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0. Summary. This paper is concerned with the properties of convex cones
and their dual cones generated by points randomly distributed on the surface of
a d-sphere. For radially symmetric distributions on the points, the expected
number of k-faces and natural measure of the set of k-faces will be found.

The expected number of vertices, or extreme points, of convex hulls of random
points in E* and E® has been investigated by Rényi and Sulanke [4] and Efron
[2]. In general these results depend critically on the distribution of the points.
However, for points on a sphere, the situation is much simpler. Except for a
requirement of radial symmetry of the distribution on the points, the properties
developed in this paper will be distribution-free. (This lack of dependence on
the underlying distribution suggests certain simple nonparametric tests for radial
symmetry—we shall not pursue this matter here, however.)

Our approach is combinatorial and geometric, involving the systematic
description of the partitioning of E* by N hyperplanes through the origin.
After a series of theorems counting the number of faces of cones and their duals,
we are led to Theorem 5 and its probabilistic counterpart Theorem 2’, the pri-
mary result of this paper, in which the expected solid angle is found of the con-
vex cone spanned by N random vectors in E°.

1. Introduction. It is known that N hyperplanes in general position in E¢
divide E¢ into

(1.1) C(N,d) =2 2255 (")

regions. (A set of N vectors in Euclidean d-space E° is said to be in general
position if every d-element subset is linearly independent, and a set of N hyper-
planes through the origin of E* is said to be in general position if the correspond-
ing set of normal vectors is in general position.)

This result, first proved’ by Schlifli [5] in the 19th century, is an intrinsic
property of collections of hyperplanes in the sense that the number of non-
degenerate cones formed is independent (subject to general position) of the
configuration of the normal vectors. Schlifli’s theorem, essentially combinatorial
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1 This research was supported in part by contracts AF49(638)1517, NONR-225(83), and
NONR-225(52) (NR 342-022).

2 This theorem was proved in 2 and 3 dimensions in 1826 by Steiner [7] and was later gen-
eralized to d dimensions by Schlifli. Although the 2-dimensional case is trivial, the 3-dimen-
sional case has in it the fundamental elements of the multidimensional case. For this reason,
Theorem 1 is sometimes called Steiner’s theorem.
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in nature, has been restated to yield useful results in many branches of mathe-
matics, as the following examples show :

(a) Given x;, 22, - -+, Zy in general position in E*, consider the set of simul-
taneous inequalities given by the relations
sgn (z;-w) = 6;, 1=1,2,---, N,

where sgn is the signum function defined on the reals
sgn(y) =1, y >0,

=0, y=0,

= -1, y <0,

and each §; = =41. Then among the 2" possible assignments of the 3., exactly
C(N, d) will admit some solution vector w. That is, C(N, d) of the 2" sets of
inequalities will be consistent.

(b) Of the 2" partitions of the vectors 2;, ;, - -+ , zx (d-dimensional and in
general position) into two subsets, exactly C(N, d) can be separated by a hyper-
plane through the origin. (A dichotomy is separated by a hyperplane if the two
classes lie entirely on opposite sides of the hyperplane.) This formulation of
(1.1) is relevant to the theory of linear threshold devices, [1].

(¢) Let N vectors be chosen independently according to a d-dimensional
probability distribution which is symmetric about the origin (u(A) = u(—4)
for every measurable set A, where —4 = {z: —z ¢ A}) and absolutely continu-
ous with respect to Lebesgue measure on E*? Then with probability C(N, d)/2"
there will exist a half-space containing the set of N vectors. This probabilistic
formulation of (1.1) is due to Wendel [8].

The C(N, d) regions generated by hyperplanes in general position through the
origin of d-space are all proper, nondegenerate convex cones. It is the purpose
of this paper to demonstrate other properties of these cones and their dual cones,
which, like the number C(N, d), depend on the orientation of the partitioning
hyperplanes only through the condition of general position. Applications of
invariant properties analogous to (a), (b), and (c) above will be obvious in
most cases. When they are not, or when the result is deemed of independent
interest, they will be stated explicitly.

2. Theorems and proofs. Let z;, 2, - - -, zy be a set of N vectors in general
position in Euclidean d-space, and let H 1, Hy, -+, Hy be the N corresponding
hyperplanes through the origin:

(2.1) H; = {w:w-z; = 0}, i=1,2 ---,N.

The N hyperplanes partition E* into C(N, d) proper, nondegenerate (of full
dimension) cones W;,j = 1,2, ---, C(N, d), where C(N, d) is given by (1.1).
The interior of each cone W; is the set of all solution vectors w to a certain

3 These conditions can be weakened. See Section 3.
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set of simultaneous linear inequalities given by the relations
(2.2) sgn(z;-w) = &, 1=12,---, N,

where each 8; = +1. (Of the 2" possible vectors of +1’s, 8 = (8, &, -+,
ox), exactly C(N, d) yield consistent inequalities and hence non-empty solution
cones.)

