ADEQUATE SUBFIELDS AND SUFFICIENCY!
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1. Introduction. The concept adequacy originated with Kolomgorov [9]. It
has been treated on various levels of generality and with a diversity of struc-
ture, motivation, and nomenclature. See Bahadur [1], the definition of transitive
and sufficient sequence, pp. 452, 453; Loéve [12], p. 351, the definition of condi-
tional independence. Lehmann [10], p. 20, develops an “alternative criterion of
sufficiency” for a parametric family of distributions when the ‘“true’” parameter
is itself random. Raiffa and Schlaifer [13], pp. 32-34, who employ the term
Baysian sufficiency, treat aspects of adequacy similar to those considered by
Lehmann. At a different structural level, and with opposite motivation and
somewhat greater detail, the same notion, as developed by Barankin [2] and
Barankin and Kudo [3] is called (quasi-total) parametric sufficiency. Studies in
yet another direction are undertaken by Hall, Wijsman, and Ghosh in [7], which
explores the relationship between sufficiency, invariance and transitivity. The
present paper is in the spirit of the Halmos-Savage-Bahadur approach to suffi-
ciency ([8], [1]).

In Section 2, adequacy is defined in the abstract. It is then shown to be equiva-
lent to sufficiency for an appropriate family of conditional probability measures.
This equivalence was noted by Bahadur in [1]. Theorems 1 and 2 of Section 2
are, respectively, a new version of his Theorem 11.3 and a rigorous and some-
what more general version of the statement that follows it.

In Section 3, we show that for predicting an unobservable (real valued,square
integrable) random variable ®, from an observable random variable X, relative
to squared difference loss, one need only consider statistics which are “adequate”
for X with respect to © and the family of possible underlying probabilities.

There follows a summary of the more standard definitions and notation to be
employed in subsequent paragraphs. Let (2, @) be a measurable space and ® a
family of probability measures P on G.

We use @& v @ to denote the smallest o-field which contains each member
of two subclasses @1, @ of @, and o{h:h 3¢}, to denote the smallest o-field
relative to which every member of a family 3¢ of ®@-measurable functions is
measurable. Let X be a function on @, f be a function on the range of X. We
denote the composite function on 2 by fX. A set N is [@, @] null if N ¢ @ and
P(N) = 0 for each P ¢ ®. We write [@, P] if ® is a singleton {P}. Let p, ¢ be
@-measurable functions on Q. We write p = ¢ [®, @] if there exists an [@, ®]
null set N such that p(w) = ¢(w) for all w e @ — N. For sub-o-fields ®, ® of
@, we write ® C ®[@, @] if to each By ¢ ®, there corresponds a B &£ ® such that
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(Bon (2 — B)) u (( — By) nB) is [@, ®] null. ® is dominated by a measure
pon @ if every [@, u] null set is also [@, @] null. We shall denote the conditional
expectation under P of an ®@-measurable and P-integrable function f, given a
sub-o-field ®, by Ep(f| ®). A sub-o-field ® of @ is said to be sufficient for a
family @ of probability measures on @ if to each A ¢ @ there corresponds a
®-measurable function g, , say, on @ such that P(4AB) = fB ga dP, for all
Be®andall Pe @, ie., ifforallAec@andallPe @, g, = Ep(I4|®) [@, P].
Let 1, denote the indicator function of a set A. A o-field ® is said to be separa-
ble if it is generated by a countable subcollection of its sets.

Let ® and € denote sub-o-fields of @. A function Pg® on @ X @® is said to be
a conditional probability on ® given € and P if it is defined by taking Pg®( -, B)
to be a particular version of Ex(Is | @) for each B ¢ ®. Ps®( -, B) is, of course,
a C-measurable function on @ for each B ¢ ®. If in addition, its defining versions
are such that Pg®(w, -) is a probability measure on ® for each w ¢ 2, then Pg®
will be called a regular conditional probability on ® given € and P.

We remark (see, e.g., 4, p. 361 of [12]) that if ® is generated by a finite or
countable family of real valued random variables X, then for each sub-o-field
€, there exists a regular condition probability Pg®.

2. Equivalence of adequacy and sufficiency. Let ® denote a family of prob-
ability measures on a ¢-field @ of subsets of a space Q. Throughout, ® and €
will denote sub-¢-fields of @, and ®, will denote a sub-o-field of ®. In the follow-
ing, we shall write

®o suf [(P; (B]

to mean that ®, is sufficient for the family of restrictions to ® of the measures
in @.

DErInITION 1. ®, i8 8aid to be adequate for ® with respect to € and @, sym-
bolically,

® adq [&; e, @],

if ® suf [®; @] and if for each C in @, P in @ there exists a ®y-measurable ver-
sion of Ep(I¢| ®).

