GENERALIZED RIGHT ANGULAR DESIGNS!

By SuresH K. THARTHARE

Unaversity of Bombay

1. Summary and introduction. Investigations of association schemes for three
or more associate class PBIB designs have been limited mainly to the works of
Vartak [17], Raghavarao [5], Roy [9], Singh and Shukla [15], Raghavarao and
Chandrasekhararao (8] and Tharthare [16]. In this article we generalize the
right angular association scheme introduced by the author in [16] to study the
combinatorial properties, construction and nonexistence of further class of four
associate class designs. In Section 4, a simplified method of analysis of these
designs is given, while Section 5 deals with the method of constructing » X s™
balanced asymmetrical factorial design in vs™! plots, where s is a prime or a
prime power. It can be seen that this balanced asymmetrical design is nothing
but a particular case of the four associate class design introduced in this paper
and hence its analysis can be completed by the method of Section 4. Some
methods of construction discussed in Section 6 give a new way of arranging an
s® factorial experiment in blocks of sizes different from s and s?, with better
efficiency than the usual three dimensional lattice designs [4]. For convenience
we denote PBIB designs with the generalized right angular association scheme
by “GRAD”.

2. Definition of association scheme and parameters of generalized right
angular designs. In the generalized right angular designs we have v = pls
treatments which are arranged into a rectangular array as follows. The array
shall consist of p rows and ! columns of subgroups, each subgroup consisting of
precisely s treatments, each treatment appearing in one and only one subgroup.
A column of p subgroups will be called a group, a group consists of sp treatments.
Subgroups lying in the same row will be referred to as occupying the same po-
sitions within the groups.

Group 1
1 2 s
s+1 s+ 2 2s
sp =1 +1 s(p— 1) +2 sp
Group 2
sp + 1 sp+ 2 s(p + 1)
s(p+1) +1 s(p+1)+2 s(p + 2)
s(2p—1) +1 s(2p —1) + 2 2sp
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Group !
sp(l—1) +1 sp(l—1) + 2 spl — 1) + s
spl —1) +s+1 spl—1) +s+2 - sp(l — 1) + 2s
s(pl — 1) +1 s(pl — 1) + 2 lsp

We define the four associates of a particular treatment ¢ as follows:

(1) Treatments other than ¢ occurring in the same subgroup with ¢ are its
first associates.

(2) Treatments occurring in different subgroups than ¢ but in the same group
with ¢ are the second associates of ¢.

(3) Treatments occurring in subgroups occupying the same positions within
the group as the subgroup which contains ¢ are the third associates of ¢.

(4) The remaining treatments are the fourth associates of ¢.

We designate the subgroup occurring in the ath row and the Sth column of
the rectangular array of the association scheme of GRAD by (a, 8) and yth
treatment init by (e, 8,v) {a = 1,2, -+ ,p;8=1,2, --- [ ;v = 1,2, --- s}

Let n; be the number of 7th associates of a given treatment and let \; be the
number of blocks in which a pair of ith associates appear (¢ = 1, 2, 3, 4).

Clearly v = pls; D_toami = v — 1; D t1niki = r(k — 1), where ny = s — 1,
ny=s(p—1),n=s(l—1),n =s(l—1)(p — 1) and

[3—2 0 0 0
1y s(p—1) 0 0
(pir) = - 1) 0
‘ s@—1D(p—-1
0 s —1 0 0
2y _ s(p—2) 0 0
(pii) = 0 s(l_ 1)
st—1)(p—2)
00 s—1 0 ]
3\ 0 0 s(p—1)
s(p— 1)l —2) ]
0 0 0 s —1
4y 0 s s(p — 2)
(pii) - O S(l _ 2)
L s(l —2)(p —2)

Now it can be seen that for nondegenerate designs, lower positive integral
bounds on [, p and s are given by I, p, s = 2 and degenerate cases can be given
as follows:
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(a) If s = 1, then n; = 0 and the generalized right angular association scheme
degenerates into rectangular association scheme [17].

(b) 1. If p = 1, then n, = n, = 0 and the generalized right angular association
scheme degenerates into GD association scheme.

2. If I = 1, then n; = ny = 0 and the generalized right angular association
scheme degenerates into GD association scheme.

3. Characterization of generalized right angular designs. Let n;; = 1, if the
ith treatment occurs in the jth block; n;; = 0, otherwise. Then the » X b matrix
- N = (n;) is known as the incidence matrix of the GRAD. From the definition
of GRAD, we can see that

dohand =1, t=1,2, .-, 0
> MMy = A, Az, As OF Ay,
according as 7 and ¢’ are 1st, 2nd, 3rd or 4th associates, 7 # 7 =1,2 -,
Now, by suitably numbering the treatments, we have
(3.1) NN =1, x (C — D) + Ey x D,

where C and D are ps X ps square matrices given by
¢C=1,x (A —B)+ E,, x B,

(3.2) D=1I1,x(F—-H)+E, xH,
A=1I x(r—N)+ME,, B = MK,
F = NE,, H = ME,

where I, is an identity matrix of order s; E;, is a square matrix of order s with
positive unit elements everywhere and x denotes the Kronecker product of
matrices. The order of NN is pls. The determinant of NN’ can be obtained as
00a0 . 01a1 . 02a2 . 03a3 . 04a4 where

00 = Tk,
=71 — M\ + S()\l - )\2) + S(l - 1)()\3 - )\4),
(3.3) 02 =7 — )\1,

=71 — M+ s{h— N+ (p—1)(A— N},
04=7‘—)\1+8()\1—)\2—)\3+)\4).

