MULTIPARAMETER PROBLEMS FROM A BAYESIAN POINT OF VIEW'
By G. E. P. Box anp Groree C. Tiao

University of Wisconsin

1. Introduction. It has long been known that when attention is focused on a
single parameter or comparison of parameters such as the difference in means
or the ratio of variances from the normal samples, then using ‘“non-informative”’
prior distributions Bayesian results exactly paralleling classical procedures and
involving the standard ¢ and F distributions can be obtained. When there are
many parameters certain ‘‘portmanteau’ multi-comparison procedures can be
derived on the sampling theory approach and they are frequently of great value
when used to supplement individual comparisons. These include the x’-goodness
of fit test, the analysis of variance test and Bartlett’s test to compare variances
(when it is suitably modified so as to be robust to non-normality). This paper
shows that these portmanteau procedures do have a simple and natural Bayesian
interpretation. Furthermore, using Bayesian methods, it is possible to cover
important cases not amenable to treatment by classical techniques.

Suppose in a particular investigation we have computed an appropriate pos-
terior distribution p(0|y) where 8 is a k-dimensional vector of parameters of
interest and y is an n-dimensional vector of observations. Then from the Bayesian

point of view, all inferential problems concerning 6 may be answered in terms of

p(0|y). In practice, inference involves a communication with the mind, and
usually it is difficult to comprehend a function in k-dimensions. Fortunately, there
are often specific individual features of p(8 | y) of interest which can be appreci-
ated by one, two or three dimensional thought. For example, marginal distribu-
tions may be of interest. Or we may inspect conditional distributions of a small
subset of the parameters for specific values of the other parameters. With high
speed electronic computers available; print-outs of two dimensional sections of
such distributions can be readily obtained. The value of such appraisals of the
estimation situation is very great, as has been repeatedly pointed out by Barnard
in connection with the likelihood principle.

Another feature of p(0|y) which is of value is a posterior probability region
for the parameters. Often the region over which the posterior density is non-zero
extends over infinite ranges in the parameter space. Nevertheless over a sub-
stantial part of the parameter space the density may be small or negligible. It is
therefore possible to delineate a comparatively small region which contains most
(say 95%) of the probability mass. Obviously there is an infinite number of
ways such a region can be chosen. We must therefore decide what properties we
would like the region to have. Either of the following two principles seems to be
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intuitively. sensible:
(i) A ‘“best” region should be such that the probability density of every point
inside it is at least as large as any point outside it.

(ii) A “best” region should be such that for a given probability content, it

occupies the smallest possible volume in the parameter space.

Either of the above principles could be adopted as axiomatic and it is easy to
show that the other follows as a natural consequence. It is desirable to give such a
region a name and we will call it a region of highest posterior density or a H.P.D.
region for short.

We will adopt the first principle in order to give a formal definition.

DerintTiON. Let p(0|y) be a posterior density function. A region E in the
parameter space of 0 is called a H.P.D. region of content (1 — ) if

(1.1) () Pr{6eR|y} =1— o, and »
(ii) for ;e Rand 6,2 R, p(0:1|y) = p(6:|y).

Some properties of the H.P.D. region.

(i) It follows immediately from the above definition that for a given prob-
ability content (1 — a), the H.P.D. region has the smallest possible volume in
the parameter space of 0.

(ii) If we make the assumption that p(8|y) is non-uniform over any region
in the space of 8, then the H.P.D. region of content (1 — a) is unique. Further,
if 8; and 0, are two points such that p(6; | y) = p(8:|y), then these two points
are simultaneously included in or excluded by a (1 — a) H.P.D. region. The
converse is also true. That is, if p(0; | y) # p(6:]y), then there exists a (1 — a)
H.P.D. region which includes one point but not the other. A

(iii) Effect of transformation. Let ¢ = ¢(0) be, say, a one to one transforma-
tion of the parameters 8 to ¢. It is obvious that any region of content (1 — «) in
the space of 8 transforms into a region of the same content in the space of ¢. But
it is clear from their definition that H.P.D. regions in 6 will not in general trans-
form into H.P.D. regions in ¢. Such regions are, however, invariant under linear
transformation.

