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and
sup Efe'*} = 2 + (cosh ¢)/3 and inf  E{e"} = (cosh /3t)/3.

(0,1/3,0) (0,1/8,0)
[-1,1] FeS 1

It is readily verified that (cosh /3 ¢)/3 < (sinh ¢)/t < 2 + (cosh ¢)/3, where
(sinh £)/t is the moment generating function of the rectangular distribution
on[—1,1].

3. Let yy = 1, s = 2, ug = 6, i.e., the first three moments of the exponential
distribution with mean unity. Then

inf B¢} = 3+ 2v2) 4+ 2v2) " exp {(V20) (1 + v/2)7}

(1,2,6)
(0,01

+ (4 + 2v/2) " exp {2 + V2.
0, z <V2(1+V2)7,
Fi(@) =B +2v2)¢+2v2)7, V20+v2) 7" =22<2+3,
L 1, 24++42 =

The supremum does not exist.
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ON BOUNDS OF SERIAL CORRELATIONS

By K. C. CuanDA
Washington State University

1. Introduction and summary. The role of serial correlations in time series
analysis is well known. Considerable attention has been given to the derivation
of their sampling properties when the sample size is both small and large. In
all these discussions it has been tacitly assumed that these correlations are
bounded between —1 and 1. At least, no literature exists which considers it
otherwise. Whereas it is true that the serial correlations are all bounded it is
not true that the bounds are —1 and 1. In fact, in small samples these bounds
may very well be lower than —1 and higher than 1. To the best of the author’s
knowledge, this fact has not been mentioned anywhere. The purpose of this note
is to discuss this particular aspect.
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" 2. Bounds of serial correlations. Let us for the sake of simplicity define the
sth order serial correlation r, by

Trs = Cs/ CO 0

2.1 n—s
@1) C, = g Te&eys/ (N — 8)

I\

s<n

where we assume that the z.’s can take all possible real values between — « and
o, It is easy to show that r, is bounded. In fact

(22) |n| = {(g CH :Z; x?+.>* / tZ:; x?} n/(n —s) <n/(n —s)

|| can never attain the value n/(n — s) because this implies and is implied
by the conditions z: = oz, for all {(1 < ¢t < n — s) where a is an arbitrary
real constant and 2; = 0 for t < sand = n — s + 1, which, however, means
that z; = 0 for all #(1 < ¢ < n). On the other hand, it is possible to prove that
max |r,| > 1. We shall consider first the particular case s = 1.

With this end in view we now pose the problem of maximizing D 7= TeTeqq
subject to i #; = constant. The z,’s will then satisfy the following normal
equations

T2 = AT
Te — Mt + Zo2 = 0 3=Et=n
(2.3) Xng = )\xn

n

2
Z r¢ = constant
t=1

where A is the Lagrangian undetermined multiplier. The solutions have been
derived by Grenander and Szegé (1958) and are given by

IA

t

A

(2.4) Xy = Tnpy1—¢ = sin £6/sin 0 1

and N satisfies the equation (4 — A)}A = tan [x/ n 4+ 1)] ie.,
N = 2 cos [r/(n + 1)]. Consequently,

n=mn{(n—1-=Cny)cosf+ S,ysinb/{(n— C,) (n — 1)}

n

where
Cn = 2 cos2t, S, = > sin 20, 6 = w/(n — 1).
t=1 t=1

We note that cos 2(n + 1) = 1, cos 2n8 = cos 26, sin 2(n + 1) = 0, and
sin 2nf = —sin 26. After some simplification, using standard formulae for C,
and S, and the above relations we can show that

(2.5) r = {n/(n — 1)} cos {x/(n + 1)}.
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TABLE 1
Extreme values of r for selected values of n

™

S

+1.061
+1.079
+1.083
+1.081
+1.078
+1.074

W 3 Ok W

The right hand side expression of (2.5) is always > 1 for n = 3 be-
cause cos {m/(n + 1)} =1 — 3{nr/(n + 1)}*>1— 1/nforn = 3.If we take
z, = (—1)" sin ¢6/sin 6, then n = —{n/(n — 1)} cos {x/(n + 1)}. Table I
gives these values of 7, for various values of n. Note that

d |n|/dn = cos[r/(n + 1)}/ (n — 1)* {tan [/ (n + Dln(n — 1w/ (n + 1)* — 1}

which is negative if tan [r/(n + 1)] < (n + 1)%/[nwr(n — 1)]. It is easy to
show that the inequality holds if » = 10 so that from » = 10 onward |r,| steadily

decreases and its asymptotic value is n/(n — 1).
Consider, now, the general case s > 1. The normal equations in this case are

Tits = NTs 1=t=s
(2.6) Ti — Nl4—s + Tt2s = 0 285+ 1=t=n
.’.Cg=)\xg+, n—2s+1§t§n—s.

letn=ms+u(0 = u<s;m=1).If m =1,n < 2s so that the summation

> i 4reqs does not involve the quantities Zns41, -+ , Z, . Since we are maxi-
mizing the sum keeping D i, z; = constant the first step of the procedure
would then be toput Tn—sqp1 = --- =2, = 0. Writey; = ¢, ,j S0 — 8, Yn—stj =
Ty 1 S j=n — 8 N=2n— 25,8 =n — s Then

N—s' N
Ts = E ytymr/Z lﬁ =Ty .
t=1 t=1
Note that the reduced value of n viz., N = 2s’. Hence we can assume without
any loss of generality that in the representation of n above m = 2.
Define & = Tsnx(l £t = m,1 £ k = s). The equations (2.6) will then

reduce to

b= >\fl,k
2.7) oo — N + E12x =0 3=t=m+1
Emk,k = )\fmk+1,k 1=k=<s
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TABLE II
Ezxtreme values of rs for selected values of s and n

n T2 n T4 n Te n s
4 +1.000 8 =+1.000 12 =+1.000 16 #+1.000
5 +1.179 9 +1.273 13 =+1.313 17 +1.336
6 =+1.061 10 +1.179 14 +1.237 18 +1.273
7 +1.133 11 +1.111 15 +1.179 19 +1.221
12 +1.061 16 +1.131 20 +1.179
17 +1.093 21 +1.142
18 +1.061 22 +1.111
23 +1.084
24 +1.061

where m;, = morm — 1 according asl =k <wuoru +1 =k = s. We have
then

8 mi 8 mk+1'
(2.8) re = n/(n —s) {,; Z‘i Ei e B e Z_; ; Ef,k} .

Note that the set of equations (2.8) is the same as (2.3) except that we maxi-
mize |r,| in two steps viz., (i) maximizing D % £ 4&141.4 Subject to D ik 'gf , =
constant and (ii) maximizing (i). The first step leads to

re = n/(n — s) {kg 2 cos [r/ (my, + 2)]/k2'=1z;f}

2 1 .2 . . o . . 2
where zz = D 4 £ & . This value of |r,| is now maximized by putting z; = 0

foru + 1 = k = s. This, evidently, implies that £, = Ofor1 = ¢t < my, + 1,

u + 1 < k = s. It is easy to see, then, that

n/(n — s) cos [x/(m + 2)] ifu>0,
(2.9) max |r,| = .

m/(m — 1) cos [x/(m + 1)] ifu=0,

where we note that m = [n/s]and u = n — ms. Sincen/(n — 8) = (m + 1)/m
for u > 0, it follows that max |r;| has the same value as max |r,| based on m
observations.

3. Illustrations. Table II gives the values of a few extreme values of the serial
correlations r, for various values of s.
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