It can be observed that 6, 6, 62, 6; and 8, are distinct characteristic roots of
NN’ with respective multiplicities ap = 1, o1 = (p — 1), a2 = pl(s — 1),
as = (I —1)and as = (p — 1)(I — 1). We know from the result of Connor
and Clatworthy [3] that the characteristic roots of NN’ cannot be negative for
an existing design. Thus, we have the following theorem.

TaeorEM 3.1. A necessary condition for the existence of a generalized right
angular design is that 0; = 0 (¢ = 1, 2, 3, 4).

The designs with the following parameters violate the above necessary con-
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dition and hence are impossible. The reason of impossibility is shown in paren-
thesis against the parameters.

v 1 P s b r k N A A M

12 2. 3 2 8 4 6 4 0 2 3 (6; < 0)
16 2 4 2 10 5 8 3 5 1 0 (6, < 0)
24 4 3 2 20 10 12 8 6 3 5 (6, < 0)
24 4 3 2 32 12 9 8 1 8 3 (6; < 0)
27 3 3 3 18 8 12 5 3 2 4 (6, < 0)
36 3 4 3 24 10 15 13 2 1 5 (6: < 0)

4. Analysis. With the usual intrablock model, the normal equations giving the
column vectors of the intrablock estimates of the treatment effects f are

(4.1) Q = (i,
where Q = T — k'NB; C = rI, — k"NN’, T and B being the column vectors of

the treatment totals and block totals respectively.
Following Shah [10], the solution of the reduced normal equation can be

written as '
(4.2) {=(C+aE.)7Q = 210 (4:/$:)Q,

where ¢o = av, ¢1, ¢z, ¢3 and ¢, are the characteristic roots of C + aE,, where
¢: = (r — 0:;/k) v = 1, 2, 3, 4 and normalised orthogonal vectors corresponding
t0¢0)¢17 ¢27 ¢3and¢4a,re

(43) AR [p(p — DI
-2 (@3 ... p(p— 1)
0 —223)7*.
?)_*Ev,L ; F*Ez,l X . 0 XS_}Es'l 5
o 0 - —(p—Dlplp— 1]
[ 2 (23)7 [s(s— 1)
-2t (23 ... [s(s — 1
0 —223)7*...
Ipz x . 0
0 0 o —(—DisG—1I* ]
2t (23)7F /) .
—2% @3 ... pu-nrt
0 —2023)7*F...
) 0 % (sp) Eupa;
L 0 0 c =0 1)[}@_ Nl
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[ 2 (237 ... e -
-2 (23t ... e - nr
0o —2023)*
' 0
| 0 0 - =1 -t
(2" @3t .. b(p — DI7 7]
—ot  (23)F ... lp(p — DI
0 —2(23) 1
x| - . % sE,..
0
. 0 0 - —(-Dhe-DI"*]

Now the mutually orthogonal symmetric idempotent matrices 4o, A;, A,
Az and A4 corresponding to roots ¢q, ¢1, ¢2 , ¢3 and ¢4 can be obtained and so
(4.2) can be written as

(44) &= {l(s — 1)Qi — Hil/sps + (¢1 — ¢1)(Zi + J:)/slps
+ Vi(ds — ¢5) + (Qi + H)l(p — 1)¢s + ¢ull/spdsal,

where Q; denotes the 7th adjusted treatment totals and H;,J; and Z; denote the
sum of the adjusted 1st, 2nd and 4th associate treatment totals of the 7thtreat-
ment. The treatment sum of squares adjusted for blocks can be calculated in
the usual manner, from the solution of the normal equations (4.4) as given in
Kempthorne [4]. It can be seen that the variance of the elementary treatment
contrasts and average variance of all elementary treatment contrasts is given
in terms of characteristic roots ¢;’s of C + aFE,, as

V(ti — t/) = 26°/¢»  when the ¢th and 'th

treatments are 1st associates,

2{p/vér + (s — 1)/sps + (I — 1)/lsds}”
(4.5) when the sth and 7'th

treatments are 2nd associates,
= 2((s — D/str + [(0 — Dés + o/pssssla’
when the 4th and 7'th
treatments are 3rd associates,
= 2{p/vér + (s — 1)/s¢»
+ [¢s + &ll(p — 1) — pll/vgsd}a”  otherwise.

Hence the average variance of all elementary treatment contrasts is given by
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(4.6) AV. =250 — 1)7{[(p — )¢ + Ip(s — 1)¢:]/ 12
+ (= D(p — 1)¢s + ¢al/dsd4},
and the efficiency of the GRAD will be

(4.7) (v = D{(p — )¢ + Ip(s — 1))/
+ (1= D[(p — L)¢ps + ¢ul/dsba} 77"