This exactly parallels the situation for smallest confidence regions which are
similarly not invariant under general transformation. On the implied assumption
that such lack of invariance is bad, it has been suggested for example that the
region should be based on the likelihood itself. That is, the boundary of the region
should follow a likelihood contour. In particular, Hildreth (1963) has proposed
that a 100(1 — a) % region R be based on

(1.2a) [z1(08]y)do/fal(06]y)de = (1 — a)
with the property that for 6; ¢ R and 6 2 R,
(1.2b) 1(6:]y) > 1(6:]y)-

It will be observed that although the Inequality (1.2b) is preserved under
general transtormation, the Equality (1.2a) will not be. A posterior region based
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upon the likelihood which is in a sense invariant under general transformation
can be obtained as follows. For a fixed prior distribution py(0), choose a region R
such that

(1.3a) JrU(0]|y)po() d8/[a 1(8]y)po(6) d6 = (1 — )
(1.3b) 1(6,]y) > 1(0:|y), for 6,¢eR and 6,¢R.

Both (1.3a) and (1.3b) are invariant under general transformations. This region
which tries to make the best of both worlds is, however, a somewhat artificial
construction. If we believe in the appropriateness of the prior distribution pe(8),
then we should surely not adopt a region for which the posterior density for
points outside can be greater than that for points inside.

It seems that we cannot hope for invariance for a genuine measure of credibility.
It needs to be remembered that invariance under transformation and virtues
are not synonymous. For problems which should not be invariant under trans-
formation, a search for invariance serves only to guarantee inappropriate
solutions.

Graphical representation. Clearly when there are only two parameters, a
diagram showing the point of maximum posterior density and, say, a 95 % H.P.D.
region would advise the investigator of most of what the data had to tell him. A
more informative plot would be one showing simultaneously the boundaries of,
say, the 50 %, 25 %, and 10 % H.P.D. regions. In such a case we would be back to
the plot of posterior density contours labelled according to their interior content.
This graphical approach could be extended to three or four parameters by ex-
hibiting a “grid” of two dimensional 6, , 6, plots for various combinations of 8; and
6s . An instrument such as the “Calcomp” plotter can produce such plots auto-
matically from digital computer output and such plotting should be part of the
normal stock in trade of the modern practicing statistician. This technique is
valuable for appreciating peculiarities in an estimation situation, and is therefore
particularly important in exploring new problems.

The use of the distribution of the function p(0|y). There are certain problems
which are “standard” and for which properties of the H.P.D. regions are readily
comprehended. The inferential problems concerning k& means and % variances dis-
cussed below are, for example, of this type. When there are a large number of
parameters of interest and no special peculiarities of the estimation situation, it is
useful to have a way of knowing whether or not a parameter point 6, lies inside or
outside a H.P.D. region of content (1 — «). From the definition and properties
of H.P.D. regions, we see that if R, is a H.P.D. region of content (I — «a), then
the event 0 ¢ R, is equivalent to the event that p(8 | y) > ¢, where c is a suitably
chosen positive constant. It follows that the parameter point 6, is covered by the
H.P.D. region of content (1 — «) if and only if

(1.4) Prip(6|y) > p(&]|y) |y} £1— a

Thus, once the posterior distribution of the quantity p(8 | y) or some function of
it can be determined, this question can be answered. The main purpose of this
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paper is to consider the specific nature of the region p(8 | y) > ¢ for a number of
examples of interest. While preparing this paper, we have become aware of the
recent work of Lindley (1964) which contains much of the same ideas discussed
in Sections 1-4 of this paper.

9. The linear model. As a first example, we consider the familiar linear model
(2.1) y=X0-+¢

where yisan X 1 vector of observations, X an X k matrix of constants, 6 a kX 1
vector of unknown coefficients and e a n X 1 vector of disturbances. It is assumed
that e is normally distributed with E(e) = 0 and E (ee') = Io" where Iisan X n
identity matrix. Then, on the usual assumption that locally the prior distribution
(0, log o) is approximately constant, the posterior distribution of 8 is

(2.2) p(0]y) < {1+ [(6— 8)'X'X(0 — 6)/V82]}—£(v+k)

with & = (X'X)"'X'y,» = n — kand s = v"(y — X8)'(y — X9). This is of
course the multivariate-¢ distribution as discovered by Cornish (1954) and Dun-
nett and Sobel (1954). Further, the quantity (6 — 8)'X'X (0 — 8)/ks” is dis-
tributed as F with (k, ») degrees of freedom. Suppose we are now interested in
the question: Is the parameter point 8 = (61, * - -, 6ko) included in the H.P.D.
region of content (1 — a)? According to the above argument, we then need to
calculate the probability of the event p(8 | y) > p(6o|y).