The boundary of the d-dimensional solution cone W; is the union of a finite
number of (d — 1)-dimensional cones, which will be referred to as the (d — 1)-
faces of W;. The boundaries of the (d — 1)-faces are in turn composed of
(d — 2)-dimensional cones, the (d — 2)-faces of W, . In general, the k-faces of
W ; will be proper cones contained in a k-dimensional but not (¥ — 1)-dimen-
sional subspace of E°. The 1-faces are the extreme rays of W;, while the origin
is the only 0-face. In the following, k will always satisfy 1 £ k £ d — 1.

The interior (relative to the smallest subspace containing it) of each k-face
of W; is the totality of solutions to some set of simultaneous relations

(2.3) sgn (z:-w) = 8, i=1,2 ---,N,
where I is a subset of size d — k of the integers {1, 2, ---, N} and
8*=0, el

(2.4)
8F =8, ie 1.

TrarorEM 1. (Counting the k-faces of the solution cones). Let Ri(W;) be
the number of k-faces of the cone W;,j =1,2, --- ,C(N, d). Then

(2.5) SEND R(W;) =27 (&) C(N — d + Kk, k).

Proor. Let H = (=i H, be the k-dimensional linear subspace orthogonal
to the vectors x;, 22, - - - , Za_x . The remaining N — d + k hyperplanes Hy x4 ,
Hy iy, -+, Hy partition H into C(N — d + k,k) convex cones {V;}. (This
is easily verified by noting that the projections of #s_x41, Ta_k+2, - , n into H
are in general position in that space, and that the intersection of H; with H,
ford — k < 7 £ N, is the (k — 1)-dimensional subspace of H orthogonal to
the projection of z; . Hence the result (1.1) applies.)

The interiors (in H) of each of the cones V; can be characterized as the set of
solution vectors to the simultaneous relations

(2.6) sgn (zi-w) = &, i=1,2 N,
where

8 =0, i=12--,d—k,
and

8% = +£1, i=d—k+1,---,N.

Let & = (&, - - -, 0n) be a vector of 41’s such that §; = oFfori=d -k + 1.
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It follows by continuity that every such & represents (as in (2.2) and (2.3)) a
nonempty solution cone having V; as a k-boundary, and that these 2 solution
cones are the only ones having this property.

Finally, any of the (s%) subsets of the size d — k from 21, -+, an may be
used in place of z;, @y, -+, zas in the discussion above, yielding a total of
() 2°*C(N — d 4+ k, k) k-boundaries for the solution cones.

To each choice of d — k vectors z;,, z;, -+-, Ziy_, from the set
{#1, x2, ---, zn}, there corresponds a k-dimensional orthogonal subspace
Li(7). These subspaces are distinct because of the condition of general position.
The proof of Theorem 1 provides some obvious but useful additional information
on the k-faces of the solution cones, which is summarized in Theorem 2.

TaEOREM 2. Each k-face of a solution cone W; is contained in eractly one
Li(7), and the union of the k-faces of all the W ; is the set formed by the union of
the (&) subspaces Li(¢). Each k-face bounds exactly 2°7* solution cones.

Given any convex cone W; the dual cone W* is defined to be the set of vectors
within a right angle of every vector in W; thus W* = {w*:w*.w = 0 for all
w & W}. In particular, if W is the solution cone corresponding to the set of linear
inequalities

2.7) sgn (z;w) = 8;, 8 = =+1, i=1,2 ---,N,
then it is known that the dual cone W* is given by
(2.8) W* = {w*:w* = Z?;l aiaixi y &g % O) 1= 1) 21 ] N}'

That is, W* is the proper convex cone spanned by the vectors dix1, doa, - -+,
ovty . (The 2¥ — C(N,d) sets of assignments of the 8/s which lead to an in-
consistent set of inequalities (2.7), generate smproper cones in (2.8).)

As has been shown above, a k-face of the solution cone W; is orthogonal to
exactly d — k of the vectors z;; , say z;, , i, -+, 2i;_,. In the (d — k)-di-
mensional subspace generated by these vectors

(2.9) Lis = {zix = > o ¢ 2 ),
there is one (d — k)-face of the dual cone W;*—namely, the face spanned
by the vectors 6:;x:, , 8:%i,, -, 8iy_,%iy_, . Thus there is a one-to-one cor-

respondence between the k-faces of a solution cone W; and the (d — k)-faces
of its dual cone W ,*. Immediately, from Theorem 1, we obtain

TrEOREM 3. (Counting the k-faces of the dual cones). Let Ry(W,*) be the
number of k-faces of the dual cone W ,;*. Then

(2.10) 25T RuW ) = 25(F) C(N — k,d — k),
k=12, ---,d — 1.