When @ is a singleton { P}, we shall write ® adq [®; €, P]. Note that in this
case, the sufficiency requirement is trivially satisfied. A standard approximation
argument (using monotone convergence theorem) shows that ®, adq [®; €, @]
if and only if ®osuf [®; ®] and for each P in @ there exists a ®,-measurable
version of Ep(g | ®) for each P-integrable @-measurable function g.

The notion of adequacy as defined above is equivalent, in appropriate con-
text, to Bahadur’s transitive sequence of sub-o-fields when @ is singleton, and
otherwise, to his transitive and sufficient sequence [1]. Particular examples will
be found in (1] and [7]. Bahadur’s Theorem 11.3 in essence states the equivalence
of (i) and (iv) in Theorem 1, below. We reintroduce in modified form the
family of measures which he considered. To each pair C, P with C in €, P in @
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such that P(C) > 0, let correspond the probability measure on @ defined by
P°(A) = P(AC)/P(C), Y A4ca.

Take ®(€) to be the family of probability measures so obtained.

TaEOREM 1. The following statements are equivalent:

(1) ®osuf [P(€); B].

(ii) To each B in ® there corresponds a ®o-measurable function hg , say, such
that

Ep(Iphs| @) = Ep(Igz|@) [€,P], ¥V Bye®, Be® Peo.

(iii) To each B in ® there corresponds a ®e-measurable function hy , say, such
that

hs = Ex(Is| ® v @) [@, P), Y Peo.

(iv) ®adq [®; €, ®].

Proor. Suppose (i). By definition of sufficiency and of the family ®(e),
there corresponds to each B in ®, a ®,-measurable function hz such that
(2.1) P(BiBC) = [pychsdP, Y Bie®, Be®, Cee, Peo.

This statement, which by definition of conditional expectation is the equivalent
of (ii), in turn clearly implies (i). Moreover,

®y VvV C = O'{IBOC:BQS(BO, CC e}.
Hence by standard arguments using the extension theorem for finite measures,

the statement implies (iii). It is of course trivially implied by (iii).
Independently of assertions (i) through (iv) we have that

(22) fBoB Ep(Ic I (Bo) dP = fgoc EP(IB l (Bo) dP,
Y Bye®, Be®, Cee, Pee.

This follows from elementary properties of conditional expectation and re-
peated application of Theorem 1 in [5] or Lemma 4.6 in [1]. Now (iii) implies
that

hB = Ep(Igl(Bo) = EP(IBI(BO \" ('3) [G/, P], V PC(P.

It follows that ® suf [®; @] and that the right-hand side (and consequently the
left-hand side) of (2.2) is equal to P(B,BC) for all Byin &, Bin ®, C in €,
and P in ®. Hence (taking By = Q),

[sEp(Ic|®)dP = P(BC), Y Be® Cee, Peo.

Thus E(I¢ | ®) is a ®p-measurable version of E»(I¢ | ®) and by Definition 1,
(iv) holds.

On the other hand, if (iv) holds, the left-hand side (and consequently the
right-hand side) of (2.2) is equal to P(BoBC)). Since by (iv), ®, suf [®; ®)],
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there exists, corresponding to each B in &, a By-measurable function kp such

that (2.1) holds. Q.E.D.
We shall suppose now that to each P in @ there corresponds a regular condi-

tional probability Pg® and write
®s° = (Pa’(w, -):Pe® we).

Any class of probability measures so generated by any collection of regular
conditional probabilities on ® given € (one to each P in @) will be called a

version of ®g°.
The following theorem is a rigorous version of the heuristic statement which

follows Theorem 11.3 of [1].
TrrorEM 2°. If corresponding to each P in ® there exists a regular conditional

probability Pg®, then for any version of Pg®
®, sufficient for ®s° = ® adq [®; €, @].

If in addition, ®y and ® are separable, the reverse implication holds for a suitably
chosen version of ®g".

Proor. Let f be any ®-measurable P-integrable function on Q. Then by an
argument strictly analogous to A, p. 354 [12], if there exists a regular conditional
probability Pg®, we may write

EP(fl e) = fﬂfdP(Bes [e: P])

where, of course, the exceptional set may depend on f.
Suppose that ®, is sufficient for ®g°. By definition of sufficiency there cor-
responds to each B in ®, a ®y-measurable function kz such that

Ps®(-, BB) = [p, hsdPs®, Y Bye®, Peo.

By the definition of regular conditional probability, the left-hand side above is
for each P in @ equal [@, P] to Ep(Ip,s | €). By the remark made at the outset
of this proof, the right-hand side is for each P in ® equal [@, P] to Ep(Ihs | @).
Thus (ii) of Theorem 1 holds and hence ®, adq [®; €, @].