Now p(8 | y) is a monotonic decreasing function of the quantity (6 — 8)’'X'X -
(0 — 8)/ks" which is distributed a posteriori as F .y . The particular point 8 is
then included in the H.P.D. region of content (1 — «) if and only if

(2.3) (8 — 8)'X'X (8, — 6) < ks’Fa(k, »)

where Fq(k, v) is the upper 100a % point of an F distribution with (k, ») degrees
of freedom. In this particular example, the H.P.D. region is identical with the
confidence region and (2.3) is appropriate to decide if a given point 6 lies inside
or outside the corresponding confidence region. Equivalently, the quantity

(2.4) Pr{Fan < (8 — 6)'X'X(8) — 8)/ks’}

gives the content of the H.P.D. region which just covers the point 8,. In the
Neyman-Pearson framework, the complement of (2.4) gives the significance
level associated with the null hypothesis 8 = 6, against the alternative 6 = 6, .
Generalization to the corresponding linear multivariate model can be readily ob-
tained, but we shall not pursue this further here.

3. The goodness of fit problem. As a second example, we consider some aspects
of the classical goodness of fit problem. Suppose we have observed k frequencies
f = (fi, -, fx). These frequencies are independently distributed as Poisson
variables with means u = (w1, - -, ) respectively. The likelihood function is

(3.1) L(ulf) « JTean/ee™.
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Let us assume that the prior distribution of u is of the form

(32) p(y) « JTan
where 7 is some constant. The posterior distribution of u is then,
(3.3) p(ulf) = TTe=t [1/T(m, 4 1)) e

with m,; = f; + 7, which is seen to be the product of ¥ independent gamma dis-
tributions. Again, in answering the question whether a specific parameter point
wo = (uw, -+, mo) lies inside a H.P.D. region of content (1 — a), we need to
calculate the posterior probability of the event

(3.4) p(ulf) > p(wof).

Following the approach adopted for example by Box (1949), we consider the
quantity

(3.5) ' M= —2logW
where
(3.6) W = HI:=1 (ps/ms)™ exp — (ps — Mmy).

It is clear that p(u | f) is 2 monotonic decreasing function of 3/, so that the state-
ment in (3.4) is equivalent to the statement

(3.7) M < M,,
where
(3.8) My = —21log TIi=1 (ueo/ms)™ exp — (o — ms).

We now obtain the cumulant generating function of M. It is straightforward to
* verify that the characteristic function of M is

(3.9) E(™) = B(W)

= Tt (e/m) ™™ (Tlm(1 — 2001/ T(m)} (1 = 2it) "7,
Taking logarithms and employing  Stirling’s series, we obtain the cumulant
generating function,
(3.10) ku(it) = a — klog (1 — 2it) + Doy an(1 — 2it)~ %77
where “a’’ is some constant independent of ¢,
(3.11) a, = [Bo/2r(2r — 1)] D icam ™

and the B., are Bernoulli numbers. Thus, the density function of M can be ex-
pressed as a weighted series of x* densities, the leading term having & degrees of
freedom.

Approzimation to the distribution of M. Once an asymptotic series of this type is
established, it is of course possible to obtain approximations in various ways,
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e.g. Bartlett (1937), Hartley (1940) and Box (1949). From (3.10) the rth
cumulant of M is, to order m, ",

(3.12) (M) = 27 (r — 1) k{1 + Ar}
where A = (1/6k) > m, . The Bartlett type of approximation is to take
(3.13) M~ 1+ A)x.

The rth cumulant of this approximate form is
(3.14) (M) = k(1 + A)
(M) = 27 — DVE{(L + 74 + (A" + -}, 722

Thus, the first cumulants in (3.12) and (3.14) are exactly the same and, to order
ms ", the higher order cumulants in the two expressions are also identical.

