AN INTEGRAL EQUATION IN AGE DEPENDENT BRANCHING
PROCESSES

By H. J. WEINER
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1. Introduction. Let Z(t) be the number of cells at time ¢ of a branching process
starting at ¢ = 0 with one new cell. Let N(¢) be the total number of such cells
born by time ¢. Each cell has lifetime distribution function G(¢) with G(0) = 0.
At the end of its life the cell disappears and is replaced by k cells with probability
pi,k=0,1,2 --- where p, = 0 and > =0 pr = 1. Each cell has lifetime dis-
tribution function G(t¢) and proceeds independently of the state of the system,
and identically as the parent cell. Such a process, for this general G, is called an
age-dependent branching process and is extensively treated in [3].

Define h(s) = Do pis’. For h'(1) = m > 1, there is an increasing population
with probability one. For this case, by use of Smith’s key renewal theorem, it is
shown ([3], Chap. 6) that for [ u dG(u) < =, ast— =,

(1) E[Z(t)] ~ Ky exp (at)

(2) E[N(8)] ~ Kz exp (at)

where K; , K; and « may be evaluated. Similarly, for m < 1 [5],
(3) E[Z(t)] ~ Kyexp (—Bt).

It is the purpose of this note to determine necessary and sufficient conditions
under which the convergence, for m > 1, of E[Z(t)]exp (—at) and
E[N(t)] exp (—at) and for m < 1, the convergence of E[Z(¢)] exp (Bt) is mono-
tone, and to give an elementary proof of (1), (2) and (3) under these conditions.

This will be accomplished by study of the asymptotic properties of certain

monotonic solutions of an integral equation, special cases of which determine the
behavior of E[Z(t)] and E[N (t)].

2. Solutions of an integral equation.
TuarorEM. Let Q(t) satisfy

(4) Q(t) = K(t) + [0Q(t — u)h(u) du
where '
h(u) >0 for u>0, h(u) =0, u =0,
[Sh(u)du =1 and [T uh(u)du < =.
Let
K(u) =20 for uw>0, K(u) =0, u =0,
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and
- [TK(w) du < .
Let
k(u) = K'(u)

exist almost everywhere.
Then (a) Q(t) s increasing if and only if K(0) + k(u)/h(u) > 0 for u > 0,
and then

(5) lime,. Q(t) = [o K(u) du/[7 uh(u) du,

(b) Q(t) is decreasing if and only if K(0) + k(w)/h(u) < 0 for u < 0 and (5)
holds.

(c) Qt) = [ K(w) du/fs uh(w) du for t > 0 if and only if K(0) + k(u)/
h(u) = 0 for u > 0.

Proor. < Let R(t) = Q(t) — K(0). Then

R(t) = [4[R(t — u) + K(0) + To(u)/h(w)h(x) du.

Let {X:} be independent, identically distributed random variables on the
positive axis each with density k(u). Let YV = K(0) + k(u)/h(u) if X; = u.
Let N(t) = max {n: )7~ X; < t}. Then

R(t) = B2 Vi,

The desired monotonicity relations follow.
Define, for A(t) such that f o A(u) du < o, the Laplace transform of A(t)
as

Ya(s) = [Texp (—st)A(t) dt for s> 0.
From (4), ¥q = ¥x[1 — sl and observe that
lim, ;0 s¥o(s) = [o K(w) du/ [s uh(u) du.

For (a), Q(t) is increasing and positive, so that by a well known Tauberian
theorem [2], we may conclude that

lime,e Q(t) = [o K(u) du/[s uh(u) du.

~ For (b), Q(t) is decreasing. Then K(0) — Q(t) = &(t) is increasing and
positive.

Ya(s) = K(0)s™' — ya(s)
= K(0)s™ — yx(s)[l — a(s)] ™
Hence,
lim, ;o s¥a(s) = K(0) — [ K(u) du/[s uh(w) du
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and the Tauberian theorem yields

limew @(t) = K(0) — [3 K(u) du/[s uh(u) du
or

lime. Q(t) = [7 K(u) du/ [ uh(u) du.

Case (c¢) follows from (a) or (b).
=  Assume R(t) = E[D_ ¥} Y] is increasing. Suppose K(0) + k(u)/
h(u) < 0fora £ u < b. Then
R(b) — R(a) = E[Zuszicm Vil |
The right side is negative, but the left side is non-negative, a contradiction.
The other cases follow similarly.

3. Application to age dependent branching processes. Using the notation of
the introduction, let E[Z(t)] = m() and E[N()] = n(f). We then obtain the
following theorem.

