CYLINDRICALLY ROTATABLE DESIGNS OF TYPES 1, 2 AND 3
By Aanes M. HERzZBERG?
University of Saskatchewan

1. Introduction. In Herzberg (1966a), we defined cylindrically rotatable de-
signs as designs such that the variances of the estimated responses at points on
the same (k — 1)-dimensional hyper-sphere centred on a specified axis are equal.
Here we enlarge this definition to include all designs such that the variances of
the estimated responses at points on the same s-dimensional cylinder in k-dimen-
sional space with certain characteristics are equal. It turns out that there are
three possible subclasses of such designs. We shall call such designs cylindrically
rotatable designs of types 1, 2 and 3. In particular, cylindrically rotatable designs
of type 1 are such that the variances of the estimated responses at all points on
the same s-dimensional cylinder with the same remaining (k — s) co-ordinates
are equal; designs of type 2 are such that the variances of the estimated responses
at all points on the same s-dimensional cylinder with the same remaining squares
of the (k — s) co-ordinates are equal; designs of type 3 are such that the variances
of the estimated responses at all points on the same s-dimensional cylinder with
the same remaining sum of squares of the (k — s) co-ordinates are equal (geo-
metrically this means that the variances of the estimated responses at all points
at the intersection of two cylinders are equal). If a cylindrically rotatable design
is rotated in a certain manner, the variances and covariances of the estimated
coefficients of the response function remain unchanged. Cylindrically rotatable
designs are identical to rotatable designs of the same order except in the required
levels of (k — s) factors. Therefore, as in the case of rotatable designs, if the
experimenter has some prior knowledge about the shape of the response surface,
the design may be rotated to reduce possible bias. If he has no previous knowledge
of the orientation of the surface, the requirement of cylindrical rotatability is a
reasonable one since the orientation of the design may be chosen at random. The
cylindrically rotatable designs mentioned in Herzberg (1966a) are a special case
of cylindrically rotatable designs of type 1.

Without loss of generality, we can relabel the axes in such a way that the first
s axes refer to the dimensions of the s-dimensional cylinder.

2. Cylindrically rotatable designs of type 1. We wish to find conditions for de-
signs such that the variances of the estimated responses at all points on the same
s-dimensional cylinder with the same remaining (K — s) co-ordinates are equal.
We shall call these designs cylindrically rotatable designs of type 1.
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168 AGNES M. HERZBERG

The following method for developing the conditions that designs of order d be
cylindrically rotatable of type 1 is similar to the method used by Box and Hunter
(1957) to develop the conditions that designs of order d be rotatable.

Let 9(x) denote the value of the polynomial fitted by the method of least
squares to the response at x and V(#(x)) be the variance of the estimated
response at X, where X = (21,23, - - - , Tr).

Suppose

(2.1)  9(x) = bo+ bims + bawz + -+ + bz + buzt’

+ -+ 4 bazam + - + bua’ + -+ of degree d
or, in matrix notation,
(2.2) §(x) = x'p,
where x’ = (1,21,%2, --+ , %), X @ is such that x'“x¥ = (x'x)?, and b con-
tains all the bjagr...xx’s with suitable multipliers attached in order that (2.1)

will equal (2.2).
From Box and Hunter (1957), equation 26, we know that

(2.3) V(9(x) = x"(X'K) "2,

where X is the N X L matrix of independent variables. (N is the number of
design points and L is the number of terms in (2.1).)
We now wish to consider the variance of §(z), where z is such that

(2.4) Dot = D a2l B = 2, 0 T = 2k, (s < k).
Suppose
(2.5) z = Mx,
where X' = (1,2;,2,, -+, 2:) and M is a matrix of the following form:
01 e 8 s+ 1 oo K
0 10 ---0 0 cee 0]
0 myg -+ my, 0 0
(26) M= s |0 mg - me 0  --- 0],
s+1]/0 0 --- 0 10 0
. .. . 0’ i
) : . 0
E Lo o 0 0 0 1
where

my - mla:l
Me1 = Mes
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is an orthogonal s X s matrix. Then
(2.7) V(g(z)) = 29X'X) 29
— x’ [dlM' [d) (_x'x)—lM [d]X[d]U2,

where z' = (121,20, ,2). (M is defined in such a way that z'¥ =
M4zt )

For the variance to be constant at points satisfying (2.4), we require that
V(g(x)) = V(9(z)). In order that V(4(x)) = V(4(z)) we have, from (2.3)
and (2.7),