Alternatively, an approximation to the distribution of M can be obtained by
equating ¥ and , in (3.12) to that of a scaled x” variable, say axy’. It is readily
seen that

(3.15) a=[(1+24)/(1+ 4)] and b= k-(1 4+ A)*/(1 + 24).
The rth cumulant of this approximation is
(3.16) (M) = 27(r — 1)1 k-(1 4+ 24)7/(1 + A)7?
which can be written as

(M) = k(1 + 4)
(3.17) k(M) = 2k(1 + 24)

(M) = 27(r — DIE{1 + 74 + (THAY 4+ -1}, T > 2

We see that, to order m, ", the cumulants in (3.12) and (3.17) are again identical.
Further, the error committed in (3.17) is less than that in (3.14).

Relationship with K. Pearson’s “Chi-square”. When po, - -, pro are large the
quantity Mo in (3.8) can be written

Mo = 2 3¢ {(uso — ms) + mslog [1 4 (ms — peo)/maol}
(3.16) =2 2k {0 — ma) + [1 4 (M — o)/ tao]
‘o log [L 4+ (ma — p0)/psol}
b {l(me — p0)*/ba) + O(usd)}

Suppose we take the prior distribution of p in (3.2) to be uniform, i.e., v = 0,
so that ms = f. . Then M, becomes approximately

(3.17) Mo =2 Y et [(fe — ms0)"/ ool

which, we recognize, is the traditional Chi-square statistic in the problem of com-
paring a set of observed frequencies (fi, -+, fi) with the corresponding set of
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theoretical frequencies (uiw, - - -, uw) when there is no constraint involved. It
follows that if we take M as approximately distributed as x:’, then :

(3.18) Pr{M < Mo|f} = Prix’ < Dober [(fo — ms0)"/ttecl}-

The complement of (3.18) is thus numerically equivalent to the significance level
associated with the classical goodness of fit test. We are grateful to a referee for
pointing out that the approximation (3.17) is in fact valid for any v (and indeed
for any prior) if we assume f, = o + O(ul) which is reasonable.

Finally, we remark here that if one adopts the “invariance” argument given
by Jeffreys (1961) to take the prior distribution of u, as proportional to u,?, i.e.,
v = —3in (3.2), the effect would be to change m; = f; tom, = (f; — ). For a
more detailed discussion of the prior distribution of Poisson parameters, see
Jeffreys (1961).

4. The goodness of fit problem when the frequencies are subjected to the linear
constraint Y _f, = n. The above argument can be readily extended to the more
common situation in which the variables (fi, - -, fi) are subjected to the linear
constraint Y f, = n. In this case, the likelihood function is
(4.1) L(wlf, 2 fo=n) = L(0|£, 22/, = n) « [Jta0,”
where 6, = p,/Y s and X 6, = 1, a result first given by Fisher. From (3.2),
the prior distribution of 0 is then of the form
(4.2) p(8) « JTiz0”
so that the posterior distribution of 0 is

(43) p@|f, 2 fi = n) = (T2 (me + DY/IL=T (m +1)} L= 0™

which is a (k — 1) dimensional multivariate beta distribution.
Adopting an argument similar to that given in the preceding section, we con-

sider the quantity

(4.4) M* = —2log W*

where

(4.5) W* = (22 my)™™ JTear (6,/ma)™.

The cumulant generating function of M * is readily found to be

(4.6)  Kae(it) = @ — 3(k — 1) log (1 — 2it) + > rmoa(l — 2it)™"
where

a = [(=1)/r(r + DI(Braa(k)/ (22 me)") — 26a1 (Braa(1)/my)]
and B,(z) is the Bernoulli polynomial of degree r. This is the same type of asymp-
totic series as that given in (3.10). As might be expected, the leading term cor-
responds to the cumulant generating function of a x* variable with (k — 1)
degrees of freedom. Better approximations to the distribution of M™ can now
be obtained by methods discussed before.
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An important application of this result is of course the classical goodness of fit
problem in which a sample of n observations are drawn from some population,
the range of which is divided into k& non-overlapping intervals. f, is the number of
observations in the sth interval and 6, the probability that a single observation
will fall in that interval. Thus we may be interested in the possibility that the
observations are coming from a particular population H,. This population H,
gives rise to a specific set of values 80 = (61, -, fi0). We can then decide
whether 6y lies inside or outside the (1 — a) H.P.D. region by calculating the
probability