5. Construction of a balanced asymmetrical factorial design in vs™! plots,
where s is a prime or a prime power. Let A be a factor at v levels and By, B;,
.-+, B be m factors each at s levels, where s is a prime or a prime power. By
choosing a suitable interaction Z, we can form s fractions of the s™ treatment com-
binations involving the factors By, By, - - - , B, based on the identity relationship
I = Z, and let the ¢th fraction be denoted by X; ( = 0,1, 2, ---, s — 1).
Choose a BIB design with v treatments and let the remaining parameters of this
BIB design be b, r, k and \. We identify these treatments with the v levels of the
factor A. Choose the jth block of the design and with each level of the factor A
occurring in that block associate all possible levels of the factors By, Bs, -+ , Bn,
given by the fraction X, . Similarly, consider the complementary of the jth block
and with each level of the factor A occurring in it associate all possible levels of
the factors By, B, -+, B, given by the fraction X,". Include all these vs™
treatment combinations into a block and designate it by &, . Then it can be
seen that the bs(s — 1) blocks of the form &, (j = 1,2, +-+, b; ¢ 5% ¢ =
0,1,2, ---,s — 1) form an [13] (s — 1)-resolvable GRAD with parameters
(51) »* =", b = s(s — 1)b, #* =b(s —1), k* =", N = 1%

Ao = 0, As = (8— 1)[b—2()—)\>], A= 2(7’—'>\),

where jth replication consists of s(s — 1) blocks.

It can be observed that the confounded interactions in above design would
be Z and AZ. The coefficients of the treatment combinations in these interac-
tions, when written in the form of a column vector, with the treatment combina-
tions suitably numbered, can be seen to be the complete set of characteristic
vectors corresponding to the roots ¢; and ¢4 of the C-matrix of GRAD. Let
i, and ly, denote {4=1,2, --- Js —1; 4 =1,2 --- (s — 1)(v — 1)} the
(s — 1) and (v — 1)(s — 1) normalised orthogonal characteristic vectors cor-
responding to roots ¢; and ¢, . Then the estimates and the error variances of the
interactions belonging to each df of interactions Z and AZ would be given by

1aQ/¢1, LiiyQ/ds and  o*/1, o*/ds

respectively. In an unconfounded experiment, the error variances of these interac-
tions would be ¢°/r*, so that the relative loss of information on each of (s — 1)
confounded df of Z is given by (+* — ¢;1)/r* and on each of (v — 1)(s — 1)
confounded df of AZ is given by (r* — ¢,)/7* . Thus the total loss of information
on both the confounded interactions Z and AZ would be
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TABLE 5.1
Plan of 5 X 22 factorial design
Replications 1 2 3 4 : 5
Blocks 1 2 1 2 1 2 1 2 1 2

0X, 0X, 1X, 1X, 2X, 2X, 3X, 3Xo 4X, 4X,
Treat- 1X, lAio 2X, 2X, 3X; 3X, 4X, 4X, 0X, 0X,
ments 2X; 2X, 33Xy 3Xo 4X, 4X, 0X; 0X, 1X, 1X,
3X, 3X, 4X, 4X, 0X, 0X, 1X, 1X, 2X, 2X,

4X, 14X, 0X, 0X, 1X, 1X, 2X, 2X; 3Xo 3X,

It

s — 1,

= (b*/r*) — 1
Hence the asymmetrical design with parameters (5.1) is a balanced design in
b(s — 1) replications.

In [11] Shah had given a balanced 5 X 2° factorial design in 10 blocks of 10
plots each, which was not a resolvable design. Now by the above method we can
get a balanced resolvable 5 X 2° factorial design as follows:

Let A be a factor at 5 levels and B and C be 2 factors each at two levels.
Choosing interaction BC, form 2 fractions of the 2° treatment combinations of
factors B and (', based on the identity relationship I = BC. Denote the frac-
tions (00, 11) and (10, 01) by X, and X; . Consider a BIB design with parameters
(5, 5, 4, 4, 3) and identify its 5 treatments with the 5 levels of factor 4. Following
the above procedure, we get the plan of a balanced resolvable 5 X 2° factorial
design, which is given in Table 5.1.

Here the first symbol of a treatment combination denotes the level of the
factor A. It can be seen that the loss of information on interaction BC is 9/25
and loss of information on each df of interaction ABC is 4/25. Hence in case of
above design, we note that the loss of information on confounded two factor
interaction is more than that given by Shah’s design, while the loss of information
on three factor interaction is less than that given by his design.

(52) {0 = e)(s = 1)/r* 4 (" = ¢ (s — 1)(v — 1) /1)

6. Some methods of constructing generalized right angular designs. In this
section, we state a theorem similar to the Theorem 2.1 of [6] and Subsections
6.2, 6.3 and 6.4 deal with the construction methods of GRADS from particular
class of existing GD designs.

Following the method of Theorem 2.1 of [6] we can prove Theorem 6.1. If
N* N’ are the incidence matrices of singular GD design and GD design with
respective parameters ™ = ps, m* = p,n* = s, b*, r* = N kY MY, N and
v =ps,m =p,n =80, K = E"k*, N, A and N” is the incidence matrix
of a BIB design with parameters o' =1,0",r", k", \", the treatments can be so
arranged that

(6.1) N=[N" x N*|I, x N'|
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s an incidence matrix of a GRAD with parameters
(6.2) v=1ps, b=0b"d"+W, r=1"r"+7¢, k=k"E* N=r"r*+N,
=N N, N =T N = AN
IvLusTraTION 6.1.1. Consider singular GD design and semiregular GD design
with respective parameters v™ = 9 = b*,7* = k* = \,* = 3, N = 0and v =
=b,r" =6=1K,N =3,\ = 4and BIB design with parametersv” = 3 = b”,
" =2 = k", \" = 1. From Theorem 6.1., we get the incidence matrix N of
a GRAD with parameters

(63) v=27, p=l=s=3 b=54 r=12 k=6, N=9 X=4
x3'=3) )\4=0.

