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1. Introduction. A single-server queueing process is considered. Denote by
Ti, T2, "=, Tn, --- the arrival times of the customers and by x, the service
time of the nth customer. If an arriving customer finds the server idle then his
service starts without delay; if the server is busy then he joins the queue and
awaits its turn. We speak about queueing process of type [F (z), H (z), 1] if the
interarrival times 7441 — 7T (0 = 0,1, - - ; 7o = 0) and service times x, (n =
1, 2, ---) are independent sequences of identically distributed, mutually inde-
pendent random variables with distribution functions P{7,1 — 72 < 2} = F(z)
(mn=0,1,---)and P{xn = 2} = H(z) (n = 1,2, ---) and if there is a single
server.

In what follows we shall consider the particular case when the customers are
arriving at the counter in accordance with a Poisson process of density A, i.e.,

W P 1—¢™ if 220,
X =
0 if z<0.

We suppose that the server is idle if and only if there is no customer in the sys-
tem, otherwise the order of services is irrelevant.

Denote by n(¢) the occupation time of the server at time ¢, i.e., 9 (f) is the time
needed to complete the service of all those customers who are present in the
system at time ¢. #(0) is the initial occupation time of the server. Let W (¢, z) =
P{n(t) =< a}.If 9(t) > 0 then the server is busy at time ¢ and if n(f) = 0 then
the server is idle at time ¢. Let Py(¢) = P{n(t) = 0}, i.e., Py () is the probability
that the server is idle at time ¢. If, in particular, the customers are served in the
order of arrival, then n(f) can be interpreted as the virtual waiting time at time
t, i.e., the time that a customer would have to wait if he arrived at the instant ¢.

The busy period is defined as the time interval during which the server is con-
tinuously busy. If (0) > 0, i.e., the server is busy at time ¢ = 0, then there is
an initial busy period which ends when % (f) vanishes for the first time. Denote
by G (z) the probability that the length of the initial busy period is <. Follow-
ing the initial busy period (if any) idle periods and busy periods alternate. The
lengths of the busy periods following the initial busy period are identically dis-
tributed, mutually independent random variables. Denote by G (x) the proba-
bility that the length of a busy period other than the initial is <z. The idle
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periods are also identically distributed, mutually independent random variables
with distribution function F (z) defined by (1).

In this paper we shall prove a simple geometrical lemma and by using this
lemma we shall find explicit formulas for the probabilities Po(t), G (z), G (z),
and W (¢, z).

We introduce the following notation: H, (z) is the nth iterated convolution of
H (z) with itself; Ho(z) = 1if x = 0, and Hy(z) = 0if z < 0. Let

¥(s) = fom ¢ dH(z)
and
Q¢ s) = ‘[, e AW, z).

2. Auxiliary theorems.

LemMAa 1. Let x1, X2, *** , Xn be non-negative, interchangeable random variables
withsumx1 + x2+ -+ + xo = y. Let 71, 72, * + -, 7o be the coordinates arranged
in increasing order of n points distributed uniformly and independently of each
other in the interval (0, t). If {xz} and {7} are independent sequences, then

1=/ o 0=sy=4y,

©2) Pha+ -+ xx=7m for k=1,2,---,n} i
0 if y>t.

Proor. First we note that Lemma 1 can be interpreted as follows: the proba-
bility that in Figure 1 the step function lies underneath the 45° line is 1 — (y/¢)
if 0 < y < ¢t. We prove (2) by induction. If n = 1 then (2) is evidently true.
Supposing that it is true for n — 1 we shall prove that it is also true for n. If
y > tthen (2) is trivially true. Let 0 < y < ¢. Suppose that 1 + -+ + xo1 = 2
and 7, = w. Under this condition the random variables x1, -, x»—1 are also

v
an

X,

0 T T >
T 7—2 oo T, t

Figure 1
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non-negative, interchangeable random variables and 7, - -+, 7, can be con-
sidered as the coordinates arranged in increasing order of » — 1 points distributed
uniformly and independently of each other in the interval (0, ). Now, by
assumption,

Plxi+ - +xx=m for k=1,2,---,n|lxa+ -+ xna=2m=1u =

3) 1—(/u) if 0Sz=<wu and ySust
0 otherwise.
Since x1, -, x» are interchangeable random variables we have

E{xa + -+ + xaa} = [(n — D)yl/n
and thus dropping the condition x; + -+ 4+ x»1 = 2z in (3) we get
Plxi+ -+ xx =7 for k=12, ,n|7. = u}
=1—{l(rn — Dyl/nu}, 0=y =
Since P{7, < u} = (w/t)"if 0 = u < ¢, we get finally
Plxu+ - +xx =7 for k=1,2 ---,n}

N O

which was to be proved.

