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1. Introduction and summary. This paper deals with confidence interval esti-
mation and hypothesis testing for components of variance, in analysis-of-variance
situations embraced by the Model II of Eisenhart [1], including also the so-
called nested classifications. Several authors have treated the problem of setting
confidence limits for variance components, and several approximate methods
have been proposed. Four approximate methods are described in Anderson and
Bancroft [2] and briefly in Crump [3], and references to original sources and ex-
tensive bibliographies are given in both [2] and [3]. In [4], Green gives more
refined approximations which are, however, not presently in a form for practical
use. Huitson [5], Welch [6] and Cochran [7] discuss related problems involving
linear combinations of variances, and offer approximate methods for these prob-
lems. The many references on approximate tests and confidence limits in variance
component problems emphasize the absence of exact methods. The present paper
points out that, using a randomization device, exact confidence limits and tests
for a variance component become available in a simple way. These exact confi-
dence limits will usually but not always define a single confidence interval; in the
exceptional case (having small probability in practice) the exact limits may de-
fine an interval with a gap in it. Numerical illustrations are given, together with
comparisons with results using some of the available approximate methods.
Also, asymptotic power comparisons between the exact test and two approximate
tests are discussed.

There are at least three notions of confidence that can be associated with the
statement: “a(x) < 8 =< b(x) is a 100(1 — «)% confidence interval” for the
parameter & with possible nuisance parameters 5, based on observations z.
They are

(a) Pr{a(z) = 0 = b(=)}
(b) Pr{a(z) = 0 = b(x)} =2 1 — a forall 6, 9 with equality for some 6, 7.
(¢) Pria(z) = 0=b(x)} =21—a foralld,

The phrase “exact confidence” we shall interpret in the sense of (a) above. So
far as the author is aware, for a variance component no confidence limits satis-
fying either of the notions (a) or (b) have previously been constructed. An inter-
val satisfying (c¢) has been constructed in [8], using a two-stage sampling pro-

cedure.
In the present approach, the mathematical difficulties ordinarily caused ip

1 —a foralld, g
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variance component analysis by the presence of nuisance parameters are circum-
vented by a process of randomization. The resulting confidence limits depend
not only on the mean squares of the analysis of variance table, but also on
auxiliary observations on a random variable with known normal distribution. A
consequence is that two statisticians confronted with the same analysis of vari-
ance table will in general construct different confidence limits. While practically
this may afford some discomfiture, it remains true nevertheless that these exact
confidence limits meet the ordinary claim (a) as to probability of containing the
true variance component. In the examples tried, the limits are plausible and
they are not difficult to compute. Moreover, the agreement between numerical
results using the method proposed herein and the usual approximate methods
may serve to increase one’s faith in the approximate methods in small samples.

2. Statement of the problem. Specifically, the kind of problem dealt with here
can be described in terms of two observed mean squares U and V such that
nV/o* and mU/(o* + ro;) are independently distributed in chi-square distribu-
tions with n» and m degrees of freedom respectively. The variance components
o* and o4 are unknown, and r is a known constant depending on the experimental
design. It is required to find confidence lirnits for o5 having confidence coeffi-
cient exactly 1 — . This problem arises from bajanced Model II variance
analyses, from certain Mixed Mondel analyses, and from analyses of nested
classifications, when suitable normality assumptions are made. For full discus-
sions of these analyses and models, the reader is referred to [1], [2], and [3], and
the accompanying bibliographies.

Any problem of the above type, concerned with estimating or testing hypothe-
ses on a variance component, can always be reduced to a corresponding problem
concerning the difference between unknown variances of two normal distribu-
tions with known zero means. In the following section the latter formulation will
be used, later converting the results into the usual terms of variance component
analysis.

