AN EXTENSION OF THE ROBBINS-MONRO PROCEDURE!

By J. H. VENTER
Potchefstroom University, South Africa

1. Summary. A refinement of the Robbins-Monro procedure for estimating
the root of a regression equation is given. The essential feature of the proce-
dure is that it estimates the slope of the regression function at the root and
employs this information to improve on the rate of convergence and the asymp-
totic variance of the Robbins-Monro procedure.

2. Introduction. Denote by R the real line and suppose that for each z ¢ B
Y(z) is an observable random variable with expectation M (z). Suppose the
equation

(1). M(z) =0

has a single root 6 which is unknown and is to be estimated by choosing a num-
ber of z values and observing the corresponding Y (x)’s.

The Robbins-Monro (RM) procedure [7] for solving this problem is: Choose
X, arbitrarily (it may be random) and generate {X.} by

(2) Xop = X — d,oY,

where {d,} is a sequence of real numbers and {Y,} random variables, the condi-
tional distribution of Y, given X, being the same as that of Y (X,). After n
observations (viz. Y1, ---, Y,), the estimate of 6 is X4 .

It was shown by Blum [1] and Dvoretzky [3] that if {d,} satisfies

(3) dn =0, Y dt < o, S dy =

and if the conditions MI, MII and ZI of Section 3 hold, then X, — 6 a.s. while,
if in addition also E|X,|* < o, then also E|X, — 6> = 0 as n — . It was
shown by Sacks [8] that if in addition also MIV (with s = 1) and ZII, ZIII
hold and if

(4) dn = n"'a7 (1 + o(1))

where

(5) 0 <a <2,

then

(6) 1 (Xap1 — 0) 22 N(0, 6’/a(2a — @)).
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The asymptotic variance is minimized by taking a = «. If @ = 2e, it is known
that the asymptotic variance of X,41 — 6 is of a larger order of magnitude than
n”", [4]. Hence it is essential to ensure that (5) holds and if possible to take
a = o. However, in practice a will usually be unknown. This raises the question
of estimating o and using this estimate to improve on the RM procedure. Such
a procedure is discussed in Section 4. Proof of its convergence consists of a
generalization of the existing proofs of convergence of the RM procedure.
Derivation of its asymptotic distribution by generalization of-Sacks’ method
seems very difficult but a different approach, keyed to the special features of
the procedure, yields the required result reasonably easily. An apparently new
method of obtaining information on the rate of a.s. convergence is also given.

3. Conditions and preliminaries. The following conditions on M (z) will be
needed as referred to:
MI: For each ¢ > 0,

infecr pce-t M(xz) > 0 and supeco—z<e—t M(z) < O.
MII: For some constants K; and K, ,
|M(z)| < Ky + Ky |xr — 6| forall zeR.

MIII: Sup;er SUpoce<e, |M(z + ¢) — M(z — ¢)| < .
MIV: For some p > 0 and for |z — 8] < p,

M(z) = a(z — 6) + f(z) + b(z)
where « is a positive number and
flx) = 2l ai(z — 0)°
and
8(z) =o(jJxr — 0]") as |r— 6]—0,
where s =1 or 2 or---or «. In the case s =1, f(z) =0 and in the
case s = =, p is the radius of convergence of the power series f(z) while
8(z) = O0for |z — 6] < p.
In the following conditions we write
7 Z(z) = Y(z) — M(z) and o*(z) = E |Z(z)|"

Z1: supser o () < .

ZI1: ¢*(z) — o*(0) asz — 6.

ZIII: lim,., lim,} o supjs_s<e EIyzey>n |Z(2)|° = 0, where I, is the in-
dicator function of A.

We will also need the following lemmas:

LemMma 1. If {£,} 7s a real sequence satisfying

£n+l = (1 - a’n)én + ba

where an, = 0, an — 0, 2 an = © and Y by converges, then £, — 0 asn — .
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Proor. Suppose that lim sup £, > lim inf £, . We consider first the case lim
sup £ > 0. Choose numbers ¢ and d with lim sup & > d > ¢ > max (0, lim
inf £,). For each integer n we find two integers m = m(n) = n and
p = p(n) = 0 such that & = ¢, fmypn = d and ¢ < émyy < d
forj = 1, ---, p. Let € be such that 0 < ¢ < d — ¢. Choose n so large that
forall p, |2 m™ b;| < ¢, and am < 2. Then

Em+p+l - Em = _(amgm + am+1$m+l + e +‘am+p£m+p)

8
() +(bm+"'+bm+p)

A

- amEm + €.