(4.7) Pr{M* < —2log Wo*}
with
(4.8) (Z ms Em, Hscl (oso/ms m'

We note that the quantity W,* is in exactly the same form as the likelihood ratio
statistic in testing the hypothesis 6 = 8, against the alternative 8 > 6, . They are
in fact identical if the prior distribution of 8 is uniform so that m, = f, . It follows
that to order (2 m.)™*, —21log W,* can also be written

(49) —2log Wy* Z (my — 00 2 m")

s=1 030 Z My
In particular, when m, = f, so that > m, = n, the right hand side of (4.9) is
recognized as K. Pearson’s “Chi-square” statistic. As in the preceding section,
we are again able to see the connection between the traditional sampling theory
result and the Bayesian result.

6. Comparison of parameters. In the previous sections we have discussed
problems of deciding whether a particular parameter point 6, is or is not included
in the (1 — a) H.P.D. region. In much practical statistical work, we are often
concerned with the comparative values of parameters rather than with the
absolute values. Suppose in general we have k parameters @ = (6;, - - -, 6;). We
shall define (¢ — 1) non-redundant comparisons as (k¥ — 1) independent func-
tions

(5.1) é: = fi(0), t=1-,(k—1),

which are all equal to zero if and only if 6, = --- = 6, . There is clearly a very
wide range of choices of-functions of this kind. Since the H.P.D. regions, like the
confidence regions, are not invariant under non-linear transformation, some
thought must be given as to how we parameterize such comparisons. Two of the
most important problems in statistics are concerned with (a) comparison of
location of distributions and (b) comparison of spread of distributions.
Comparison of location of k distributions. If we wish to compare k distributions
which are identical except for location, we can do this in terms of any location
parameter. A location parameter such as mean, median, quantile, etc., has the
property that addition of a fixed constant to the observation produces a cor-
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responding change in the parameter. Further, the location parameters of a dis-
tribution differ from each other by fixed constants. In comparing location of %
distributions, it seems unreasonable not to require that the comparison functions
- should be independent of the choice of the location parameter. It follows that we
must take the comparisons f; as functions of linear contrasts of the k specific lo-
cation parameters chosen. In the usual sense, a linear contrast in a set of param-
eters 0 is the function

(5.2) 1= 2 a8 where > a; = 0.

The simplest such functions of linear contrasts are the contrasts themselves and
the problem of comparing location will be expressed in these terms.

Comparison of spread of k distributions. In a similar way the spread of a dis-
tribution can be measured in a variety of ways in terms of standard deviation,
variance, mean deviation, precision constant, etc. A parameter 6 qualifies as a
scale parameter if it has the property that a linear transformation of the observa-
tion from y to (@ + by) changes the parameter 6 to |b|%. Further, if v and 8 are
two scale parameters of a distribution then they are related by

(5.3) v = cb”

In comparing spread of & distributions, it would be natural to require that the
comparison functions are independent of the choice of the scale parameter. It
follows that we must take fi, ---, fi_1 as functions of linear contrasts of the
logarithms of the k scale parameters chosen. As before, the simplest functions to
consider are the linear contrasts themselves so that our comparisons will be ex-
pressed in these terms.

It is, of course, accepted that other choices might be of interest and H.P.D.
regions corresponding to these choices could be obtained by the method we give.

6. Comparison of location of k¥ normal populations. We now return to the
linear model discussed in Section 2. Consider the special case that the observa-
tions y are independent samples of size n;, - -+, n:( > n, = n) from % normal
populations with means (6;, -- -, 6;) respectively and common variance ¢°. The
posterior distribution of 0 in ( 2. 2) reduces to
(6.1) p(0]y) = {1 + [ nil: — §:)* /sl 70
Withy_i=ni_Iijij,V=n—ka'nd.s (n — k)~ ZZ(y,, 7).

This distribution would then allow us to decide whether a partlcular set of
values of the means 6y = (61, - -, i) is or is not included in the (1 — «)
H.P.D. region. In practice, however, we are frequently concerned with the prob-
lem of comparing the location of the & normal populations. Following the argu-
ment of the previous section, we are led to consider a set of (k — 1) linearly inde-
pendent contrasts in the £ meansé,, --- , 6;,

(6.2) ¢ = ZJ ai,ﬂ,- where ZJ' a;; = O, 1= 1, ety kE— 1.