The efficiency of the above design can be seen, using (4.7) to be 0.7956.
The efficiency of the usual 3-dimensional lattice for testing 3° experiment in blocks
of 3 plots can be seen to be 0.591. Thus the design proposed in the above illustra-
tion is more efficient than the usual 3-dimensional lattice design.

6.2. For GD design with v = mn = pls, m = p, n = Is, the corresponding GD
association scheme can be arranged to form the rectangular association scheme
of GRAD with v = pls treatments as follows:

Consider the groups of the GD association scheme as p rows each of s treat-
ments. Divide each row of Is treatments to form I subgroups each of s treatments.
It can be seen that this arrangement is nothing but the rectangular array of the
agsociation scheme of GRAD with v = pls treatments.

6.2a. If a GD design exists with parameters

(64) v = mn, m = p, n=1s, b =¥, v,k =sp, N, N\,

then a GRAD with parameters

(65) v=mpls, b=b+1 r=r+1, b=k, M=N+1, =N +1,
N=M, A=A

can be constructed as follows:

Write down the GD association scheme of (6.4) in the form of the association
scheme of GRAD with » = pls treatments. To the b’ blocks of the GD design
(6.4) we add [ blocks such that the gth block consists of sp treatments from p
subgroups denoted by (1, g), (2, g), -+, (p, g) of the so formed association
scheme of GRAD {f = 1,2, ---,p;9 = 1,2, ---, l}. Now it can be verified
that these b’ + I blocks form a GRAD with parameters (6.5).

TLLusTRATION 6.2a.1. Following the above method, we can transform the GD
design SR 25 of the PBIB design tables [2], with parameters
(66) o' =12=0b, m=3, n=4, '=6=k, M=2 N =3
into a GRAD with parameters
(67) v=12, p=3, l=2=3s b=14, r=7 k=6 N=3,

>\2=4, )\3=2, }\4=3.
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6.2b. If a GD design exists with parameters
(68) v =mn, m=p, n=1Is, b = o', K =18, N, A
then a GRAD with parameters

v=opls, b=b +pp—1l r=r+Up—1), k=K,
(69 MN=M4+Up—1), =X, =M +U-2)(p—-1),
M= N 42

can be constructed as follows:

Write down the GD association scheme of (6.8) in the form of the association

scheme of GRAD with v = pls treatments. To the b’ blocks of the GD design
(6.8) we add p(p — 1)I blocks such that ff’gth block consists of Is treatments

from the SUbgrouPS (f: g)’ (f” 1), (fli 2): R (flr g — 1): ,(fly g + 1): )
(f', 1) of the so formed association scheme of GRAD {f # f = 1,2, ---, p;
g =1,2, ---,1}. Now it can be verified that these b 4+ p(p — 1)1 blocks form

a GRAD with parameters (6.9).
TLLUSTRATION 6.2b.1. Following the above method, we can transform the GD

design SR 40 of the PBIB design tables [2], with parameters
(6.10) v =16=10b, m=4=n, Y =4=k, N =0, A = 1.
into a GRAD with parameters
(611) v=16, p=4, 1 =2=3s b=40, r=10, k=4,
)\1=6, )\2=1, >\3=O, )\4=3.
6.2¢. If a GD design exists with parameters

(6.12) v =mn, m=p, n=.Is, oo K =25, N, A, Lp > 2,
then a GRAD with parameters
(6.13) v=1pls, b= ¥V 4+ipp—1DI, r=r+(p®-1), k= K,

)\1 = )\1, + (p - 1), )\2 = )\2, + 1, )\3 = )\1,, )\4 = )\2,.
can be constructed as follows:

Write down the GD association scheme of (6.12) in the form of the association
scheme of GRAD with » = pls treatments. To the b’ blocks of the GD design
with parameters (6.12) we add 3p(p — 1)I blocks formed as below. For every
(«, B)th subgroup of the so formed association scheme of GRAD, we form blocks
consisting of 2s treatments where the fth block (f = 1,2, - -+, p; f > a) consists
of the treatments from the subgroups (o, 8) and (f, 8). Now it can be verified
that these b" + ip(p — 1)l blocks form a GRAD with parameters (6.13).

ILLUSTRATION 6.2¢.1. Following the above method, we can transform the GD
design SR 84 of the PBIB design tables [2], with parameters
(614) v =54 m=6, n=09 b =8l r =09,

k,=6, )\1,=0, )\2,=1
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into a GRAD with parameters
(615) v=54, p=6, l=3=3s b=126, r =14, k = 6,

6.2d. If a GD design exists with parameters
(616) o' = mn, m =p, n=1s, b,r, kK = s+ 1, N, N\,
then a GRAD with parameters
(617) v=1pls, b=b +ov(p—1), r=r +(s+1)(p—1), k=1F,
M=M+s(p—1), =M +2, M=\, M=X\

’

can be constructed as follows:

Write down the GD association scheme of (6.16) in the form of the association
scheme of GRAD with v = pls treatments. To the b’ blocks of the GD design
with parameters (6.16) we add p(p — 1)ls blocks such that [ ghth block consists
of s treatments of the (f, g)th subgroup and the treatment (f’, g, h) of the so
formed association scheme of GRAD {f = f = 1,2, ---,p; 9= 1,2, -+, [;
h =12 ---,s}. Now it can be verified that these b’ 4+ p(p — 1)is blocks form
a GRAD with parameters (6.17).