LemMma 2. Let x1, X2, -+ , Xn be non-negative, interchangeable random variables
with sum x1 + x2 + -+ 4+ xo = t and let 71, 72, +++, T4 be the coordinates
arranged in increasing order of n — 1 points distributed uniformly and independ-
ently of each other in the interval (0, t). If {xix} and {7i} are independent sequences
then

@) Pxa+ - 4+xx<mn for k=1,2,-,n—1} = 1/n.
Proor. By Lemma 1 we have
Pixg+ -+ xx £ = for
k=1,2---,n—1|lxa+ - +xax=y =1— (y/t)
if 0 £ y < t. Since in this case E{xq + -+ + xaa} = [(n — 1)¢]/n, we get
unconditionally that
Plxi+ - ---+xx =7 for k=1,2,---,n—1} = 1/n.

3. The probability that the server is idle. This problem has been investigated
earlier by V. E. Benes [3], E. Reich [16], and the author [19]. Now we shall prove

TuroreM 1. If the initial occupation time n(0) = c (constant), then the prob-
abzlity that the server is idle at time t is given by

RV o) L y
(5) Py(t) = Z:oe * — fo (1 - t—) dH,(y)
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ift Zcand Py(t) = 04t < c. In (5) we can use the identity

© [T -Yame) =L [T nwa-tme-o.

Proor. The case ¢t < ¢ is trivial. Suppose that ¢ > ¢. The event 9(¢) = 0 can
occur in several mutually exclusive ways: In the time interval (0, f) exactly
n (n = 0,1, ---) customers arrive. This event has probability e'(\t)"/n!.
Denote by 71, 73, + -+, 7 the arrival times and by x1, xz2, -+ , x» the service
times of these customers. Let xs + x2 + -+ + x» = ¥. Under these conditions
n(t) = 0is satisfied if and only if 0 < y < ¢t — c and

(7) Ti§X1+"'+Xi—1+t—y forj=1,2,---,n,

where the empty sum is equal to zero. If we know that in the time interval (0, ¢)
exactly n customers arrive then the arrival instants can be considered as the
coordinates arranged in increasing order of » points distributed uniformly and
independently of each other in the interval (0, £). Further if x; + -+ 4+ x» =

y then x1, xz2, - *+, x» are non-negative, interchangeable random variables. If
x1 + -+ + x» = y then the event (7) has the same probability as

(8) x1-|-~~~-|-x,,§'rk fork=1,2,---,n.
For, in (7) we can replace x; by xay1-; (= 1,2, -+- ,n) and 7; by t — 7,41,

(7=1,2, ---,n) without a change in the probability of the event. By Lemma, 1
the probability of the event (8) or (7) is 1 — (y/t) if 0 < y = ¢t
Since P{x1 + -+ + x» = y} = H.(y), finally, by the theorem of total prob-
ability we get (5).

4. The probability law of the busy period. This problem has been investigated
-earlier by J. Gani [4], J. Gani and N. U. Prabhu [5], D. P. Gaver [7], S. Karlin,
R. G. Miller, and N. U. Prabhu [8], D. G. Kendall [10], [11], B. McMillan and J.
Riordan [12], F. Pollaczek [13], N. U. Prabhu [15], and the author [19], [20]. Now
we shall prove

TrEOREM 2. If 7(0) = c (positive constant), then the probability that the initial
busy period has length <z is given by

(9) 6@) = 3 (@/n) [ (e + ) dBL()

fz=candG(z) =0ifz < c.