Since the H.P.D. region is invariant under linear transformation, it is convenient
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to consider the particular set

(6.3) ¢;i=0,—10 where 6 = (1/n) 2 n#é:i,i=1,---,k — 1.
It follows from the properties of the multivariate-t distribution that the posterior
distribution of ¢ = (¢1, - - , Px—1) is

(6.4) p(oly) « {1+ [XFnlg: — (7 — PI/ps) 7 0

where y— = n—l Z Ny, ¢ = O, — 6 and Zk Ni@; = 0.
To decide whether a particular point ¢, is or is not included in the (1 — «)
H.P.D. region, we refer the quantity

(6.5) (o) = X niddio — (G — DI/ — 1)8°

to Fo(k — 1, v), which is the upper 100a % point of an F distribution with
(k — 1, ») degrees of freedom. In particular, we may be interested to discover if
¢ = 0 is so included. The point ¢ = 0 corresponds to the situation where

6, = --- = 6 and is often of special concern in comparing location of distribu-
tions. In this case,
(6.6) F0) = 2o ni(g: — )%/ (k — 1)s’

which is recognized as the usual F-statistic in the analysis of variance. It is hoped
in later work to generalize this result to the situation in which the variances of the
k normal populations are not necessarily equal.

7. Comparison of & scale parameters in a class of power distributions. We
now consider the problem of comparing the spread of ¥ populations. Because of
the known lack of robustness to non-normality of tests to compare scale param-
eters, e.g. variances, due to confounding of variance inequality and kurtosis, it
seems appropriate to consider a general class of parent populations with variable
kurtosis. A convenient choice is the following three parameter family of power
distributions

(71)  p(y6,8,0) = c(B,0) exp {—}[(y — O)/o[""™} —w <y < w

with ¢(8, ¢) = {T[1 4+ 2(1 + 8)12"* "5} and —0 << »,0< 0o < =,
—1<B<L

In (7.1), 6 is a location parameter and o a scale parameter. When 8 = 0, the
distribution is normal. Thus 8 can be regarded as a parameter measuring the de-
parture from normality. This class of distributions was employed by the authors
in studying the effect of non-normality on the inference about a location param-
eter (1962) and later on the inference about the equality of two scale parameters
(1964). Our present result is a generalization of the later paper.

We shall assume that the & populations have the same parameter 3, but possibly
different values of 6 and ¢. At first, we suppose that 8 and the location parameter
¢ in each population are known. When independent samples of size ny, -+, n
are drawn from the & populations, the likelihood function is
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(72)  Us|6,8,Y) = [Tt {c(B, a:)}™ exp {—nusi(B, 6:) /0" P}
where »
8i(B, 0:) = 0 DM |y — 674
0= (6, -, 6), 6= (61, *+,0), Y= (y1, ~++, V&), and

Yi= (ya, -, Yins), i=1,--k
On the usual assumption that
(7.3) p(loge;) « 1 or p(os) « oi i=1 -,k
the posterior distribution of ¢ is readily found to be
(7.4) p(6]6,8,y) = ITt1p(o:|6:, 8, y:)

where
p(o:i|6:, B, yi) = di(B, 6:)o ™ exp {—Inisi(B, 6:)/a" ")
and
di(B, 0:) = nildnasi(8, 61 P/T(L + dni(1 + B}
This distribution is seen to be in the form of the product of k& independent
inverted gamma distributions. We are interested in comparing the equality of
the spread of the k distributions. Following the argument in Section 5 and noting

that the H.P.D. region is invariant under linear transformation, we consider
the (k — 1) linear contrasts in log o,

(7.5) ¢ =[2/(1 +B)(loge —loga;), ¢=1,:-+,k—1.
It is straightforward to verify that the posterior distribution of ¢ is
(7.6) p(o|6, 8, ¥) = {TBN(L + B)/ITix Thn(1 + BRTI™E

co TR L T e Tly) TP
where N = D> % n;and T; = [n:s:i(B, 0:)/msi(B, O)le*, =1, -+, (k — 1).
In deciding if a particular point ¢ is included in the H.P.D. region of content
(1 — a), we calculate the probability

(7.7) Pri{p(¢[6,8,Y) > p(¢n 8,8, Y)}.