3. Exact confidence limits for the difference between two variances. Sup-
pose there are two independent samples (21, 22, -+, Z,) and (y1, Y2, *** , Ym)
from N (0, o1) and N(0, ¢} + o3) respectively. It is required to construct exact
two-sided confidence limits for o3 , having confidence coefficient 1 — a. (Corre-
sponding one-sided limits are easily obtained from the two-sided case.) Now an
equivalent problem is that of constructing a similar, size-a test of

H:o; =&
A: oy # &

that is, a test satisfying Pr{reject H when o3 = 87} = a for all ¢1 . Such a test

will yield exact confidence limits for o} .
It is, however, easy to construct such a test by the adiunction of an inde-
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pendent sample (z,, 2, «* -, 2,) from N (0, 1); the statistic defined by
2o /m
> (z + 8)°/n
1

w
has, when H is true, the F distribution with (m, n) degrees of freedom and ac-
cordingly provides similar tests of H. For example, the ‘“equal tail” acceptance
region for H is defined by F; = w < F,, where F; and F, are respectively the
100 (}a) and 100 (1 — 3}a) per cent points of the F distribution with (m, n)
degrees of freedom. Corresponding one-sided tests can be described in the obvious
way. We shall agree to define w for § = 0 only, corresponding to the positive root
of o3 ; the sign of & does not affect the validity of the significance test, but a
consistent sign for § is necessary in deriving the confidence limits.

To obtain exact confidence limits for o} starting with the equal-tail acceptance
region based on w, we have

{Fisw= Pyl
1 1 1
(1) =%E§a§*§
nz:y2 2 an
{ o~ =X (@+8)s mFl}

2 2
(2) ={'L£,Zy -3 gzasz+522z2§’-‘%Fll—Zx2}.
From (2) it is seen that an undesirable feature has crept in; if we proceed in the
obvious way from (2), the resulting limits will involve terms in D zz. Such
terms would prove inconvenient in applications to variance component analysis,
since independent quantities z,, 2, - - - , &, having distribution N(0, ¢i) are
not observed there, and would become available only after suitable transforma-
tion of the original data. It would be better to have confidence limits which
depend on the original data only through the mean squares (e.g., U and V)
usually computed in the analysis of variance. The argument which follows
serves to construct such computationally more convenient limits.
Divide the inequalities (2) by 25(>_ %)}, obtaining

{ 1 [n2y2_2x2]< sz + 6Zz2
(3)

262 2L mF, O IR
< 1 ny,y _ 2
s gl - =)

_ D xz 8. 7
T T

and set
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Now for fixed (21,22, ::,2.), an orthogonal transformation from

(21,2, 2) t0 (21, 25, -+, 20) With 2 = (20 22)/ (2 2°)} yields
. ! = 12
(4) t—-z1+2(z: 2)*21:z,

where (21, 25, -+ , 2») are each distributed N (0, 1), are mutually independent
are are independent of (x;, 2, -+, 2.). The statistics ¢ and # have the same
distribution and since ¢ is computable directly from 2 and (21,25, - - - , 2n)
it will serve as the desired replacement for ¢. From this discussion, a third possible
substitute for ¢ is seen to be

3 2 6 2
" =z+ Z + al,
2T 2T
where z is N(0, 1), xa_1 is a chi-square variate with n — 1 degrees of freedom,

and z and x5—; are independent.
Replacing ¢ by ¢’ in (3), and dropping primes, we have

nz: ? 2
¢ —Ex]§z1+2(z 2)*Zz

4
1
{26(2 )} |: mF,
1 ny, 2]}
26(3 )} [ I
which yields, upon completing the square in §,

{Zl ¢ [nmy;’ 2y2 R x] + <€%?xx>2é (6 + z_%_:l)
<[54 CE)

An exact confidence region for o, is then defined as the set of values § satisfying
both (5) and § = 0. These are the values of o, for which the null hypothesis
= § would be accepted, and since the acceptance region (1) has probability

identically 1 — a when ¢; = §, the confidence region defined by (5) and 6 = 0

has confidence coefficient exactly 1 — a.
It remains to determine the limits defining this region, and the discussion will

be simplified if we let
_ 1 |n Z Y _ 2 |
k= Z 22[ mk, Z z J ’

b= z‘%z 2

IIA

(5)

and
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In these terms the inequalities (5) become
E+b=(6—-0)=<14+0,

which constrain § to satisfy either

(6) b— (I + ) <6=<b— {max[0, k + b}
or else 7
(7) b+ {max[0, k + ¥} < 6 < b + {1 + 3L