Proor. The number of arrivals during the initial busy period may be n =
0,1,2, --- .If n = O then the initial busy period has length ¢ and the probability
that no customer arrives in the time interval (0, ¢) is ¢ . If » = 1 then denote
by 71, 72, - -+, 7 the arrival times and by x1, x2, - -+ , x» the service times of
these customers. They must satisfy the following conditions

(10) Sx+ o txiate  forj=1,2 -, n
If x; + -+ 4+ xn = y then the length of the initial busy period is ¢ + y and the
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probability that exactly n customers arrive during the time interval (0, ¢ + y)
ise ™ [\ (c + y)]*/n!. The arrival instants can be considered as the coordinates
arranged in increasing order of 7 points distributed uniformly and independently
of each other in the interval (0, ¢ 4 y). Further x1, x2, - - - , x» are non-nega-
tive, interchangeable random variables. Similarly to (7) the event (10) has
probability 1 — y/(c + y) = ¢/(c + y). Finally, by the theorem of total prob-
ability we get for x = ¢ that

(11) Q) = ™ + nZ::l ‘[—” oMt (e ;Ll-!y)]" (C _'C_ y) dH,(y)

which was to be proved.
THEOREM 3. The probability that a busy period other than the initial has length
=z s given by

0 n—1 z
(12) @) =2 20 [y am ).
n=1 < Jo
Proor. If we suppose that a busy period consistsof n (n = 1,2, - - - ) services

then its length is x; + x2 + -+ 4+ x» where x1, x2, - -+ , x» are identically dis-
tributed, mutually independent random variables with the distribution function
P{x; =2} = H(x) (: = 1,2, ---, n). In this case exactly » — 1 customers
arrive during this busy period. Measure time from the starting point of the busy
period and denote by 7;, 72, -+, 7,; the arrival times. They must satisfy the
conditions

(13) St i=1,2 -1

If x1 + -+ + x» = y then the busy period has length y and the arrival instants
can be considered as the coordinates arranged in increasing order of n points
distributed uniformly and independently of each other in the interval (0, y).

Further x;, -+, x» are non-negative, interchangeable random variables. If
x1+ +++ + xa = y then (13) has the same probability as

(14) xt o rt+txS=En k=1,2,--+,mn—1.
For,in (13) we canreplace x; by xa41—jand 7;byy — 7a; j=1,2, --- ,n — 1)

without a change in the probability of the event. By Lemma 2 the probability
of the event (14) or (13) is 1/n. Since P{x; + -+ + x» = y} = H,(y), and
the probability that during the time interval (0, y) exactly » — 1 customers
arrive is ¢ ™ (\y) "™/ (n — 1) !, unconditionally we get that
SEL[ o O

(15) G(z) = ;15 A € m! dHn(y)
which was to be proved.

REMARK 1. Let us consider the dual process [H (z), F (z), 1] of the queueing
process [F (x), H (z), 1] considered so far, supposing that the interarrival times
have the distribution function H (z) and the service times have the distribution
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function F (z) defined by (1); i.e., the interarrival times and service times are
interchanged. If at the dual process G*(¢) denotes the probability that a busy
period has length =<¢ then we have

(16) G*(t) = an: e‘“(l%—— [o [1 — H.(y)] dy.

For, if we suppose that a busy period starts at ¢ = 0 in the dual process, then in
the initial busy period 7 is the kth departure time and x; is the interarrival time
between the kth and the (k 4+ 1)st arrivals. Therefore the probability that the
busy period exceeds ¢ is

(17) I—G*(t) =P{X1+X2+"‘+Xk§ Tk;kz 1,2,"',7&},

where 7 is the number of departures in the interval (0, #]. By (8), the right side
of (17) is Py(¢) with ¢ = 0; this proves (16).

5. The distribution of the occupation time. This problem has been investigated
earlier by V. E. Benes [1], [2], [3], J. Gani and N. U. Prabhu [5], J. Gani and R.
Pyke [6], D. P. Gaver [7], J. Keilson and A. Kooharian [9], N. U. Prabhu [15],
E. Reich [16], [17], J. Th. Runnenburg [18], and the author [19], [21].

Define the process {£(¢),0 < t < =} as follows
@18) ED) = 20 X,

<ty <t
i.e., £(¢) is the total service time of all those customers who arrive in the time
interval (0, £]. Let P{£(¢) < z} = K (¢, ). We have

(19) K@, z) = Z:e_”[()\t) */nl|H, (z),
whence
(20) f” e d,K(t, z) = g M@l

0

Knowing Py () = W (¢, 0) and K (¢, ) the distribution function W (¢, ) can be
obtained by quadratures. The following theorem is a particular case of a more
general theorem of V.E. Benes [2].

TueoreM 4. If n(0) = ¢ (constant), then we have

(21) W(t,i) =K(t+xz—c)— (9/02) [K(t —u,t —u + 2)Po(u) du.

where Py(u) is defined by (5).