Now, p(¢ | 6, 8, Y) is a monotonic decreasing function of the quantity M where
(7.8) M= —-2logW

with

(79) W = []\fil\f(l-f'ﬂ)/IIi;1 ni%ni(l-f‘ﬂ)](H’;;‘i T‘%ni(H'ﬁ))
(L4 T+ o+ Toy) ™0
Making use of the properties of the Dirichlet integral, we find the characteristic
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function of M,

oy NEN@OR r [g 1+ B)] inIl r l:% 1481 - 2@5)]
(7.10) B(e™) = fIns“"a(Hﬁ)” 81:11 1‘ [pz—’ 1+ B)] r [g 1+ pa - 27;,5)]

=1

Taking logarithms and employing Stirling’s series, we obtain for 8 = —1 the
cumulant generating function of M,

(7.11)  ku(it) = a — E(k — 1) log (1 — 26t) 4+ X ey (1 — 2it) P

where o, = [By/2r(2r — D][2/(1 + B X imn ¥ — N"*} Asin
Sections 3 and 4, once again we are able to obtain an asymptotic x* series for the
distribution of the criterion. To decide if a point ¢y is included in the (1 — «)
H.P.D. region, Expression (7.11) then allows us to evaluate the probability

(7.12) Pr{M < —2log Wy}
where W, is obtained by inserting ¢o in (7.9). In particular, we may be interested
in the point ¢o = 0 which corresponds to the situation oy = 62 = - = gy.

In this case, —2 log W, reduces to v
(7.13) —21log Wy = — D %_ini(1 + B)[log si(B, 6:) — log 3(B, 6)]

where §(8, ) = N7'>_, n;s;(B, 6;).

It is interesting to note that the results in (7.11) and (7.13) correspond ex-
actly to the results of the likelihood ratio test in the Neyman-Pearson framework.
As mentioned in our earlier work (1964), in testing the hypothesis Hy : ¢; =

- = o against the alternative H, that they are not all equal, the likelihood ratio
criterion is
(7.14) NB) = TTizi [s:(8, 6:)/3(8, 0)1™ 2.

It is readily shown that the cumulant generating function of the sampling dis-
tribution of the quantity —2 log N(B) is precisely that given by the right hand
side of (7.11). It follows that the complement of the probability (7.12) is
numerically equivalent to the significance level associated with the observed
likelihood ratio statistic A(B).

We should perhaps point out once more that this result does depend upon the
particular parametrization we have used which, as explained in Section 5, seems
to be reasonable. Alternative parametrizations, for example, the use of the (k — 1)
ratios o1/0% , - - - , ox_1/or, would lead to a slightly different result. For other than
very small samples, the difference would be negligible in practice.

8. The situation when 6, --- , 6, are not known. We now discuss the more
common situation in which the location parameters 6;, - -, 6; are not known.
Including these parameters in our model, we shall make the usual assumption
that they are distributed locally uniform a priori,
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(8.1) p(0;) « 1 =1,k
Following the results given in our earlier papers, the posterior distribution of 0 is
(8.2) p(816,¥) = ILicp(6: ] y:)

with

p(oi I Yi) = {Z ,yu _ oilzl(1+ﬁ)}—éni(l+ﬁ)/jf°° {Z ]yij _ oil2/1+ﬁ}—%ni(l+ﬁ) de; .

Consequently, the posterior distribution of the (¥ — 1) contrasts ¢ defined in
(7.5) becomes

(83) p(¢|BY) = [Zu - [Zap(¢|0,8,Y)p(0|B, V) dbs -+ dbs,

where the first factor in the integrand is given by (7.6). In the special case
B = 0, ie., the parent populations are normal, it is readily verified that the.

above integral can be evaluated exactly yielding
(84) p(¢|B8=0,Y) = IT(3)/I[:ca T(3vs)]au™

skttt o )
wherev; = ni — L,y = N — kyand i = [D." (95 — )Y/ 20" (yhs — ).