(We have assumed ! + b* = 0; the confidence region is empty otherwise.) Con-
sideration of (6) and (7), together with the requirement § = 0, shows that the
confidence interval will be defined by (7) alone, unless —b* < k < Oand b > 0
both obtain. In the latter case the confidence region consists of both (7) and
the non-overlapping interval

(8) max(b — {l + *}%,0) < 5 < b — {max[0, k + b%}*.

There thus exists a possibility that the exact confidence limits may define a
region consisting of two separate intervals, which would in practice be a dis-
concerting event, (though of course the “gap”’ could be included in the confidence
region at the sacrifice of the exactness property.) It is of interest to examine the
chances of getting two intervals, and we note first that b? converges to zero in
probability so that asymptotically the chance of two intervals is negligible.
Also, Pr{b > 0} = 3. Note too that £ < 0 is the condition that the variance
ratio (D v*/m)/ (2_2*/n) be not significant at the 3a level for testing o; = 0.

Some simple computations can give a rough bound on the probability that
two intervals will result. Using the definition for %, the condition —b? < k < 0
is readily found equivalent to the condition.

) s s (D)
(Fz_Zzz of + o} =r=sh ot +a3)’

where F has the F-distribution with (m, n) degrees of freedom. The probability
of this event will be greatest when Fa[(o7 + 8")/ (s} + o3)] is close to the mode
(mn — 2n)/(mn + 2m) of this F distribution, or roughly when F; ~ (ot + o2/
(o7 + 6). Thus we can get a rough upper bound to the probability of two in-
tervals by computing the probability in an interval of length 2i/F, Y 2* at the
mode of this F distribution. In the neighborhood of the mode, a normal approxi-
mation should suffice for our present purposes. Taking F to be approximately
normal N[1, 2(1 + a)/(na)], where a = m/n, the desired probability bound
can then be approximated by

a

4 o 1 ) 1 - )*
E{FzZzz @ (My} @ \20 + o))
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Numerically, for m = 5, n = 24 as an illustration, we obtain ~.01 as an ap-
proximate maximum to the probability of —b* £ k < 0. Since for two intervals
to result, we must also have b > 0, we can say that roughly speaking the prob-
ability of two intervals will not exceed ~.005 for these values of m and n, no
matter what the configuration of o7 and o2 . We conclude from this type of in-
vestigation that the possibility of a confidence region consisting of two intervals
by the exact method of this paper is remote for practical values of m and 7,
and hence should not cause difficulty in practice.

4. Exact confidence limits for a variance component. It remains now to con-
vert the result of Section 3 to the variance component problem of Section 2. The
complete procedure can be stated as follows. Let 2V /s andmU/(a* + roy) have
independent chi-square distributions with n and m degrees of freedom respec-
tively, V and U being observed mean squares in a variance component
analysis and r being a known constant. Let (2,2, -, 2n) be a sample of size
n from N (0, 1), which can be obtained from tables of random normal deviates,
eg. [10]. Then exact two-sided 100(1 — @)% confidence limits for o3 are given
(for the usual case of a single interval) by

(9) Lower limit: -:-{[max 0, fn—z—z (gz_ V) + (z_l%i;)z:r h zl(z"";)‘}z

(10) Upper limit: .}{[z"_zz (Fgl _ V) + zl’%‘,?)‘*y]* _ z—‘%‘%*}z

where F, and F; are respectively the 100 (3e) and 100 (1 — 3a) per cent points
of the F distribution with (m, n) degrees of freedom. Furthermore, if

_ zl(nV)*>2 < n g
AT AE
the interval having

o 1 [ » (U _ zl(nV)*)2 *__zl(nV)*}2
(11) Lower limit: ;{max 0, [Z > (F1 V) + > 7 ] >7

(12) Upper limit: ;{—[max 0, zn? (g; — V) + (21%%1;)*)2]* _ &(Z"’Zz) i}z

is to be included as well.