IrrusTRATION 6.2d.1. Following the above method, we can transform the
GD design R 35, of the PBIB design tables [2], with parameters -

(618) o' =16, m=4=mn, b' =32 =6 kK =3 N=0 N =1
into a GRAD with parameters
(619) v=16, p=4, l=2=3s b=280, r=15 k=3,

M=6, Ma=3 N=0, \=1

6.3. For GD designs with o' = mn = pls, m = I, n = ps the corresponding GD,
association scheme can be arranged to form the rectangular association scheme
of GRAD with v = pls treatments as follows:

Consider the [ groups of the GD association scheme as [ columns of ps treat-
ments. Divide each row of ps treatments to form p subgroups each of s treat-
ments. It can be seen that this arrangement is nothing but the rectangular array
of the association scheme of GRAD with » = pls treatments.

6.3a. If a GD design exists with parameters
(620) v =mn, m=1 n=mps b = v, ok = ps, M,N,
then a GRAD with parameters .

v =pls, b= b,+pl(l_ 1), 7’=7',+P(l—1): k=k,;

(6.21) M=MA4pl—1), =X+ (p—2)(1 - 1),

’

M=, M=+ 2
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can be constructed as follows:

Write down the GD association scheme of (6.20) in the form of the association
scheme of GRAD with v = pls treatments. To the b’ blocks of the GD design
(6.20) we add pl(I — 1) blocks such that fgg'th block consists of sp treatments

from the subgroups (f’ g)) (17 g,)’ (2’ g,)» ] (f - 1’ g,): (f + 1) g,)r ]
(p, ¢') of the so formed association scheme of GRAD {f = 1,2, --- ,p;9 # ¢ =
1,2, ---, l}. Now it can be verified that these b’ + pl(l — 1) blocks form a

GRAD with parameters (6.21).
IrLusTrATION 6.32.1. Following the above method, we can transform the GD
design SR 31 of the PBIB design tables [2], with parameters

(622) o' =12, m =2, n=26 b =20, + =10,

=6 N=4 XN=35
into a GRAD with parameters '

(623) v=12 p=3, Il =2=38 b=26 r=13, k=6,
M=T7=N, N=5=)N.
6.3b. If a GD design exists with parameters
(624) o' =mn, m=1, n=mps, b,r,k =25 N,N,l,p>2
then a GRAD with parameters
(625) v=opls, b=b +3pl(l—1), r=24+U~-1), k=1F,
M=NAFC—=1), =N, =N +1 M=)\

can be constructed as follows:

Write down the GD association scheme of (6.24) in the form of the associa-
tion scheme of GRAD with v = pls treatments. To the b’ blocks of the GD design
with parameters (6.24) we add 3pl(I — 1) blocks formed as below. For every
(@, 8)th subgroup of the so formed association scheme of GRAD, we form blocks
consisting of 2s treatments where the gth block (¢ = 1,2, - -+, I; g > B) consists
of the treatments from the subgroups (e, 8) and (e, g). Now it can be verified
that these b + pl(l — 1) blocks form a GRAD with parameters (6.25).

IiLusTRATION 6.3b.1. Following the above method, we can transform the GD
design R 49 of the PBIB design tables [2], with parameters

(626) v =24, m=3, n=8 b =60,r=10, K'=4, N'=2 N =1
into a GRAD with paraﬁneters
(627) v=24, p=4, 1=3 s=2 b="12 r=12 k=4,
M=4, N=2=X, M=L1
6.3c. If a GD design exists with parameters

’

(628) v = mn, m =1 n = ps b, 7, K = s+ 1, M, N\,
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then a GRAD with parameters
(629) v=1pls, b=b +ov(l—-1), r=7+(s+1)1—-1), k=K,
M=MAsl=1), =N, =N +2, M=\

can be constructed as follows:

Write down the GD association scheme of (6.28) in the form of the associa-
tion scheme of GRAD with » = pis treatments. To the b’ blocks of the GD
design with parameters (6.28) we add pl(! — 1)s blocks such that fgg'hth block
consists of s treatments of the (f, g)th subgroup and the treatment (f, ¢’, h)
of the so formed association scheme of GRAD {f = 1,2, --- ,p;9 # ¢ = 1,2,
o, =12 - s}

Now it can be verified that these b + pl(I — 1)s blocks form a GRAD with
parameters (6.29).

ILLusTRATION 6.3¢.1. Following the above method, we can transform the GD
design, SR 45 of the PBIB design tables [2], with parameters

(630) v =18, m=3, n=26, b = 36,

=6 k=3 MN=0 \N-=1
into a GRAD with parameters,

(631) v=18 p=3, =3, s=2 b=172 r=12 k=3,
>\1=4, )\2=0,)\3=3, X4=1.

6.4. For GD designs with v’ = mn = pls, m = pl, n = s the corresponding GD
association scheme can be arranged to form the rectangular association scheme
of GRAD with » = pls treatments as follows:

Consider the pl groups of the corresponding GD association scheme as sub-
groups and arrange them to form a rectangular array of subgroups of ! columns
and p rows. It can be seen that this arrangement is nothing but the rectangular
array of the association scheme of GRAD with v = pls treatments.