THEOREM. Let m > 1, G'(t) = g(t) > 0 fort > 0 exist almost everywhere. Let
a > 0 be the solution of 1 =m fo exp (—au)g(u) du, and let fo uexp (—au)-

(u) du < .

Then (a) m(t) exp (—at) is decreasing (increasing) #f and only if
g(t) < oll = G)]m — 1 (g(t) > o[l — GB)][1 — m]™")
and then
m(t) exp (—at) <1 (m(t)exp (—at) > 1).
Further, in either case,
lime,e m(t) exp (—at) = (m — 1)[am® [5 uexp (—au)g(u) du]™

(b) m(t) exp (—at) = (m — 1)[am® [T uexp (— au)g(u) du]™ for t > 0 4f
and only if g(t) is exponential with parameter afm — 1]

(¢) n(t) exp (—at) s decreasing if and only if g(t) < a/m for t > 0, and then
n(t) exp (—at) < 1 and

lims.e n(t) exp (—at) = [am [ uexp (—au)g(u) dul™
(d) Let m < 1. Assume that there exists a 8 > 0 such that
1= m [T exp (Bu)g(w) du,

and that
JTwexp (Bu)g(u) du < w.

Then m(t) exp (—at) is decreasing (increasing) if and only if g(t) >
Bl1 — G — m] ™ (g(¢) < B[l — G(O)NL — m]™) for t > 0, and then

m(t) exp (Bt) <1 (m(t) exp (Bt) > 1).
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In either case,
lime, m(t) exp (Bt) = (1 — m)[8m’ fff wexp (Bu)g(w) dul™
(e) m(t) exp (B) = (1 — m)[Bm’ [T wexp (Bu)g(u) dul™

if and only if g(t) is exponential with parameter B(1 — m)™
(f) Letm < 1. Then n(t) is increasing and

lim;,,n(t) = (1 — m)~.
Proor. Using the notation of the introduction, let

EZ(O)) = m(t),  EN(@)] = n).

Then [3]

(6) m(t) = 1 — G(t) + m [m(t — u)g(u) du.
Also, we have [6] that

(7) n(t) =1+m [on(t — w)g(u) du.

Multiplying (6) and (7) by exp ( —eat), and applying the previous theorem yields
(a) and (c) for m > 1. Multiplying (6) by exp (8t) and applying the theorem
yields (d) for m < 1. (b) and (e) follow from limiting cases of (a) and (d), re-
spectively, and a standard characterization of the exponential distribution.
Applying Laplace transforms to (7) and re-inverting yields, for m < 1,

(8) n(t) = D neom" G (1),

where G™ is the nth convolution of G, and (f) follows immediately from (8)-
The theorem is proved.

We note that the exponential law fits this characterization.

The case m = 1 yields m(¢t) = 1 and

limg,e t 'n(t) = [f:; ug(w) dul™ = o
If ff; uw’g(u) du = pz < o, then an application of Smith’s key renewal theorem
in [4] yields the partial result that
C(t) 2 (0 = 0 e 2 26 £ 200,
4. Alternative method for sufficiency. If we had allowed the continuity of

h(t), then the integral equation (4) for Q(¢) could have been differentiated to
obtain

9) Q'(t) = k(t) + K(0)h(t) + [4Q (¢ — w)h(u) du.

Equation (9) can be solved for Q'(t) by application of Laplace transforms and
re-inversion from which the positivity properties of Q'(t), and hence the mono-
tonicity properties of Q(¢) could be immediately deduced. Then a straightforward
use of a Hardy-Littlewood Tauberian theorem [1] on the Laplace transform of the
cquation for Q' (t) would have yielded the limit.



AN INTEGRAL EQUATION IN BRANCHING PROCESSES 1573

REFERENCES

[1] BELLMAN, R. and Cooxg, K. (1963). Differential-Difference Equations. Academic Press,
New York.

[2] Doerscr, G. (1937). Theorie und Anwendung der Laplace-Transformation. Springer-
Verlag, Berlin.

[3] Harris, T. E. (1963). Theory of Branching Processes. Prentice-Hall, Englewood Cliffs,
New Jersey. i

[4] Smite, W. L. (1958). Renewal theory and its ramifications. J. Roy. Statist. Soc. Ser. B
20 243-302.

[5] ViNoGraDOV, O. P. (1964). On an age dependent branching process. Theor. Prob. Appl. 9
146-152.

[6] WEINER, H. (1964). On age dependent branching processes. Stanford Technical Report
No. 94 Nonr-225(52) (NR 342-022).