Henced — tm < — Gmém + €0r én = (d — €)/(1 — an) > 0 and therefore
also, from (8), £m4ps1 — £m = €. But this contradicts e < d — ¢ £ Emyptr — Em -
Hence, if lim sup £, > lim inf &, we cannot have lim sup £ > 0. By a similar
argument we rule out the possibility of having lim inf £ < 0. We conclude
that lim sup & = lim inf £, so that £, — £ where —© =< £ = + «. Suppose
that ¢ > 0. Let 0 < K < & Then for some integer no and for all
n = ng, &, = K. Then, by recursion,

£ = bn — Gnabn + b
= Eno - (a’nosﬂo + -+ am—lgn—-l) + (bno + -+ bn—l)
é Eno - K(auo + M + an—l) + (bno + b + bn—l).

Then the convergence of 9 b, and the fact that > a, = o, imply that for n
large enough we must have £, < K which is a contradiction. Similarly we rule
out the possibility ¢ < 0. The lemma follows.

Lemma 2. Let {V,} be a sequence of random variables and {®,} a sequence of
o-fields such that {Vy, - -+, V._i} is measurable with respect to B, for n > 1.

(i) If 2 EV.E < « and > E[V.| ®,] converges a.s. then > V. converges a.s.

(ii) If D bn EV.: < o withb, T o, then

bt D oma (Vi — E[Vi | ®)} -0 as.as n— o,
Proor. Slight extensions of parts of Theorems D and E, p. 387 of [6].

4. The procedure. It is assumed throughout that known constants a and b
are such that

(9) 0<a<a<b< o,
Let {c.} and {d.} be positive sequences, X, arbitrary and {X,} such that
(10) Xu+l = Xu - dnAn_l%(Yn’ + Yn”)

where {Y:, Yi"; k = 1, 2, ---} are random variables with the conditional
distribution of Y., ¥,” given {Y}, ¥i";k = 1, .-+, n — 1} independent and
identical to that of Y(X, + ¢.) and Y (X, — c.) respectively; further, 4, is an
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estimate of a defined as follows: let
(11) By, =n" 20 (Y] = Y,)/2¢;
and

A, = a if B.<a

(12) = B, otherwise
= bif B, >b.
The properties of this procedure will be established for the cases
(13) dw = 27'(1 + O(n7H))
(14) ¢, =cn (1 4+ o(1)), ¢c>0, 0<y<i},

only, which seem to be of most interest. We will denote by K;, Ky, - con-
stants chosen to suit the context in which they appear.

TrEoOREM la. If MI, MII, MIII and ZI hold, then X, — 0 a.s. If also E| X,|* <
o, then E|X, — 0 > 0asn — .

Proor. Let

(15) Z), =Y, —M(Xn+c¢), Z) =Y, —MX.,— c).
Substituting into (10),

(16) Xoy1 = Xo — 8a(Xs) + U

where

(17) 8a() = dod, MM (z + ) + M(x — ca)}
and

(18) Un = —dnd.3(Za + Z.)).

From (15), ZI and (12), we have

(19) E\U." £ Ky dy'

so that (13) implies >, E|U,|* < .
Let ®, be the o-field in the underlying probability space induced by
{X,,Y, Y ;k =1,---,n — 1}. Then it is easy to see that

(X1, -, Xn3 Ay, -, An)
is measurable with respect to ®, . Now we wish to show that
(20) 2 |BlU. | ®] < = as.

By conditional independence and (15),
EA7N(Z) + Z.)) | ®.] = 0 as.
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Hence
—E[U, | @] = ndoE[(n 74,7 — (n — 1)TATL)Z + Z.") | B4

= (n = 1)7 dE[((n — 1)4Any — nd,)

c¥(Z 4 Z))ATATL | Bl
From (12) and (11) it follows that

|(n — 1)Ans — nda| £ |(n — 1)Bay — nB,|

(21) = te Y. — V.|
< e (Ki + 120 — ZJ))

for all n large enough, where we have used (15) and MIIIL. Hence, applying ZI,
(12) and (14), we get

(22) |E[Un | ®all £ (n — 1) ducn 'Ks ~ Ken """

asn — . (20) therefore follows. From (19), (20) and Lemma 2 it follows that
Z U. converges a.s. With this fact in hand Blum’s argument [1] can be extended
to show that X, — 0 a.s. Alternatively, it is straight forward but tedious to show
that Theorem 3 of [9] contains this one as a special case. We will not give the
details here.

TreoreM 1b. If MI, MII, MIII, MIV (with s = 2) and ZI hold and if sa >
+vb then A, — a a.s. The condition sa > vb vanishes if s = « in MIV.