(2.8) (X'X)™ = M'9(X'X)"'M"

for every matrix M of the form (2.6).
Box and Hunter (1957) show that

(2.9) Q = NW9IX'Xt" where t = (1,t,b, - ,4),
= N2 00 (1 4 o + o + - + Gzw)™

is the generating function of moments of order 2d or less of a design. If we
let [1%,2%, ... k™ = N7 D> ¥ zfizs? --- zp% | then the coefficient of
LM% .- 4" in Q is

(2.10) [(2d) ] T5~1 ;1(2d — @)1, 2%, - - -, k™),

where & = D 5. a; = order of the moment and 0 < a < 2d.
From (2.8), we see that a design will be cylindrically rotatable of type 1 if
and only if

Q = N '{Ux'xt
(2.11) = N{E(ME(X'X)" M)
— N—lt’[d] (M[dl )—lx'X(M'[d] )—lt[d]
= N(¢M)¥IX'x (M),

Therefore,  is a function of D51t ty41, - -+ , & . Since Q is a polynomial in
the ¢,’s, it must be of the form

(212) Q= 25m0 20 41m0 =+ * Doamt Gapayirsoonian( Dot 1) Pttt < B,

where 2p 4+ a,41 + - -+ + o = 2d. The coefficient of #,*'t,** - - - ** in Q is zero
if any of the ¢;,5 =1, ---,s,is odd and is

(2.13) az;i_, P (€16 Z;’=1 a;))l/ II;'—I (3ai) !

if all the @;,5 = 1, -+ - , s, are even integers.
Equating (2.10) and (2.13), we obtain

(2.14) [1%,2%, ... k™) = az*

Gl @r®ag1ak

(3 5e10)) I T51 @i(2d — @)/ TTi=1 (Bei) 1(2d)1.
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Then letting
(2.15) )\z;_l aj,agp1rriay = 032

F=1

2 (3( 20521 @) ) Thmera @sl(2d — @) 1/(24d)1,

aj,@s 41,000k

we see that
[171, 2% . .. k™ = 0, any ajodd, j=1,---,s,
(2.16) = A51_, aperrnran ([Tt es/2 Tt (Becs) 1,
allajeven, j=1,.--,s.

The design points are chosen in such a manner that the moments are of the form
given in (2.16) and such that the variance-covariance matrix is non-singular.
ExampLE. Consider the following point sets:

(+a, +a,c,e)
(z%a, +a, —c, —e),
(2.17) (24,0, 0,0),
(0, 2%, 0,0),
(0,0, +d,0),
(0,0,0, &f).

For all valuesof g, ¢, d, e and f except zero, these point sets will form a second order
cylindrically rotatable design of type 1 in four dimensions since the moments
satisfy (2.16) and the variance-covariance matrix is non-singular. The number
of points involved is sixteen. The moments of the design are, when multiplied
by N,

et = 2ok = 4(2 4 2Hd,
> x5, = 8¢ + 24,
D i, = 86 + 2%,
2T = D Th = 3D 7.5, = 24a’,
> x5, = 8¢* + 2d°,
> zi, = 8¢' + 2,
(2.18) D 2hTs, = D Tars, = 8a°C,
2. 2t = D 23,24 = 8a¢,

2 2 2
Z L1ul3ulau = E L2y L3ulsy = 8a ce,
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Z xg.,xf., = 80262,

Z xgux4u = 8036,

E Lyulay = 8cé’,

Z T3u2su = Sce,

and all other sums of powers and products up to and including order four are
zero. The summation is taken over all design points.

3. Cylindrically rotatable designs of type 2. We wish to find conditions for
designs such that the variances of the estimated responses at all points on the
same s-dimensional cylinder with the same remaining squares of the (k — s)
co-ordinates are equal, that is, the estimated responses at two points
x= (21,2, ,2x) andz = (21,2, -+, 2z) will have the same variance if

(3.1) 2zl =2zl =, = A, (s< k)

These designs will be called cylindrically rotatable designs of type 2. The moment
conditions for designs of type 2 are found in a manner similar to that used for
designs of type 1. The details may be found in Herzberg (1966b).

A design will be cylindrically rotatable of type 2 if and only if the moments
satisfy the following conditions and the variance-covariance matrix is non-

singular: /
[1%t, 2%, ... [ k™ = 0, any a; odd,
)\E;_l aj,asq1,0 g’ [H;=l ai!/zaﬂH;'-l (%ai) '];

all «; even

(3.2)

Il

Here Az!_ aj.a0s1. i is constant for any design and any D5 o; and oy, | =
s+1, ---, k.
ExampLE. Consider the following point sets:

(=a, +a, ¢, +d),
(3.3) (=24, 0,0, 0),
(0, 4-2a, 0, 0),
(0, 0, #¢, 0).