An equivalent alternate procedure is to observe z; and xi_; and replace
372 by (2 + x2) in the preceding limits. However, tables of the chi-square
distribution are not sufficiently complete to permit simulation of sampling
from a chi-square distribution and there are no tables of random x° variates.
While one could employ tables of random numbers and a table of the Incomplete
Gamma Function, it may be that the best way to obtain a x4_1 variate is as the
sum of the squares of n — 1 N(0, 1) variates, which brings us back to the first
procedure.

-—V)<0 and 2 <0,
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6. Numerical illustrations and comparisons. We shall take as an illustration
the example based on the analysis of variance table on page 323 of [2], from which
the authors give, on page 324, 90 % confidence limits for a variance component
by several approximate methods. Three of these approximate methods may be
described briefly as

(i) normal approximation to the distribution of /MU -=-V]=
(ii) »* approximation to the distribution of &

(iii) replacement of ¢* by V in exact confidence limits for o3/c>

The pertinent data are

U = 46,659 m=3
V = 459 n =72
Based on sampled values 2, = 0.628, D7 2* = 62.72, exact confidence limits

for o§ are computed from (9) and (10Q) as
Lower limit: 62
Upper limit: 1514.

Application of the three approximate methods gave the results in the following
table, from page 324 of [2].

90% Confidence Limits

Method Lower Limit Upper Limit
1) 0 316
(ii) 59 1313
(iid) 55 1331

The extent of variations to be expected between conventional approximate
methods and the present method may be studied by constructing an approxima-
tion based on the present method. A simple approximation can be obtained from
(9) and (10) by replacing functions of (2, 22, - - 2,) by their exact or ap-
proximate expected values. Using

£ (zlg?*) - 0,5 = n,

and

E(zl(nV)*yN EnVa __V
27 EQA) n+2’

we have the slightly new approximate limits

Lo LU o fnt1
13) Lower limit: ;[172 V(n————+ 2):,
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. U _ n-+1

(14) Lower limit: [F—,l 14 (m>:|

Replacing (n + 1)/(n + 2) in the above limits by unity yields the approximate
limits from method (iii) above. It is clear that the ratio between (14) and (10)
is essentially the ratio between n and ), 2*, or x5 /n. That is, the exact limits will
tend to deviate from this conventional approximation (iii) proportionally to
variations in x%/n, being more variable than the apprqxim'ate limits because of
this extra element of random variation. The variance of x*/n being 2/n, one
obtains an idea of the size of discrepancies to be encountered between exact and
approximate limits.

6. Power comparisons. As remarked earlier, the power of the similar. test from
which exact confidence limits have been derived herein can be computed directly.
from the F distribution. The one-sided tests are clearly unbiased. However, no
investigation of the standing of these tests (one-sided or two-sided) in' the class
of all similar tests has been attempted. This would seem to be a difficult problem
due to difficulties in characterizing similar tests of the hypothesis o5 = §°. (The
similar test herein derived does not have Neyman structure, which means that
(3=, 2°9") is not boundedly complete, which means that the methods depend-
ing on boundedly complete sufficient statistics do not.apply.)

One might suspect that the element of randomization introduced to achieve
similarity could result in a serious impairment of power. For this reason, com-
parisons of asymptotic power functions have been made among the similar test
of Section 3 and the tests corresponding to approximate confidence intervals
(ii) and (iii) of the preceding section. We consider only one-sided tests

H:o: =8

A:ay > &
we do find that the exact test is somewhat inferior in large-sample power, but
that the amount of power impairment is not likely to be serious.