A statement corresponding to Theorem 2 can also be made for the dual cones.
Let {L*(1), Li*(2), -+, L*(¥)} represent the class of k-dimensional linear
subspaces of E° generated by the (&) possible k-element subsets of the N vectors
T1,%2, °°° , TN .
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TuroreM 4. Each k-face of a dual cone W ;* is contained in exactly one L.*(3),
and the union of the k-faces of all the W ;* is the set formed by the union of the (¥)
subspaces Li* (7). Each k-face bounds exactly C(N — k, d — k) dual cones. The
(k — 1)-dimensional interiors of the k-faces overlap only if the two k-faces are
identical.

Proor. Each of the 2* cones generated by the vectors {82y , 2, - - - , ST},
8; = =1, is a proper cone, and these cones partition the linear space L;* generated
by 1, 22, -+, Zx . (The cones overlap only on their boundaries, not on their
interiors. )

_Let V" be the cone generated by 21, 2z, - -+, i . Vi* will be a k-face of the
convex cone W* generated by {1, T2, -+, Tk, Oksress , Oesorse, - - - 5 Oy}
if and only if the projections of the vectors é;z;,7 =k + 1,k + 2, ---, N,
into La_x , the orthocomplement of L,*, generate a proper convex cone in that
space. (For, as mentioned previously, V;* is a k-face of W* if and only if it
corresponds to a (d — k)-face V4 of its dual cone W. If so any vector w within
Va_y, will lie in Lq_ and will satisfy sgn (£;-w) = 8, where £, is the projection
of z;into Lax,? =k + 1, ---, N. Conversely, the existence of such a w easily
implies W* is proper and V,* is on its boundary.) By Schlifli’s theorem exactly
C(N — k,d — k) assignments of the signs é;,7 = k + 1, ---, N, will have
this property. (Note that the projected vectors will be in general position in the
(d — k)-dimensional space Lai_x .)

Thus the k-faces of dual cones partition the subspace L;* into 2* cones, and
each k-face bounds C(N — k, d — k) different dual cones. Repeating this argu-
ment for the (&) possible selections of & vectors from z;, 25, - -+ , v completes
the proof.

A separate argument is required to establish the next theorem, application
of which will yield the expected volume of the cone spanned by a random col-
lection of vectors.

Let W*(z1, 22, - -+ , #x) denote the convex cone spanned by ;, 2z, «- - , Zx ,
and consider the 2% cones W*(8iz;, 825, - - - , byaw) where & = 1,7 = 1, 2,
-+-, N. Clearly, for N = d, this collection of 2° cones partitions E°. We shall
now show that for N > d the cones W*(dz1, - - , dyax) partition E* (35
times over in a systematic manner.

THEOREM 5. Let 21, 2, -+ , Zx lie in general position in E°. If v is a point
in E° such that 21, 2, -+, zx and v jointly lie in general position, then v is a
member of precisely (i-1) proper convex comes of the form W*(8uxy, 8uxs, + -+,
5Nx)v) = {w:w = Ei'v-q by, 05 = 0}, 6 = +1, 7 = 1, 2, - , N.

Proor. Let W(x1, 22, -+, zv) be defined to be the intersection of the half-
spaces (ie1 {w:w-z; > 0}. Let v partition the set S of cones W (821, - - - , dnzn),
the dual cones to the cones W*(821, - -, dniy), 8 = £1,71=1,2, ---, N,
into three sets defined by

St ={(WeSww>0, all weW},
(2.11) S ={WeS:ww=0, some we W},
S ={WeSww<0, all we W}.
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There are C(N, d) non-empty cones in S; and there are C(N, d — 1) non-empty
cones in S’ by Schlifli’s theorem applied to the projections of the vectors z;
into the space orthogonal to v. Since S~ is the set of reflected cones of S*, the
number of elements in S and S~ is equal, and thus the number of elements
in S*is

(2.12) L(C(N,d) — €(N,d — 1)) = ().

Finally, by the duality of W and W*, v € W*(8y21, sz, - - - , Syaw) if and only
if W(61x1 y 852 y Tty BN.’EN) is in S+.