Adopting the same argument as given in the preceding section, the cumulant
generating function of the quantity

(8.5) M*(0) = —21log W*(0)
where '
W*(O) = [Véy/ I;=1 Vﬁ”]"'liyl tee al%::kfl(l + a + -+ ak—-l)_%y
is
(8.6) Kkuoy(it) = a — 2(k — 1) log (1 — 26t) + D ey (1 — 24t)" &Y
where
ar = [Ba/2r(2r — 1)] 271 {3k, p 3D~y
To decide if, say, ¢o = 0 is included in the (1 — ) H.P.D. region, we then
calculate the probability
(8.7) Pr {M*(0) < —2log Wo*(0)}
where '
—21og Wo*(0) = — X % 1 vilog s — log

with s = »i'D. (y5 — ) 8 = v 1> visi. We recognize that the results in
(8.6) and (8.7) correspond exactly to Bartlett’s modified form of the likelihood
ratio test of the equality of £ normal variances when the means are not assumed

known.
In the more general situation when the parent populations are not necessarily
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normal, 8 # 0, it does not seem possible to express the integral in (8.3) exactly
in terms of simple functions. However, it was demonstrated in our paper (1964)
in dealing with the ratio of two scale parameters that the effect of integrating
over the posterior distribution of (6;, 6:) is essentially to replace the 6’s by their
corresponding modal values and to reduce the “degrees of freedom” n;(1 + B)
by one unit. This is of course exact in the case 8 = 0. Extending this argument,
the posterior distribution p(¢ |B, Y) is then approximately

(88) (o8, V) = [T(3m)/ILic TGima) ™
s ’Yl%:—n’f_l(l +n4 -+ 'Yk—l)_;m

where m; = ni(1 +B) — 1,m = N(1 4+ 8) — k, vi = [nis:(B, 6:) /s (B, i)]e™
and 6, is the mode of the posterior distribution p(6; | y:) in (8.2). Consequently
to this degree of approximation, the cumulant generating function of

(8.9) M*(8) = —2log W*(B)
where

w*B) = "™/ ILiamd™)m™ - %A@ + m+ -0 + A
is given by

(810) KMt(ﬂ)(it) = q — %(k —_ ]_) log (1 — 2“) _|_ Z:;l ar(_l _ 2it)—(2r—l)

where a, = [Bu/2r(2r — 1)] 2" Eaomi Y — oY),

Hence the distribution of M*(8) can, as before, be expressed as a % series.
The required probability in deciding whether ¢o = 0 is included in the H.P.D.
region of content (1 — a) is

(8.11) Pr {M*(8) > —2log Wo*(8)}
where
—2 log Wo*(8) = — >k imJlog (nisi(B, 8:)/m:) — log 3(B, 0)]

with 5(8, ) = m ™ 2 i1 nasi(B, 0:).

In the case 8 = 0, expressions (8.10) and (8.11) reduce to (8.6) and (8.7)
respectively. The methods discussed in Section 3 can be employed to approxi-
mate the distribution of M*(8). Thus, we arrive at the somewhat remarkable
result that for any known value of 8 (not close to —1), the decision as to whether
the point corresponding to o1 = --- = oy lies inside or outside the (1 — «)
H.P.D. region is made by referring M, o*(B) to a scaled x° distribution. The quan-
tity Mo*(B) is in exactly the same form as Bartlett’s modified form of the
likelihood ratio statistic for the case 8 = 0, except that n; is replaced by n:(1 + 8)
and the sample variances s;°, by the quantity (> lysi — 87/ (ni(1 +8) — 1).

In this and the preceding sections, we are able to obtain, for each 8, a criterion
for the inferential problem of comparing the spread of k distributions, both for
known and unknown (6;, - - - , 6;). For a given set of data, this class of criteria
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could then allow us to study how our inference about equality of the scale param-
eters may be affected by the departure from normality in the parent populations.
In some cases, 8 = 0 and/or 6 known, corresponding results can be obtained
from the sampling theory point of view. But in the more general situation when
B # 0 and the 6 unknown, no sampling result is available.

Finally, when the parameter 8 is included in the model as a variable parameter,
we can define the linear contrasts ¢ as

¢: = log ar — log o:, t=1 .-,k -1,

and obtain their joint posterior distribution after eliminating 6 and 8. The
resulting distribution is complicated and it is hoped in later work to consider
this problem further.

9. Acknowledgment. We are grateful to Professor E. S. Pearson for remarks
which led to much of the work described in this paper.
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