LIMITING DISTRIBUTIONS ASSOCIATED WITH CERTAIN
STOCHASTIC LEARNING MODELS
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1. Introduction and summary. The work of Bush and Mosteller [1] on sto-
chastic learning models leads to certain limiting distributions of response proba-
bilities which are of a somewhat different character from those commonly en-
countered in mathematical statistics. These authors have derived many useful
relations between the moments of the distributions but, in deducing the general
nature of the distributions themselves, they have relied chiefly on Monte Carlo
methods. In the present paper, we consider the two experimenter-controlled
events model and, in the “equal alpha’ case, derive limiting distributions for
certain special cases by inverting the solution of a moment generating functional
equation.

2. The moment generating functional equation for the limiting distribution
of response probabilities. Consider a Markov process %o, &1, - - - satisfying the
following conditions:!

(a) o has an arbitrary distribution on (0, 1),

(b) If z, is given, then z,41 = a9 + o, with probability = and z,,; =
a1 + oz, with probability

) m+m=10=<a=<1and0=La;<1—a; (j=0,1).

The random variable z, is called the “response probability on trial n.” Thus,
for given x,, x, has 2" possible realizations, say, z,, (v = 1, 2, ---, 2"). Let
P,, = Pr (z, = z,,) and let m,.,(0) = E{exp (z,.410)} be the moment gen-
erating function of the distribution of #,4; . Then
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Karlin [2] has shown that a limiting distribution exists, so letting » — o
we obtain the following functional equation for the moment generating func-
tion of the limiting distribution of response probabilities:
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! We are indebted to a referee for this concise formulation of the process.
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(2.1) m(0) = moe™’m () + me™’m (cuh),
where m (0) = lim,.» m,(6).
3. Solution of the m.g. functional equation for the equal alpha case.

If ap = o = o, (2.1) becomes

m(6) = m(ab)[me™’ + me™’],
so that

m(af) = m(a’0)[me™* + me™*]
giving

m(0) = [me™ + me™|[re™® + me" *|Im (’6).

Continuing this procedure iteratively and assuming « < 1, we obtain

0

(3.1) m(0) = IT [moe™*" + me*".

n=0
Let « be the random variable of the limiting distribution of response proba-
bilities. It can be shown ([1], p. 98) that this limiting distribution is such that if
N = a/(1 — ), M= /(1 — a),

and if [ is any interval disjoint from the closed interval joining A\ and A, then
Pr (x < I) = 0. In other words, the limiting response probabilities are trapped
between the limit points N and A, .

It will be convenient to transform from the limiting random variable z to

(3.2) y =[O+ X))/ — )] — [22/ (1 — o),

so that y is distributed on (—1, 1). From (3.1), the characteristic function of
the distribution of y is

© (0) _ eiﬂ(}q*}‘)\o)/()\l—)\o)
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n=0
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e

n=0

which readily reduces to
(3.3) @y (0) — H [m_oeio(l—a) an + Tle—iﬂ(l—a) a"]'
n=0

4. Special cases. In this section we illustrate by some simple examples the
types of limiting distributions which can arise in the equal alpha case as «
ranges from 0 to 1. In all cases my = m = 1/2.

(i) a = 0. In this case ¢,(8) = cos 0 which is the characteristic function of a



STOCHASTIC LEARNING MODELS 1283

binomial distribution where the random variable y takes values == 1 with equal
probability of 1/2.

(i) @ = 1/4. Here the nature of limiting distribution becomes clear from
examining the characteristic function

oy (0) = fiocos (30/22"“)

(4.1) = (sin 36) /30f10 sec (36/2*1)

= lim ¢ »(9),

k>0
where we have used the identity sin ¢ = ¢] =1 cos (¢/2™), and where
Yo(0) = (sin 36) /36
(4.2) k=1

¥i(8) = (sin 36)/30]] sec (36/2°"™), k=1
n=0
From this it is easily shown that
¥ (0) = Yi1(0/4) cos (36/4), k=1,2,---"

Let
1 ° —i0y
ay) = 5 [ (o)™ ds,
T J—

be the density function corresponding to the characteristic function . (6)
Then
(4.3) (@) = 2lgp1(dy — 3) + GGy +3)], k=1,2---.

