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ON A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL
DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES!

By Wapie F. MigHAIL
International Business Machines Corporation

1. Introduction and Summary. The purpose of this paper is to establish the
monotonicity property of some tests suggested by Roy and Gnanadesikan [2]
for the problem of testing the null hypothesis of equality of two dispersion
matrices against some specific alternatives. If Z; and Z, denote the dispersion
matrices of two non-singular p-variate normals and v;, v2, -+, v, denote the
characteristic roots (all positive) of 2,27, then the null hypothesis is H, :
all v’s are equal to unity. The alternative hypotheses to be considered are:
(1) Hy:ym > 1; (i) Hy :yae < 1; (iii) Hs : yar > 15 (iv) Hs : vm < 1, where
v= and v » denote, respectively, the smallest and the largest of the v; .

Let us denote the largest and smallest characteristic roots of any square
matrix A by chmax (A) and chmin (4), respectively.

2. Case I. H; :y,, > 1. The three-decision procedure suggested in [2] for this
case can be expressed, by reducing the problem to the canonical form (cf. [1],
pp. 188), in the following way:

(i) Accept H, against H, if

(2.1) D: chmax (XX )(YY) < A
(ii) Accept H, against H, if
(2.2) W: chmin (XX )(YY)™ > A
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- (iii) Make no decision otherwise, where A\ is determined such that, for pre-
assigned a(0 < @ < 1), Pr{D | H} = «;and

15 xlnl—, Yu - Yin,
X =|—- - =1 Y =| — .. —
pPXny . pXng
Tpt  c Tpny Ysr Y,y

have, under H;, the probability distribution (ef. [1] pp. 189).
P
(2.3) (1/[2x])}pmrtn) 111775" exp [—% tr {Dy, XX' 4 YY'}] dXdY,

where Dy, = diag (1/v1, 1/v2, +++, 1/v,). In what follows, we are going to
show that the probability of accepting H,, when H; is true, decreases mono-
tonically as each noncentrality parameter, v;, separately, increases.

This probability is obtained by integrating (2.3) over the domain D of (2.1)
and may be written in the form

(2.4) Const. fD _expl— } tr {[XX' + ¥Y'}] dXdY.

Where the integrand is free from the 4’s and the domain ©* is merely the domain
D of (2.1) scaled by (1/v;) in the directions of £y, «++ , i, ; (2= 1,2, -+, p)
to allow for the change in the intergrand and the implicit equation for the bound-
ary of D.

But it has been shown in [3] that, for given values of A, Y and the elements of
the matrix X other than those in the 7th row, D of (2.1) represents a domain
in (xa, Zw, *+**, Tin,) which is an n;-dimensional ellipsoid with center at the
origin. Thus scaling by 1/v; in the directions of z;;’s (j = 1, - - - , n;) will produce
an ellipsoid completely imbedded in the original one when, as the case is, v; > 1.
This imbedded property of the integration domains, since it holds for any 7,
establishes the required result.

3. Case II. H, : v, < 1. By interchanging =; with 2, and X with Y, this case
can be thrown back to Case I and it follows that the probability of accepting
H, when H, is true decreases monotonically as each v; decreases.

4, Case IIL. H; : vy > 1. For this case, the following two-decision procedure
is given in [2]: Accept H, against H; if

(4.1) Dy ¢ chmex (XX )(YY) T 2 4,

and reject otherwise.

It is the purpose of this section to show that, for given values of all the v’s,
other than v » , the probability of Type II error of the proposed test decreases
monotonically as v » increases.

The probability of Type II error is obtained by integrating (2.3) over D .
Without loss of generality, let y» = v, . For given values (v1 , v , -*+, Yh-1)
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of (1,792, *** , Yp—1) this probability can be expressed, aside from a constant,
as

n1 p—1 n1 p n2 )
[ew [0 {Ea + & v B+ 5 B | axar,
D% j=1 i=1 j=1 i=1 j=1

where D7 is merely D, scaled by 1/v,. As indicated in Section (2), and since
vp > 1, this scaling will produce an ellipsoid completely imbedded in the original
one. Hence the probability of Type II error decreases monotonically as v,(= vy u)
increases (conditionally on the other v,’s).

The result for Hy : v» < 1 follows immediately from Case III as Case II
follows from Case I.
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