Proor. The process {n(f), 0 < t < oo} is evidently a Markov process. If da:
denotes the number of customers arriving in the time interval (f, ¢ 4+ A¢] then
we can write that

(22) n@+ A = [n@) — At i 6 =0,
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where [a¢]* = max (0, a), and
(23) n(t + At) = n(t) + x: — eAt if dar = 1,

where 0 < ¢ < 1 and . is the service time of the customer arriving in the time
interval (¢, ¢t + At).

Now, by definition (¢, s) = E{e """} and by using the theorem of total
expectation we get

Qt + At ) = Efe "9}
(24) = 2‘1, P{oa: = E{e™™ " | 650 = g} = (1 — AL E{e™""**? | 55, = 0}
po=

+ MACE{e "0 [ 84 = 1) +o(AY)
because P{éa; = j} = e *'(AAt)?/j1. Here
(25)  E{e™™*4Y 55 = 0} = (1 + sA)Q(, s) —sPo(t) At + o(Atf),
for, by (22)
E{e—an(H-At) | 6ac = 0}
= ¢*'P(n(t) > AJE{¢ ™" | n(t) > A4 + P{n(t) = A,
and on the other hand
27) 2@, 5) = P{n(t) > ME[e™ [n(t) > &) +P{n(t) < A + o(A).
Comparing (26) and (27) we get (25). Further we have
(28) E{e ™" |50 = 1} = ¢(5)Q(, s) + O(AL).
Putting (25) and (28) into (24) we get
(29) Q(t+ At,s) = Q@ 8)[1 + sAt — MAE(1 — ¢(s))] — sPo(t) At + o(At),
whence
(30) @, s)/ot = {s — N1 — ¢(s)]}Q(2, s) —sPo(t).

The solution of this differential equation is

(26)

t
(31) Q¢ s) = vl {9(0, s) — sf g IO P () du}.
0

If we suppose that #(0) = ¢ (constant), then 2(0, s) = ¢ and by inverting
(31) we get (21).
THEOREM 5. If we suppose that n(0) = 0, then we can write that

(32 W o) = 3™ (00" /nllVals 2),

where Vo(t, ) = 1 and V. (2, x) can be obtained step by step by the following re-
currence formula
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t z+u
(33) Vault,z) = [(n + 1)/1] f [ Valt — @ + u — y) dH(y) du.

Proor. If 2(0) = 0, then we can write that

(34) W, z) = P{n(t) <z} = P{supogug: [£(w) — 4] < 2.
To prove (34) we note that
(35) P{ﬂ(t) Sz} = P{f(t) —t— inf0§u§t [E(u) —u] £ x}.

Since the process {£(f),0 < t{ < =} has independent increments and £(0) = 0
we can replace £(u) by £(¢) — (¢ — ) in (35). Thus we get (34). If 7, denotes
the arrival time and x; the service time of the first customer then

P{supouse [E(u) —u] S 2| m Wit—uzst+u—y ifu=st
(36) = u’ xl = y} - .
1 ifu>¢

and thus unconditionally
t Z+u
(37) W(tz) =™+ )\f f Wt —uz+u—y)e™dH(y) du.
0 0
On the other hand we can write that
(38) W, z) = 2 ™ [(\)"/nlVa(t, )
n=0

where V,(t, ) denotes the probability that »(f) < x given that in the time
interval (0, {] exactly n customers arrive. Putting (38) into (37) we get the

recurrence relation (33).
We note that if #(0) is arbitrary, then (34) is to be replaced by

P{n(t) < =
=Plt(u) Su+z for 0=u=t and 7(0) + £@¢) < ¢+ 2}.
ReMARrk 2. If (0) = 0, then by (34) we can write that

W(t + At, x)

(40) t4z )
= W(, 2)(1 — Nt) + AA¢ A H(t+z —y)dW(ty) + o(at),

(39)

because {£(t), 0 < t < «} is a Markov process with independent increments.
From (40) we get the integro-differential equation

t4zx

(41)  oW(tz)/ot = —) [W(t, 0~ [THC 2 - 4w, y)]

for the determination of W (¢, x).

Note added in proof. 1 have learned that Lemmas 1 and 2 of this paper have
also been proved, in an unpublished report, by Professor Meyer Dwass.
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