From this formula, we can build up a sequence of probability distributions which
tend in the limit to the desired distribution. Thus

goy) =1/6 (=3 <y<3)

=0 (y < =3,y >3),

ay) =1/3  (=3/2<y<3/2)
=0 y < —3/2,y > 3/2),

g2(y) = 2/3 (—9/8 <y < —3/8,3/8 <y < 9/8)
=0 (y < —9/8, —3/8 <y < 3/8,y > 9/8),

gs(y) = 4/3 (—33/32 <y < —27/32, —21/32 < y < —15/32,
15/32 < y < 21/32,27/32 < y < 33/32)
=0 (y < —33/32, —27/32 < y < —21/32, —15/32 <y < 15/32,
21/32 < y < 27/32,y > 33/32),
and so forth.
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At the nth stage there are 2" intervals of nonzero probability density. Let
them be Inm (m = 1,2, -+, 2" %; n = 1). For example, for n = 3 there are
four such intervals,

Is, = (—33/32, —27/32), I3 = (—21/32, —15/32),
I;s = (15/32, 21/32), I;4 = (27/32, 33/32).

Each interval I, at stage n generates two new intervals at stage (n 4+ 1)
in the following manner: divide I,,. into eight equal subintervals ¢, m,,
Tn,m2y * 5 tn,ms from left to right and discard %,,m,1, tn,m4, tn,ms a0d p,ms.
Then the two new intervals consist of the union of 7,,m2 and %,,,3 and the
union of %,,m,s and %s,m,7 . The probability distribution at stage (n + 1) is then
obtained by constructing, over the new intervals, identical rectangles of height
double that of the preceding stage. From this construction, it follows that if
wy, and h, are respectively the width and height of a rectangle at the nth stage,
then w, = 3/2*" " and h, = 2" /3. The total width of the intervals at stage n
is W, = 2"71.3/2"" = 3/2"'. Asn — o, W, — 0 and hence the probability
is ultimately concentrated on a set of points of Lebesgue measure 0. The close
analogy between the construction described above and that of the Cantor Ternary
Set, suggests that the limiting distribution is concentrated on a nonenumerable
Cantor-like set of points of Lebesgue measure zero and that the cumulative
distribution function is a continuous increasing function which is not an integral
(cf., Titchmarsh [3], p. 329 and p. 366).

From equation (4.3), it is clear that the development is equivalent to starting
with a random variable y,, say, distributed uniformly on (—3, 3) and then
proceeding according to the transitions of the original Markov process.”

(iii) @ = 1/2. In this case,

e(0) = T11/26""" + ™

= I cos (6/2") = sin /0,
k=1

which is the characteristic function of a random variable which is uniform over
(—1, 1). This example was noted by Karlin ([2], p. 755).
(iv) a = 1/2% Here,

eu(®) = TLeos 12} = 162"

= ﬁlcos (2 — 1)0/2"]fIlcos (@2 — 2hH6/2M
= {sin [(2* — 1))/ (2" — 1)6}-{sin [ — 2} 0]/ (2 — 2) 6}

It follows from the last equation that the distribution of y is the convolution
of a uniform distribution over {— (2! — 1), (2! — 1)} with a uniform distribu-

2 We are indebted to a referee for drawing this fact to our attention.
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tion over {— (2 — 2h, @2 — 2*)}. Thus the density function f(y) of the limiting
distribution is given by,

) = (1 +y)/IeEh e -1 (-1 <y<—[-2HD,
=1/[2@2H (@ - 1)] (-B-2@) <y <B-22H)
= (1 —y/BeEheE -1 B-22h<y<1),
=0 y<-—-1y>1)

(v) « = 1. In this case, ¢,(§) = 1, and so,
Pr(y=0) =1,
Priy=w) =0 (w = 0).

In other words, this is a deterministic case in which all of the probability is ul-
timately concentrated at the origin.

In summary, as « ranges from 0 to 1, the distribution of y evolves from one
which is as dispersed as possible (i.e., binomial with the probability equally
concentrated at the extremes of the range of y) to a deterministic distribution
with all of the probability concentrated at the midrange of y.
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