Proor. For simplicity of writing we suppose that 6 = 0. It suffices to show
that B, — a a.s. Substituting (15) and MIV into (11) we get

B —a =020 [f(X; + ¢;) — f(X; — ¢;))/2¢;
(23) + 2 2 (X5 + ¢f) — 8(X; — ¢i)]/2¢;
+ 0 (2 — Z7)/2¢;

From the definition of f(x) in MIV and the result of Theorem 1a it is readily
seen that the first term on the right in (23) tends to zero a.s. as n — . Also
from ZI, (14) and Lemma 2 it follows that the last term tends to zero a.s. as
n — o, In the case s = « in MIV, the facts that X, — 0 a.s. and ¢, — 0 imply
that the second term on the right in (23) also tends to zero a.s. It remains to
deal with this term for the case s < «. Now, by MIV,

8(Xn + cn)/en = [6(Xa + )/ (Xn + cn)'I(Xn + ¢)*/cnl
o(1)[X,'/en + 0(1)] as.

A similar fact holds for §(X, — ¢.)/c. and it follows that it will be sufficient to
show that X,'c, * — 0 a.s., or, in view of (14), that

I

(24) n""X,—>0 as as n— .
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Now, from MIV straightforward ma.nipula,tions show that

(25) 3M(Xa+ e) + M(Xn — )] = aXall + an] + 2’1 + el
where, in view of Theorem 1a and (14),

(26) an—0 and e, — 0 as.

Putting (15) and (25) into (10), multiplying both sides by (n + 1) and re-
arranging terms, we get

@ 4+ 1D)"Xp={1 =0 ed ™ —v/s + @)X + V.

where

(28) Vo= —(n+ 1)" dea’ A7 (1 + @n)az + (n + 1)U,

with U, as in (18) and with e, — 0 a.s. From (19), (13) and v/s < 1, we get

(29) 2 El(n + 1)U, < ,
while from (22) and vy + v/s £ 2y < 1, we get
(30) 2 |El(n + 1)U, | ®B.l| < = as.

(29) and (30) together with Lemma 2 implies that D (n + 1)U, converges
a.s. and since v/s < 2y it follows from (28) that

(31) > V., converges a.s.

Also in (27) we have a4, = a/b > v/s by the condition stated in the formula-
tion of this theorem. Hence an a.s. application of Lemma 1 to (27) shows that
(24) holds and the theorem follows.

ReEMARKS. The requirement 0 < @ < a can usually be satisfied in practice
by taking a small enough. Theorem 1b and the theorems to follow require that
a < b < sa/y.If s = « in MIV, this places no upper bound on b and the re-
quirement can be satisfied in practice by taking b large enough. The choice for
v would usually be small (e.g. v = 1; see the remarks following Theorem 3) so
that even for moderate values of s in MIV the upper bound sa/v on b would be
large enough to make it negligible in practice.

TaeoreEM 2. If MI, MII, MIII, MIV (with s = 2) and ZI hold and if sa > by,
then

(a) for any number N such that

(32) 0 <\ < min (3, 2y)
we have
(33) X, — 0 =o(n") as.;

(b) for any number u such that

(34) O<u<i-—»n
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we have
(35) An—a=o0on") +0o(n™") as.as n— .

Proor. Taking 6 = 0 for simplicity, the equivalent of (27) is obtained as
before, viz.

(36) M4+ 1)’Xpp = {1 — 0 (ad ™ — N + )Xo + Wa

where

(37) Wa=—(n+ 1) duca’4s (1 + &n)on + (n + 1)*U,.
Now (32) ensures that the equivalents of (29) and (30) hold and that
(38) > W, converges a.s.

Also, since according to Theorem 1b, ad,™ — XA =1 — A > 0, an application
of Lemma 1 shows that (33) is true.

Further, it is readily seen that the first two terms on the right of (23) are at
most o(¢.) a.s. as n — o while it follows from Lemma 2 that the third term is
o(n™) a.s. It follows then that (35) is true.

TrEOREM 3. If MI, MII, MIII, MIV (with s = 2), ZI, ZII and ZIII hold and

C

(39) 1<v<i

and sa > by, then we have

(40) n!(Xa — 0) =g N(0, &*/24")

and

(41) n'ea(dn — @) =2 N(0, o*/2(1 + 27)).

If instead of (39) we have

(42) T=5%

then

(43) n (X — 8) —g N(—2a'/a, ¢*/20")

and

(44) n'(4s — @) =2 N(0, ¢*/3¢").
Proor. For simplicity we take b= 0 and abbreviate

(45) e = HM(Xn + ) + M(Xs — ¢a)} — aX,.