For all values of a, ¢, d and ¢ except zero, these point sets will form a second
order cylindrically rotatable design of type 2 in four dimensions since the moments
satisfy (3.2) and the variance-covariance matrix is non-singular. The number of
points involved is twenty-two. The moments of the design are, when multiplied

by N,
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D xhe = D b, = 244,
> x5, = 186" + 2¢°,

> i, = 16d°,

(3.4) Dzl = D s = 3D z1.Ts. = 48a’,
> a5, = 16¢* + 26,
> x4, = 16d,

2 2 2 2 22
leux3u = Z Toul3y = 16a’c N
2 2 2 2 2 32
Z T1ulay = Z ZToly, = 16a°d’,
2 2 2 42
> 2d,ah, = 16d%d

and all other sums of powers and products up to and including order four are
zero. The summation is taken over all design points.

4. Cylindrically rotatable designs of type 3. We wish to find designs such that
the variances of the estimated responses at all points on the same s-dimensional
cylinder with the same remaining sum of squares of the (k — s) co-ordinates are

equal, that is, the estimated responses at two points x = (21,22, - -+, ) and
z= (21,2, - ,2) will have the same variance if
(4.1) D= Dz’ and Diuaf = Dz (s <k).

These designs will be called cylindrically rotatable designs of type 3. The moment
conditions for designs of type 3 are found in a manner similar to that used for
designs of type 1. The details may be found in Herzberg (1966b).

A design will be cylindrically rotatable of type 3 if and only if the moments
satisfy the following conditions and the variance-covariance matrix is non-
singular:

(1=, 2%, ... [ k% =0, any a; odd,
(4.2) = )‘E;_l a, ;-.+l aj [HJ=1 a; '/2a/2H1=1 (za])
all a; even.

Here AS! | aj ZE_ e is constant for any design and any Y j-ia; and

k
Zi=c+1 aj .

ExampLe. Let U(2y,2, -+ , %) be any one of the smallest 277 fractions
of a 2* factorial design such that

a; a; ap a
Do aiiziiziiamn = 0,
where

(i) 2,5,l,m = 1,2, --- , k and are distinct,
(ii) at least one of &; , @j, a;,amisodd and 0 < a; + a; + a1 + am < 4, and
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(iii) the summation is taken over all the points of U(xy, x2, - - , Zx).
Then consider the following point sets:

U(a,a,a,c,c),

(£2a,0,0,0,0),
(4.3) (0, +2a,0,0,0),

(0,0, =24, 0, 0),

(0,0,0, +2c,0),

(0,0,0,0, £2¢).
For all values of a and ¢ except zero, these point sets will form a second order
cylindrically rotatable design of type 3 in five dimensions since the moments
satisfy (4.2) and the variance-covariance matrix is non-singular. The number of

points involved is twenty-six. The moments of the design are, when multiplied
by N,

Z xfu = Z xgu = Z xﬁu = 24a2,
> aho= 2 28 = 246,
(44) Dol = 2 3= D &b = 3D ¥1uthu
=3) Tiulsy = 32 Lo, = 480’
>zt = O ahy = 32 ahuah, = 48¢,
Satal, = 16a%% i=1,2,3andj = 4,5,

and all other sums of powers and products up to and including order four are
zero. The summation is taken over all design points.

b. Blocking. Here we shall discuss the blocking of only those cylindrically
rotatable designs for which all the odd moments are zero. (A moment is said to
be odd if at least one of the «; is odd. We shall also limit our discussion to designs
comprising only two blocks and in which one block forms a complete first
order cylindrically rotatable design and the other block consists of the addi-
tional points needed to make the whole a second order cylindrically rota-
table design. Therefore, if it is discovered that the first order design gives an
adequate fit, then there is no need to perform the experiments of the second
block

Box and Hunter (1957) have shown that the required conditions for block effects
to be independent of the estimates of the polynomial coefficients are all auto-
matically satisfied when the design is rotatable except

(5.1) 2 23/ D 1 T = nw /N,

where n.,,’ denotes the number of points in the wth block, w = 1,2;¢ = 1,2, --- |k
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and the summation in the numerator is for those values of % in the wth block.
Equation (5.1) is also the only condition which is not automatically satisfied
when cylindrically rotatable designs are used. The details may be found in Herz-
berg (1966b).

Let
(5.2) N = T + Now

where n, denotes the number of points not at the centre and 7, denotcs the
number of centre points in the wth block. The number of centre points in each
block is chosen so that the blocking conditions will be satisfied.