6.4a. If a GD design exists with parameters

(632) oV =mn, m=9pl, n=3s b =10, ',k =sp, N, N,
then a GRAD with parameters
v=mpls, b=b +Il—-1p, r=¢r +p(l—-1), k=1,

(6.33) M=N+pl—1), =N+ (@-2)1-1),
M=, M= +2
can be constructed as follows:

Write down the GD association scheme of (6.32) in the form of the association
scheme of GRAD with v = pls treatments. To the b’ blocks of the GD design
(6.32) we add pl(l — 1) blocks following the procedure of 6.3a. Now it can be
verified that these b’ + I(I — 1)p blocks form a GRAD with parameters
(6.33).
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IrLusTRATION 6.4a.1. Following the above method, we can transform the GD
design SR 55 of the PBIB design tables [2], with parameters

(634) o =20, m =10, n =2, b =16, r =8,
=10, =0 N\ =4
into a GRAD with parameters
(635) v=20, p=5, =2 s=2 b=26 r=13 k=10,
)\1=5, )\2=7, )\3"—"4, )\4=6.
6.4b. If a GD design exists with parameters
(636) v  =mn, m=1pl, n=3s b =op', r,k =1Is M, N\,
then a GRAD with parameters
v=mpls, b=b+Wpe—-1), r=r+Up—-1), k=4,
(637) M=N+Up—1), =N, =N +I-2)(p-1),
)\4 = )\2’ + 2,
can be constructed as follows:

Write down the GD association scheme of (6.36) in the form of the association
scheme of GRAD with v = pis treatments. To the b’ blocks of the GD design
(6.36) we add p(p — 1) blocks following the procedure of 6.2b. Now it can be
verified that these b’ + p(p — 1)1 blocks form a GRAD with parameters (6.37).

ILLUSTRATION 6.4b.1. Following the above method, we can transform the GD
design, SR 49 of the PBIB design tables [2], with parameters

(638) v =18, m=6, n=3, b =27, r =09,
=6 N=0 X\N=3
into a GRAD with parameters
(639) v=18 p=3, 1 =2, s=3, b=239, r =13, k = 6,
>\1=4, >\2=3=)\3, >\4=5.
6.4c. If a GD design exists with parameters
(6.40) v = mn, m = Ip, n=s, b,k =25, MM, Lp> 2,
then a GRAD with parameters
(641) v=opls, b=b +3p(l+p—2), r=r+UA+p—2), k=1F,
M=MA+U+p—2), n=N+1=N, M=),
can be constructed as follows:
Write down the GD association scheme of (6.40) in the form of the association

scheme of GRAD with v = pls treatments. To the b’ blocks of the GD design
(6.40) we add ip(p — 1)l and 3pl(l — 1) blocks following the procedures of
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6.2¢ and 6.3b respectively. Now it can be verified that these b’ + lp(l + p — 2)
blocks form a GRAD with parameters (6.41).
ILLusTRATION 6.4¢.1. Following the above method, we can transform the GD
design, R 57 of the PBIB design tables [2], with parameters
(642) ' =30, m=15 n=2 b =75 r =10,
: F=4 N=2 N=1
into a GRAD with parameters
(643) v=30, p=5, =3, s=2, b=120, r =16, k = 4,
M=38 N=N=2 M=1
6.4d. If a GD design exists with parameters
(6.44) v = mn, m = pl, n = s, b, K = s+ 1, M, N,
then a GRAD with parameters
(645) v=mpls, b=b +o(l+p—2), r=r +(s+1U+p—2),
k=K, M=N+sl+p—2), =N +2=N, M=\,

can be constructed as follows:
- Write down the GD association scheme of (6.44) in the form of the association
'scheme of GRAD with v = pls treatments. To the b’ blocks of the GD design
(6.44) we add v(p — 1) and v(I — 1) blocks following the procedures of 6.2d
and 6.3c respectively. Now it can be verified that these b’ 4+ v(l + p — 2)
blocks form a GRAD with parameters (6.45).
IrrusTrATION 6.4d.1. Following the above method, we can transform the GD
design, R 16 of the PBIB design tables [2], with parameters

(646) o' =12, m =86, n=2 b =20, ' =5 Fk =3,
M =0, )\ =1,
into a GRAD with parameters
v=12 p=3, l=2=35 b=256 r=14, k= 3,
M=6 N=3=>»N, =1

7. Some combinatorial properties of generalized right angular designs. From
the association scheme of GRAD it follows that

THEOREM 7.1. If in a generalized right angular design, (i) M = N2 7 A\s = Aq or
(i) M= N 7 A = Moor (iii) My 5% N = N3 = Ay then the design reduces to group
divisible design and of (i) M #= Nand Ng # N = Mor (il) \; & N and sy = Mg
then the design reduces to GD 3-associate design.

Denote the sets (o, 8) u {Uw (o, 8)} and (e, 8) u {Us (o, 8)} respectively
by Eiand Bz {a %= o’ = 1,2, --- ,p;8# 8 = 1,2, ---, I}, where u denotes the
set union and U, s (e, B) denotes the union of (a’, 8') over o (or 8').
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Following the method of Theorem 6.2 of [16] we can prove the

THEOREM 7.2. In a generalized right angular design

(1) '4f 6, = 0, then k/p is an integer and every block contains k/p treatments from
subgroups having the same position in different groups.