3. Applications to geometrical probability. Let X, , X,, - -+, X5 be N random
points in £ having a joint distribution invariant under reflections through the
origin—that is, for any N sets A, As, - - - , Ay in E%, the probability P(5,X; ¢ A4,
8 X6 Ay, -+, 8xXn € Ax) has the same value for all 2" choices of §; = =+1.
(Actually, as will be clear, it is sufficient for the symmetry condition to hold for
all cones Ay, Ay, -+, Ay in E*.) Furthermore, let us suppose that with proba-
bility one the set of points is in general position. (This is satisfied in the important
case where the X; are selected independently according to a distribution abso-
lutely continuous with respect to natural Lebesgue measure.)

Wendel utilizes Schlifli’s theorem in the following manner to establish result
(¢) of the introduction. Given that X; = &1, X; = 822, ---, Xy = Onan
for some fixed set of points 1, 22, ---, Zy, the symmetry condition implies
that all 2V choices of 8; = =1 are equally likely; and by Schlifli’s theorem,
for exactly C(N, d) of these choices the vectors 821 , 8oz , -+ - , dxZwx Will generate
a proper convex cone. The probability that X;, X,, ---, Xy all lie in some
half-space of E°, or that the unit vectors along the X; all lie in some one hemi-
sphere of the unit d-sphere, is therefore C'(N, d)/2".

This same argument yields probabilistic statements of Theorems 1 and 3:

TueoreM 1'. Let W be the random polyhedral convex cone resulting from the
intersection of N random half-spaces in E* with positive normal vectors Xy, Xs,
-+, Xy having a joint distribution as described above. Then the expected number of
k-faces Ri,(W) of W, conditioned on W # ®, s given by

(3.1) E{R(W)} = 2°7(%) C(N — d + k)/(CN, d)
and
(3.2) limy.o B{R(W)} = 2°7%(i54).

TueoreM 3'. Let W* be the random polyhedral convex cone spanned by the
collection of random vectors X, , X, - -+, X . Then the expected number of k-faces
of W*, conditioned on W* being a proper cone, is given by
(3.3) E{Ry(W*)} = 2°() C(N — k,d — k)/C(N, d),
and

(34) limy.e E{R:(W*)} = 25(%31).
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(Note: by Wendel’s result, P(W # &) = P(W* proper) = C(N, d)/2".)

Let u be any probability measure absolutely continuous with respect to natu-
ral Lebesgue measure.

TuroreM 2'. The expected u-measure of a non-empty random W described in
Theorem 1" is 1/C(N, d). The expected u-measure of a proper random cone W*
spanned by the collection of random vectors Xy, X», --- , Xn, is (31)/C(N, d).

Proor. Given that X; = 1, -+, Xy = Onay, the C(N, d) non-empty
cones W, generated (as in Theorem 1’) by different choices of the 8; = =1,
partition E°, ignoring their boundaries, which have u-measure 0. Therefore

VD W(W,) = 1, and EW = [C(N, d)]™ follows easily by the symmetry
condition. From Theorem 5, the C'(N, d) proper dual cones W;* cover almost
every point in B* exactly (J5') times. Therefore, ¥ w(W;*) = (¥3'), and
the second half of the theorem follows by symmetry.

4. Remarks. The total number of non-empty cones W, proper dual cones W*,
and k-faces of these cones have been determined and shown to be independent,
up to general position, of the configuration of z;, x3, - -+, zxy . Among the rays
generated by each of the 21, x;, ---, v, the extremal ones are the 1-faces of
W*, the expected number of which appears in (3.3) and (3.4). Thus,

(4.1) ER(W*) = 2NC(N — 1,d — 1)/C(N, d)
and
(4.2) limy,o ERy(W™*) = 2(d — 1).

As a special case, suppose N points are chosen at random on the surface of the
unit sphere in E°. Then, given that they all lie in some single hemisphere, the
expected number of extreme points of their convex hull (taken with great cir-
cles on the surface of the sphere) does not grow without bound as N increases,
but rather approaches the limit 4. This is perhaps surprising, particularly since
the number of vertices can in no case be less than 3. For a comparison with the
case of random points in the plane, where the expected number of extreme
points goes to infinity, see [4] and [2]. On the other hand, the great circles having
the N chosen points as poles partition the surface of the sphere into regions
having an expected number of sides 4 as N goes to infinity. This agrees with the
known result for regions formed by random lines in the plane [3].

Closer inspection of (4.1) reveals that the expeeted number of extreme
vectors of a random proper cone generated by N random vectors in £* mono-
tonically increases to 2(d — 1) as N increases to infinity. We also remark that
the asymptotic expected number of k-faces of W, given in (3.2), corresponds to
the number of (kK — 1)-faces of a (d — 1)-cube [6]. Loosely speaking, the “ex-
pected” cross section of W is a (d — 1)-cube.

4 Here u has no connection with the probability mechanism generating the vectors X ,
and in particular does not have to satisfy any symmetry conditions.
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