Equation (5.1) can be rewritten as

’ 2 ’ n 2
(] Eﬁ‘ LTiy — M1 Zuz Ly = 0;

that is,

(5.3) (M2 + now) 28 2% — (M + nor) 2422t = 0,

where ¢ = 1,2, .-+ | k. In order to determine the blocked design, the following
procedure can be used. For 2 = 1,2, --- , s, we have, from (5.3),

(5.4) na = {(na + no) 20t Tl — mD_u ah}/ D20t Tk,

where 79, must be such that ny will be non-negative. ng and ng can be chosen
to satisfy (5.4), and then the levels of the remaining (k¥ — s) factors are deter-
mined so that (5.3) will be satisfied forz=s+ 1, --- , k.

ExamprLE. Here we consider a second order cyclindrically rotatable design of
type 2 in four dimensions, where s = 2.

Let

(5.5) (=a, +a, ¢, +c)
be the points of the first block, and
(%+2a, 0, 0, 0),
(5.6) ( 0,%2a, 0, 0),
( 0, 0,=%e 0),
( 0, 0, 0,ze)

be the points of the second block, where (5.5) forms a first order cylindrically
rotatable design of type 2. Then, for 7z = 1, 2, (5.4) becomes

(5.7) no = {(8 + ne)16a® — 16-8a’}/8a% = 2nq, .

Let nge = 0. Then, from (5.7), na = 0. Substituting these values of ny and
nez in (5.3) for 2 = 3 and 4, we obtain

(5.8) 8-16¢ — 16-2¢* = 0.
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Therefore,
(5.9) ¢ = 4¢,
e = 2c.

6. Interpretation. From the moment conditions for cylindrically rotatable de-
signs, it can be seen that a k-dimensional cylindrically rotatable design is an
extension of an s-dimensional rotatable design of the same order, s < k. The
variances of the estimated responses continue to be constant at points on s-di-
mensional cylinders. Therefore, by using a cylindrically rotatable design, it is
possible to preserve this property of an s-dimensional rotatable design with the
added advantage of enabling the experimenter to estimate the coefficients of the
terms of the polynomial involving the (s 4+ 1)th to kth factors.

Since the moment conditions for cylindrically rotatable designs are not as re-
strictive as the moment conditions for rotatable designs of the same dimension
and order, the number of points required for a cylindrically rotatable design is
usually less than the number required for a rotatable design.

The three types of cylindrically rotatable design are such that the variances
of the estimated responses at certain points on a cylinder whose axis is a co-
ordinate axis are equal. As mentioned previously, cylindrically rotatable designs
of type 1 are such that the variances of the estimated responses at all points on
the same s-dimensional cylinder with the same remaining (k — s) co-ordinates
are equal; designs of type 2 are such that the variances of the estimated responses
at all points on the same s-dimensional cylinder with the same remaining squares
of the (k — s) co-ordinates are equal; designs of type 3 are such that the variances
of the estimated responses at all points on the same s-dimensional cylinder with
the same remaining sum of squares of the (k — s) co-ordinates are equal (geo-
metrically this means that the variances of the estimated responses at all points
at the intersection of two cylinders are equal). The three types of cylindrically
rotatable design differ in their moment conditions as can be seen from (2.16),
(3.2) and (4.2). The moment restrictions and, therefore, the number of experi-
mental points required increase when the number of points at which the variances
of the estimated responses are equal increases. The experimenter must decide
whether the use of a larger number of experimental points is balanced by the
larger number of estimated responses having equal variances.

When s = k — 1, the moment conditions for a cylindrically rotatable design
of type 3 can be written in the following way:

(6.1) [17,2% ... k™ =0, any a; odd,
= Na—ap.ax- (L L=t a;1/2°2 [T522 (3e;) 1], all &; even,

where )\;_.,,,,ak = Ma—ap.axl@x |/ (Fax)!]. Therefore, when s = & — 1, cylindrically
rotatable designs of types 2 and 3 are equivalent. If the moments of a cylindri-
cally rotatable design of type 1 are such that they are zero for any a; odd, then
cylindrically rotatable designs of types 1 and 2 are equivalent. Therefore, if
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s = k — 1 and all the odd moments of a cylindrically rotatable design of type
1 are zero, cylindrically rotatable designs of types 1, 2 and 3 are equivalent.

For cylindrically rotatable designs of types 1 and 2, the level of the (s 4+ 1)th
to kth factors can be integers because of the nature of the moment conditions
and, therefore, (k — s) factors can be discrete.
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