(ii) If 6; = 0, then k/1 is an integer and every block contains k/1 treatments from

. each of the l groups.

(iii) If 6; = 6, = 0, then k/1 is an integer and every block contains k/1 treatments
from the set Ey and \; equals A\ .

(iv) If 6, = 0, = 0, then k/p is an integer and every block contains k/p treat-
ments from the set Ey and the design reduces to GD 3-associate design.

(v) If 6, = 05 = 6, = 0, then k/pl is an integer and every block contains k/pl
treatments from each of pl subgroups of the association scheme and the design reduces
to group divisible design.

The designs with the following parameters violate the conditions of the above
theorem and hence are nonexistent. The reason for nonexistence is shown in
parenthesis against the parameters.

v b v l 8 T k A A2 A3 )\4

18 27 3 3 2 12 8 8 3 6 5 (s = 0, k/l # integer)-

24 16 4 2 3 12 18 12 10 6 8 (6 = 0, k/p # integer)

24 6 4 2 3 12 18 9 10 8 8 0= 0, = 0, k/p #
integer).

Other necessary conditions for the existence of a GRAD with one of the charac-
teristic roots zero can be obtained by the application of a theorem proved in
[14]. For a brief resume of the properties of the Legendre symbol, Hilbert norm
residue symbol and the Hasse-Minkowski invariant, we refer to [14]. In case of
designs having generalized right angular association scheme, it can be seen that
the sets of orthogonal, rational, characteristic vectors corresponding to the
roots 6y , 61 , 62, 6; and 0, respectively are the column vectors of the five matrices

1 1 1 1 1 1
-1 1 1 -1 1 1
E,n; B, x| 0 —2 . xE,1; Ipmxp 0 —2 . ;
.0 . .0 .
0 0 —(p—1) 0 0 —(s—1)
1 1 1 1 1 1
-1 1 1 -1 1 1
(7.1) 0o -2 . X B 0 -2 .
. 0 . . 0 .
0 0 —(-1) 0 0o —(U-1)
1 1 1
—1 1 1
b4 0 -2 X Es,l.
0



1550 SURESH K. THARTHARE

Let Qo, @1, Q:, Qs and Q4 denote the gramians corresponding to the column
vectors of the above given five matrices. The values and Hasse-Minkowski
invariants of the gramians Qo , @1, @2, @s and Q4 can be evaluated as

@ = v el = W IHEGG + D5 1ed = (TER6G + D)
@l = IT=3G + Den'™; 1l = TDRGG + DID=GG + D)5
Co(@) = (=1, 0); |
Co(Q1) = (—1, —1),(s, p)* % (Is, —=1)¥*7V.(s77p, 1)
(7.2) - Cp(Q:) = (—1, —1),(s, —1)¥?;
Cp(Qs) = (—1, —1),(sp, 1) (sp, —1)M7Y;
Co(@s) = (=1, —1),(s, —1)PTVED . (g pyEDE=D, (7 o=y G-D—1

(1, —1 )%(P—l)(p—2) . (psp—l’ -1 )%(l—l)(l—2)'

By application of Theorem 3.2 of [14] and necessary simplifications we have
the following theorems.

TuEOREM 7.3. Necessary conditions for the existence of a generalized right angular
design with 6, = 0 and b = p(sl — 1) + 1 are

(7.3) b-s" 20,710 g,V < 1
and further, if (7.3) is satisfied then,
(60, —0) (v, [Ti-2 65 f TTice (= 1,007 “*) - { T Licimpisima(6:°,6:%7) )
(7.4) AT i<smris.ie1 (0, 1Qi]) o} { I Liimziinin (6%, 1Qi1) 5}
{H1—2 (01 ) IQil)pa‘_l} 'CP<Q1) = 1.

TueoreEM 7.4. N eéessary conditions for the existence of a generalized right angular
design with 6, = 0 and b = pl are

(7.5) Bo-0,7 1650,V Pt ]
and further, if (7.5) s satisfied then,
(60, —0)p(v, [Tim1.i0 0:°) pf T icr,i (=1, )24}
(7.6) ATl (855, 67, 1 t<imtiigm (05 |Qi]) )
A Tcsmniimn (6575, 1Q)p}- (Thicvim (0, 1@} -Co(@) = 1.

THEOREM 7.5. Necessary conditions for the existence of a generalized right
angular design with 83 = 0 and b = I(ps — 1) + 1 are

(7.7) b-(sp)%-0,"" I DD
and further, if (7.7) is satisfied then,
(60, —v)(v, H:sl,i;& 0¢a")p-{H4.=l'i#3 (-1, oi)ia;(aﬁs)}
(7.8) : {H2<J'=1;i,j;é3 (655, ;) } '{H2<j=l;i,j¢3 (6%, 1Q4]) »}
AT Li<imsm (65, 1Qil)o} - { I Ti-1.50 (65, Qi) -Cp(Qs) = 1.
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THEOREM 7.6. Necessary conditions for the existence of a generalized right angular
design with 8, = O and b = psl — (p — 1)(I — 1) are
(79) b ‘pl—2. s(l—l)(lJ—l)—l ‘0117—1 '02ﬂl(8—1) .031-—1 ~ 1
and further, if (7.9) is satisfied then,
(60, —0)p(v, TTimti04 0:5) ol T 1m0 00 (—1, g,)s 19
(710) ‘ f H:<]=1;i.j;é4 (0:‘”) 0]":’)’,} : { H:<i=1;i.f#4 (01'“‘.7 [QJI)P}
) { H:<i=1:i»1#4 (0]a,-’ IQ:')} ) { HLl-i;ﬁ (0¢ ) lQil)ﬂa‘—x} 'Cp(Q4) = 1.