Corresponding to the approximate confidence interval (ii) based on a chi-
square distribution, the one-sided rejection region is defined by

;—,(%yﬂ - ¥> 2 xi/f,

where x; is the 100 (1 — «)% point of the chi-square distribution with f degrees
of freedom, and f is determined here by

-2

= e
L&) +1(&)

In these comparisons of large-sample power, we will consider that m and n ap-
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proach infinity in a fixed ratio, say m = na. Then f = ng, where
. (E yz 3 Z 22\2
g = m n
() +(5)
m n

To compute the asymptotic power of this test we first note that the quantity
”’)&/f = Xno/ gn* can be approximated by

Xno/gn* ~ 2gn!][ta + (2ng — L)Y = 0} + 24(t./g") + “terms”,

where the “terms” approach zero in probability and #, is the 100 (1 — «) %
point of N'(0, 1). Also, the quantity (n*/6*)[(3_y*/m) — (3_2*/n) — o3| hasasymp-
totically a normal distribution with mean zero, variance 26*[{ (¢} + 03)*/a} + oi].
Accordingly the asymptotic power of this test can be written

3 2 2 2 % i
Pr {% [Ey DY ai] + 22 > bt [g] e (ot + o) + a«f}*}
m n 6 al a5
which yields, after some reduction and application of standard theorems,
e [1 O
(18) 2L+ ara] %)

where & is the standard normal distribution function and
p = n'l(a2 — 8)/(o% + o3)]

measures the divergence from the null hypothesis.
For the one-sided test based on the approximate confidence interval from
method (iii) of the preceding section, the rejection region is

?
M > F,.
> at/n + &
Here the quantity

ot ( 2y /n _a+ ag)
Satn+8 o+
has asymptotically a normal distribution with mean zero, variance
9 (o1 + 03)° [1 + o1 ]
(ei+2Lla  (1+2)
and the asymptotic power function can accordingly be written
2 2 2 2 2
3 E'y/m _(01+¢2))> tpo_ ;(a1+a2)}
Pr{n (sz/n+62 G+ =" T \are)

Using now the fact that n}(F — 1) is asymptotically N(0, 2[(1/a) + 1]), we
obtain for the power function, after some reduction,
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OB (2 A | N )

It should be noted that the test statistic (X y°/m)/ G a*/n + &%) and F do
not have the same limiting distribution even on the null hypothesis, which
incidentally accounts for this more complicated form of the asymptotic power
function for approximate method (iii).
To cast the asymptotic power function of the one-sided similar test into analo-
gous form we use the limiting distribution of F. The power function is
(o1 + &)

Pr{F 2P az)}

which asymptotically becomes

p |1 - (o1 + &)

o ofgliri] -l

Comparison of the power expressions (15), (16), and (17) shows that the
approximate chi-square test based on method (ii) is asymptotically most power-
ful among these three tests. Comparison of the F approximation method (iii)
with the similar test shows that for § > 0, the method (iii) will have superior
power for large values of p while the similar test will have superior power for
small values of p. '

It is of interest to evaluate the magnitudes of these power differences. Consider
a comparison of (15) and (17), which compares the asymptotic power of the
similar test with that of the best test among these three. We first note that
n — o and the definition of p imply that for 6 > 0 both (¢f + 8°)/(o} + 3)
and °/03 will be close to unity, so that the difference in power resulting from the
difference in multipliers of ¢, can be neglected. One way to compare tests is on
the basis of sample sizes required for equivalent power, and for equivalent power
we see from (15) and (17) that sample sizes must be approximately in the ratio

pe () (4 )
n a/ " \a ' (624 o)

for these two tests. Now R must satisfy
(18) 1=R=1+a,

and a is ordinarily a fairly small number, corresponding to the fact that a “be-
tween” variance is usually estimated on much fewer degrees of freedom than is a
“within” variance. For example, with a one-way classification having r observa-
tions per class, 1/a ~ r. The inequality (18) thus means that with ¢ = % as
found in the first numerical example of Section 5, the exact test requires less
than 4% more observations for equivalent asymptotic power.

These results seem to say, without further numerical investigation, that for
most designs yielding fairly small values of @, our use of randomization to achieve
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exact similarity in small samples does not cost much in terms of large-sample
power. Numerical power comparisons would be interesting but have not been
computed. '
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