 + 201, = o (G 57).

which, under the null hypothesis, is asymptotically distributed as x* on L degrees
of freedom and is asymptotically equivalent to
L—-1 A 2 A 2
Xf)= Z (N:c — pr) +(N* — PM*)
= PIM PGM «

where p = 1 — § = no/N.
It is interesting to note that

L—1 2 2 2
N, — pM,)" | (Nx — pMs)" (ny — Np)
x =y ez - _ (= Np)J",
P ;o PGM . + PIM Npg
Under the null hypothesis
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Dryorppr = P (specified) if 7y =0
(which is the null hypothesis for the first likelihood ratio test considered) this
is asymptotically equivalent to
(Nx — PM*)2 _ (g — NP)2 =X — (no — NP)2
Npggs Npq Npq
It may be seen that X % is asymptotically equivalent, under the null hypothesis

Xex+

Dryoerpy = P (specified) if rp =0,

to the likelihood ratio test of this null hypothesis against the alternative hy-

pothesis
Driverpyr = Prgoerppn AP A 75 = 7 = 0 and 7y = -+ =17y = lfor

=12 -,L.

(Notice that this is a slight modification of the first likelihood ratio rest con-
sidered, the only difference being that the alternative hypothesis here does not
specify pr...r,, Where rp = rp = --- =1, = L )

The result for the asymptotic distribution of X% may be illustrated by noting
that X3 = Xe« + q(no — Np) /Npg.

Now (ny — Np)®/Npg and X24 are asymptotically distributed as x* variates
with 1 and L degrees of freedom respectively. However, these two x* variates
are not asymptotically independent. In fact we may see that X%+ may be par-
titioned as follows:

(N* - pM*)2 — = (Nx - pMa: - gz(no - Np))2
Npggs =0 Npgg.

(ng — Np)2 + (N« — pM s — gs(ng — Np))*
Npg Npggs

Xox+

_|_

and for large values of L, and hence small values of gx , the last terms on either
side of this equation are approximately asymptotically equivalent and the ﬁrst
term on the right hand side is asymptotically distributed as an approx1mate X
variate on L — 1 degrees of freedom, independently of (no — Np) */Npg.

Hence for large values of L, the asymptotic distribution of X% is approximately
that of a x* variate on L — 1 degrees of freedom plus (1 + ¢) multiplied by an
independent x* variate on 1 degree of freedom, this last x* variate arising from
the term (no — Np)®/ Npq.

This explains the result for the latent roots of the variance-covariance matrix
associated with X% . L — 1 of these latent roots are equal to 1 and, for large L,
one is approximately equal to zero and the last is approx1mately equal tol + q.

The approximation in the above is asymptotically 0,(¢") and ¢" may not be
particularly small in cases of interest. We are unlikely to be interested in ex-
tremely large values of L.
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Extension of Test C to the case of Dependent Sequences. We consider now a
non-cyclic dependent sequence. It will be easier to find first the likelihood ratio
test and then the related x? test, which may be regarded as an extension of
Test C.

Consider the null hypothesis

Prirpps = Pro_yyioorpys = P (specified) if 7y =---= r, = land
res1 = 0 (where u is a fixed integer and
QC=p=1L)

against the alternative

p"l""’L+1 = p"L-—z“"’L+1 #£ y4 if Tz = O, PL—sgt1 = *** =T = land Ly1 = 0
andz=p,pu+1,---,L—1

and

Dryerpyr = P (specified) if r; = -+ =r,=1landr,4; = 0.

Then if A is the appropriate likelihood ratio

L—-1 .
—2log\ = 2 Povergyeerpo 10 (ﬂ_’_b;z__’_t"_)
g ; { L-swr10 108 PN Ty ... Ty

N...r veergl
+ Nery_geerp1 10 (—"“—’—"—)}
1zl 108 qNeoorpgeeorr, -
and under the null hypothesis this is asymptotically distributed as x> on L — p
degrees of freedom and is asymptotically equivalent to

= DM ;, L

where Y. 1 = Nurp_pourpyy = P Nevrp_goery, - and

Mot = Noerpypoory, = Dortorpss Torpoerh o 17D ave 7L

where YLz = TL41 = Oand PoL—ztr = **° =T = 1.
Consider the hypothesis pr,...rp.; = Prp_,41-r41, Where the probabilities
are specified, and in the particular case rp—yp1 = -+ = rp, = land rpn = 0let

us denote pry_,.,,..-rp41 By P. That is, we are considering a Markov chain of order
at most u with specified transition probabilities.

Under this hypothesis the likelihood ratio test statistic above is asymptotically
equivalent to :

L—-1 2
Yar

D=p Npq P(rL-——z' * 'rL)

)

which is asymptotically distributed as a x* variate with L — u degrees of freedom.
This is a possible extension of test C for u-dependent sequences. Also it may be
shown that each term Y, . / (Npg P(rp—. --- r1)) is asymptotically distributed
as an independent x* variate on 1 degree of freedom.
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However, the likelihood ratio test is perhaps preferable since it is not necessary
for the likelihood ratio test to specify, under the null hypothesis, the value of
Dry--rp 4, Where any one of 7p_u4q, - -+, 7 is zero.

A test that is perhaps more useful is the likelihood ratio test where the null
hypothesis does not specify values of probabilities. That is, we test the null
hypothesis:

(unspecified) where rppyyy = -+ = rp = 1
and rpy1 = 0

p"l""L-l-l = p’L—u+1""L+1 =p

against the alternative

Pricorpgy = Pro_gerpys =P Whenrp, = rpp = 0and rpepn =+ =1y
=lforz=pp+1,---,L—1.
In this case
L—-1 n
—2logA =22, {n‘.n_,..‘,,‘o log (—M>
D=4 ‘ ﬁn...rL_’...rL.
+ Np_geerpa log (ﬂ—lﬂ—i)}
Ghecorgy_goeorr, .
Ngy..o870
+ 2n,,....00 log (—‘—L>
e Plray..eay.
+ 274, ...451 log (M>
gy .- ws1,
wheres; = s, = -+ - =8, =1,7,, =0,rp 1=+ =r,=1Alsop=1-—¢
= My yproorg0 ) (Meverp_ypyoeery) Where rp_ypy = oo =71, = 1

This is an obvious extension of the likelihood ratio test associated with X
and under the null hypothesis —2 log A given here is asymptotically distributed
as x> on L — p degrees of freedom.

Some of the tests given above are anticipated in a statement by Goodman
[6] on possible tests on his ;; which is the same as our N, with £ = 7 in the
particular case j = 1, and evaluation of some of the variances and covariances is
related to some work by Good [5a].
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