From MIV,

(46) & = (X + ¢’) + o(X,)) + o(c,’) as.as n— o,
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Substituting (15) into (10) and using the abbreviations just introduced, we have
(47) nXppn = (n — DXo + (1 — ndpdn ") Xs — ndnd, en + nUn
with U, as defined by (18). Iterating back to n = 1 and dividing by n,

(48) X1 = Qi — Qe + Qun
where

(49) Qun = 1) iy (1 — kdiAr ") Xy
(50) Qe = 07 D0k didi e ;

(51) Qs = 0 i kU, .

For (40) it will suffice to show that

(52) Qin—0, Q:@m—0 as.

and

(53) Qs —2 N(0, 6°/2a%).

Now

1 — kdidi e = ATHAL — o + O(K7H))
= A, oK) 4 o(k™)} a.s.
as k — o, where we have used (13) and (35). Using (33) and (49) we then have
Qi = o(n™7") + o(nt™*) = o(1) as.

since A can be taken arbitrarily close to 1 according to (32) and (39) while both
v and u are positive. Further, from (46), (33) and (14)

kA e = o(K™) 4+ 0(K7*) as.
and hence from (50)
Qum = o(n*™) + 0(n*™") = o(1) a.s.

according to (32) and (39). Hence (52) holds.
Further, let &, be as in the proof of Theorem 1a and put

(54) ta = EnU, | &4, To =nU, — tn.
Then, from (22), t, = O(n™"*") a.s. and hence

(55) wY it = 0(n"?) = o(1) as.
asn — ., Hence (53) will hold if we show that

(56) 730 Th —e N(0, 0°/20%).

This is done by an application of a slight extension of Lemma 6, p. 377 of (8]
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or Theorem C, p. 377 of [6]. Since the details are analogous to that given in [8]
we will not present it here.

For (43) the only change in the proof is in the evaluation of the limit of Qo .
With the help of (46) it is easily seen that if v = 1, then Qs — 2¢%as/c a.s. as
n — o« so that (43) follows.

Finally (41) and (44) are established by applying the same methods to (23),
and making use of the fact that A, and B, differ only at most for a finite number
of indices 7 a.s.

REmaRrKSs. If v is chosen <%, the bias in the estimate X,,; of 8 will dominate
the error. The choice vy = % therefore seems the most suitable in practice. It will
be noticed that making ¢ small will decrease the bias in (43) but increase the
variance in (44) and vice versa. The best choice must achieve a compromise
here. In some situations in practice, e.g. the quantal response estimation problem
[10], it is usually the case that s = 0 and that MIV holds with s = 3. In this
case y may be chosen as small as § before a bias term in the asymptotic distribu-
tion of n}(X, — 9) appears while n*(4, — @) has an asymptotic distribution.
Finally we note that the fact that 2 observations per step are required by the
extended RM procedure does not put this procedure at a disadvantage compared
to the old RM procedure: after n steps (2n observations) its variance is still
achieving the minimum value of the old RM procedure after 2n steps (2n ob-
servations), as m — <« according to e.g. (40).

b. Concluding remarks.

1. In practice one would not use the estimate A, of a exactly as defined in
(11) and (12) but would omit some of the earlier terms in the sum in (11) asn
increases in order to get rid of large biases that may be present in these early
terms.

2. An estimate of o* would usually be required if the results of Theorem 3 are
to be used for constructing approximate confidence intervals for §. An example
of an estimate for o* is

ba = (20) 7 it {[VY — Au(Xx + & — Xng)]
+ [Yk” - An(Xk - Cx — Xn+l)]2}-

It can be shown that this is weakly consistent under the conditions of Theorem
3 and also strongly consistent under an additional condition such as
sup, E|Z(z)|' < «. Another possibility is to take two observations at each of
X, — ¢, and X, + ¢, and to take their respective averages as the Y,’, ¥,” in
(10) while using their differences for estimation of ¢

3. The ideas developed here for the RM procedure can be carried over to the
so-called Kiefer-Wolfowitz procedure for estimating the maximum (or minimum )
of a regression function [5]. In this case one would take three observations on
each step, viz. at X, 4+ ¢., X. and X, — ¢, and use the appropriate second
order differences of the observations to estimate the second order derivative of
the regression function in the maximum (or minimum). This estimate would
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then be used to determine the next estimate X, of the maximum (minimum)
in a way analogous to that of the extended RM procedure discussed here.

4. Estimation of the slope of M at § was also considered by Burkholder [2].
There the effect of feeding the estimate of the slope back into the recursive rela-
tion generating the estimate of § was not investigated.
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