Now suppose that ® and ® are separable and that ®, adq [®; €, @], i.e.,
that (ii) of Theorem 1 is true. By the initial remark of this proof, (ii) of Theo-
rem 1 implies that to each triple (B,, B, P) with components respectively in
®o, ®, and @, there corresponds a [@, P] null set Np,,z(P) such that for all
in @ — Np, s(P),

(2.3) Pg®(w, BiB) = [, hs dPs"(w, *).
Let ® = {Bo:t = 1,2, ---} and & = {Bj:j = 1,2, - --} be countable generat-
ing subclasses of ®, and ®, respectively. (We take them to be fields without
loss of generality.) Let

N(P) = Ul',iNBo.',B,'(P)) V Pé‘(P.

3 This theorem was discovered independently by Barankin and Kudo [3], subsequent
to its discovery by Barndorff-Nielsen and the author [4]. :
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N(P) is [e, P] null for each P in ® and clearly, for each fixed pair P, » with
Pin ® and @ in @ — N(P), (2.3) holds for all By, B in &, and ®, respectively.
But ks depends only on B. Hence for each of these fixed pairs, P, w, (2.3) holds
for all By in ®, and all B in ®. This follows by a familiar argument involving
straightforward applications of the monotone convergence theorem, the equiva-
lence of the minimal monotone class and minimal s-field over the same field,
and the extension theorem for finite measures (e.g. [12] pages 60, 87, 124). It
is now apparent that ®, is sufficient for the family

(24) {Pg®(w, -):(P,w) suchthat Pe® and weQ — N(P)}.

For each P in @, let {» denote an arbitrary but fixed point of @ — N(P). Now
define the family

Q = {QP",,:PS(P,O)fQ}

of probability measures on ® by taking @p. equal to Pe(w, -) or Pe®(¢p, +)
for each P in @ according as w is in @ — N(P) or w is in N(P). It is clear that
Q is a version of ®g". Moreover @ is precisely the family (2.4). Q.E.D.

Theorems 1 and 2 make available standard theorems on sufficiency for ap-
plication to the theory of adequacy, e.g. [8], [11], [1], [6]. In particular let us
consider the question of minimal adequacy. Let ®* be a sub-o-field of ®.

DEerFINITION 2. ®* is said to be minimal adequate for ® with respect to @ and
®, symbolically,

®”* min adq [®; €, @],

if ®* adq [®; €, ®] and B adq [®; €, @] (for a sub-o-field By of ®) implies that
®* c ® [® @

CorOLLARY 1. If for h a bounded ®o-measurable function, Ep(Ich) = 0 for all
C in @ and all P in ® vmplies that h = 0 [@, @], then

®o adq [B; €, ®] = ®y min adq [®; €, @].

Proor. The condition is equivalent to bounded completeness for ®(€) on ®.
By Theorem 1 and the well known theorem of Lehmann-Sheffé [11], the result
follows.

When @ is dominated by a o-finite measure we have the following two corol-
laries, using Theorem 1 and Theorems 6.2, 6.4 of [1], respectively.

CoOROLLARY 2. For each ® C @ there is a ®y C ® such that ®, min adq [®; €, @].

REMARK. We note that when @ is a singleton {P}, then ¢{Ep(I¢|®):C ¢ @}
min adq [®; €, P).

CoroLLARY 3. Let ®* C ® C ®. Then ®* adq[®; e, ®] if and only
if ®* adq [® ; €, ®] and B, adq [®; €, @].

3. Application to least squares prediction. Let X and ® be random variables
defined on (2, @) with underlying probability measure P on @ which is known
a priori, only to be a member of ®. Let ¢ be a measurable function on the range
of X, and ®y, ®, and @ the o-fields generated by T = tX, X, and O, respec-
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tively. We shall say that T is an adequate statistic for X with respect to ©® and
® (T adq [X; B, @), if ® adq [®; €, ®]. Suppose only X to be observable and
that while ® is known, the “true’” member P which applies is not. For simplicity,
suppose © to be real valued and square integrable relative to each P in ®. We
are concerned below with predicting ® from X, relative to a squared difference
loss. In this problem, a measurable function f, say, on the range of X is sought
such that the risk

EP(fX - 6)2 = R(f: P)y say,
is small regardless of which P in ® obtains. It is well known that
inff R(fy P) = R(‘EP’ P) = R(P)’ say,

where £,X = Ep(© | X) [®, P]. When @ is a singleton (i.e. when P is known),
we can use £rX as a predictor of ® to incur minimal risk. Note that
if T adq [X; ©, P], then this optimal solution is equal [®, P] to a function of T'.
When @ is not a singleton some other stratagem must be employed. For example
one might estimate P from X in some reasonable way and use £X, with the
estimate substituted for P, to predict ©. For examples see [14]. The risk asso-
ciated with such a predictor will of course exceed or at best equal R(P) for each
P in @, but the predictor itself is bonifide since it does not depend upon P.