The designs with the following parameters violate the conditions of the above
theorems and hence are nonexistent. The necessary theorem number ruling out
the existence of the designs is shown in parenthesis against the parameters

v b D l s r k M A A M

40 20 5 4 2 6 12 6 3 2 1 (7.4)
48 45 4 4 3 15 16 9 8 3 4 (7.3)
48 45 4 4 3 15 16 9 3 8 4 (7.5)
48 24 6 4 2 10 20 10 6 5 3 (7.4)
56 28 7 4 2 10 20 10 5 2 3 (7.4)
60 56 5 6 2 14 15 8 6 2 3 (7.3)
60 56 6 5 2 14 15 8 2 6 3 (7.5)
60 40 5 6 2 10 15 8 4 6 1 (7.6)

8. Nonexistence of certain symmetrical generalized right angular designs.
We call generalized right angular designs with 8; = 0 (¢ = 1, 2, 3, 4) regular
generalized right angular designs. From Shrikhande’s [12] and Connor and
Clatworthy’s (3] results, it follows that

TureorREM 8.1. A necessary condition for the existence of a symmetrical regular
generalized right angular design ts 6,°*-6,7*-6,"* -8, should be a perfect square.

The following corollary is obvious. ,

CoROLLARY 8.1.1. The regular generalized right angular designs have

(1) 6, as perfect square if p is even and l is odd.
(i) 6; as perfect square if p is odd and I s even.

(iii) 6,"" as perfect square if I and p both are odd.

(iv) 61636, as perfect square if I and p both are even.

The parameters of the following designs do not satisfy the corollary and hence
are nonexistent. The reason for nonexistence is shown in parenthesis against the
parameters

v=>b p l s r=k M A A N

24 3 4 2 12 10 8 7 4 (6; # p.s.)
36 6 3 2 9 8 2 6 1 (61 #~ p.s.)
40 5 2 4 10 6 3 2 1 (6; # p.s.)
48 (¢ 4 2 15 12 6 8 3 (61648, = p.S.)
56 7 4 2 20 14 7 11 6 (6; # p.s.)
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We now apply the Hasse-Minkowski invariant for the above regular sym-
metrical designs and obtain a necessary condition for the existence of them.
C,(NN') can be calculated in the usual way and after simplification, we get

C,,(NN/) — (_ 1’ 6, z,%19(13—1) . (01 , |Q1I)p—2' (02 , — 1)%1p(8—1)[lp(s—1)+1]

(62, |Q)FTIT (=1, 6:)PV (65, Q)

(8.1) (=1, 6,)}F Ve DEDG-DHI (g lQ4,)(l—1)(p—1)—l

. (olp—l’ 02pl(8—1) . ,Q2l ) (lQlly 02pl(s—l) ) (03l_1, 04(!—1)(1»—1) . |Q4|)
(1Qsl, 07T (|Qul - 1Qal, 1Qsl - [QuD),

for all odd primes.
TuEOREM 8.2. A necessary condition for the existence of regular symmetrical

generalized right angular design is that the right hand side of (8.1) s equal to +1,

for all odd primes.
Considering different values of [ and p we get
COROLLARY 8.2.1. A necessary condition for the existence of regular symmetrical

generalized right angular designs s that
(v, 6:)(0s, —6;) = +1, if 1= 0(mod4) = p,
(668, Ip) = +1, if 1= 0(mod4), p = 1(mod 4),
(65, —v04) (v, 6,) = +1, if 1= 0(mod 4), p = 2(mod 4),
(—1, 6:6,) (Ip, 6:8:8) = +1, if 1= 0(mod4), p = 3(mod 4),
(6:65,1) = +1, if 1(mod 4), p = 0(mod 4),
(6:04, 1) (61, Ip) = +1, if 1(mod 4) = p,
(—1,60°7"6:)(6:64, 1) = +1, if 1(mod 4), p = 2(mod 4),
(—Ip, 61)(6:0s,1) = +1, if 1(mod 4), p = 3(mod 4),
(—1, 6:) (65, v0.) (v, 65) = +1, if 2(mod 4), p = 0(mod 4),
(Ip, $6103) (—1, 6)° " = +1, if 2(mod 4), p = 1(mod 4),
(65, v64) (v, ) = +1, if 1= 2(mod4) = p,
(=1, 6005)(Ip, 008) = +1, i 1 =2(mod4), p = 3(mod 4),
(685, —1) = +1, if 1 = 3(mod4), p = 0(mod 4),
(6:,1p)(60s,1)(—1,6) = +1, 4f 1= 3(mod4), p = 1(mod4),
(—1, 65" -606,) (664 , 1) +1, 4 I = 3(mod4), p = 2(mod4),
(=1, 6:65) (1, 6:0,) = +1, if 1= 3(mod4) =p.

The designs with following parameters violate the conditions of the above
theorem and hence are nonexistent.

o~ o~ o~ o~
[ T |

N N~ N~
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v =2"0 » l s r=%k M A2 N N
50 5 5 2 25 16 11 14 12
60 5 6 2 25 24 12 16 8
98 7 7 2 15 6 3 2 2
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