The theorem proved below may be paraphrased roughly as follows. Let T be
adequate for X with respect to ® and @, then to each predictor of ® from X
(of the above described type or not), there corresponds a predictor which is a
function only of T with risk uniformly (in @) bounded above by the risk of the
first predictor. It follows that in seeking predictors of ©® relative to mean squared
loss, we may restrict consideration to functions of adequate statistics.

TuEOREM 3. Let © be a square integrable random variable relative to each P in
@ and suppose that T = tX 1is an adequate statistic for X with respect to © and ®.
Then to each measurable function f on the range of X (with fX square integrable
for each P in @), there corresponds a measurable function g on the range of t such
that

R(gt, P) £ R(J, P), Y Pee,

with equality holding for any P if and only if fX = Ex(fX|T) [®, PI.
Proor. By (iii) of Theorem 1, there exists a measurable function ¢, say, on
the range of T such that

9T = Ex(fX|T) = Ex(fX|T, ©) [&,P], V¥V Peo.

Using a well known inequality (e.g. see lemma at the end of Section 2 in [5])
the square integrability of fX and © implies the integrability of the products,
(fX)-© and (gT)-0O. It follows (Theorem 1 of [5] or Lemma 4.6 of [1]) that

Er((fX)-0) = Ex(®-Ex((fX)|T, ©))) = Ex((gT)-©), VY Peo.
Hence
R(f, P) — R(gt, P) = Ex(fX)* — E»(¢T)’, VY Peo.
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By the well known inequality cited above, this difference is non-negative for
each P in ® and by the device already once employed, may be written
as Ep(fX — ¢T). Q.E.D.

Observe that if a statistic T* = *X exists which is minimal adequate for X
with respect to ® and ® then taking note of Corollary 3 there exists by the
above theorem, a measurable function g* on the range of t* such that

g'T* = Ex(gT | T*) = E=:(jX | T*) [®,P], VY Peo,
and such that
R(g**,P) S R(gt,P) V¥V Peo,

equality holding if and only if gT = ¢*T [®, P).
We remark also that Theorem 3 is easily modified to hold for R( f, P) =
E:L((fX — ©)) where L is convex.

REFERENCES

(1] BanaDpUR, R. R. (1954). Sufficiency and statistical decision functions. Ann. Math.
Statist. 26 423-462.

[2] BarankiN, E. W. (1960). Sufficient parameters: solution of the minimal dimension-
ality problem. Ann. Inst. Statist. Math. 12 91-118.

[3] BArRANKIN, E. W. and Kupd, H. (1965). A general theorem on sufficiency. To be pub-
lished in the Boletin de la Sociedad Matemdtica Mezicana.

[4] BARNDORFF-NIELSEN, O. and SkiBINsKY, M. (1963). Adequate subfields and almost
sufficiency. Applied Mathematics Publication 329, Brookhaven National Labora-
tory.

[5] BrackweLL, D. (1947). Conditional expectation and unbiased sequential estimation.
Ann. Math. Statist. 18 105-110.

[6] BUurRKHOLDER, D. L. (1961). Sufficiency in the undominated case. Ann. Math. Statist.
32 1191-1200.

[7] Harr, W. J., WussmaN, R. A., and Guosn, J. K. (1965). The relationship between suffi-
ciency and invariance with applications in sequential analysis. Ann. Math.
Statist. 36 575-614.

[8] HaLmos, P. R. and Savace, L. J. (1949). Application of the Radon-Nikodym theorem
to the theory of sufficient statistics. Ann. Math. Statist. 20 225-241.

[9] KoLmogorov, A. (1942). Sur L’estimation Statistique des Parametres de la Loi de
Gauss. Bull. Acad. Sci. U.R.S.S. Ser. Math. 6 3-32.

[10] Leamann, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

(11] Leamann, E. L. and Scuerr£, H. (1950). Completeness, similar regions, and unbiased
estimation—Part 1. Sankhya 10 305-340.

[12] Lo&ve, M. (1960). Probability theory (2nd edition). Van Nostrand, New York.

[13] Ra1Fra, H. and ScHLAIFER, R. (1961). Applied Statistical Decision Theory. Division
of Research, Graduate School of Business Administration. Harvard University.

[14] RoBBins, H. (1964). The empirical Bayes approach to statistical decision problems.
Ann. Math. Statist. 35 1-20.



