SOME OPTIMUM PROPERTIES OF RANKING PROCEDURES'

By Mogris L. EaTon®

Stanford University

1. Introduction. The purpose of this paper is to present a fairly general treat-
ment of a class of statistical problems commonly referred to as ranking (or
selection) problems. The presentation is decision theoretic and attention is
restricted to the symmetric case so that certain invariance arguments are applic-
able. For the problem of selecting the best one of several populations, Bahadur
(1950) and Bahadur and Goodman (1952) have proved that, for certain families
of distributions, the natural selection procedure uniformly minimizes the risk
among all symmetric procedures for a large class of loss functions. More recently,
Lehmann (1966) has given an alternative proof of the above result and has
indicated several other optimum properties of the natural selection procedure.
(The results presented here were obtained by the author (1966) independently
of the results given by Lehmann (1966).)

In Section 2, we introduce a monotonicity property (called property M)
for density functions of k real variables and k real parameters. The class of
densities with property M includes the class of densities considered by Lehmann
(1966). This class also contains densities of practical interest which have not
been considered in previous treatments of ranking problems.

The general ranking problem which was explicitly described by Bechhofer
(1954) is the following: on the basis of a set of observations, we wish to partition
the set of coordinate values of a k-dimensional parameter vector 8 = (6y, - - - , 6x)
into s disjoint subsets, say A1, - - - , A, such that \; contains the k; largest com-
ponents of 8, \; contains the k, next largest components of 6, - - - , and \, contains
the k&, smallest components of 8§ where 1 < k; < k and Z ks = k. In Section 3,
we discuss the assumptions on the set of observations and introduce the loss
structure. In Section 4, it is shown that if the density of the observations has
property M then the natural selection procedure for the problem above: (i) is
Bayes for every prior distribution which is symmetric in 6, (ii) uniformly mini-
mizes the risk among symmetric decision rules, and (iii) is minimax and ad-
missible.

Section 5 is devoted to showing that, in a certain sense, property M is a
natural assumption for symmetric selection problems. More specifically it is
shown, under regularity conditions, that if the natural selection procedure is
uniformly best among symmetric decision rules, then the underlying density
has property M. In Section 6, certain results on most economical decision rules

Received 14 July 1966.

1This research was based in part on the author’s doctoral dissertation submitted to
Stanford University, and was written with the partial support of the National Science
Foundation, Grant GP-3837.

2 Now at The University of Chicago.

124

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. MIKOIRS ®

&4

WWW.jstor.org



OPTIMUM PROPERTIES OF RANKING PROCEDURES 125

due to Hall (1958), (1959) are extended to the ranking problem described above.
Section 7 contains some specific applications of the general results.

2. A monotonicity property of some multivariate density functions. Consider
a Borel subset & € R* (k dimensional Euclidean space) and let u be a o-finite
measure on %. Also, let ® be a symmetric subset of R and A be an arbitrary
set. For a family of density functions (with respect to u) {f.(z, 0) | @ € A}, we
introduce a concept which is of use in the treatment of ranking problems.

DEerFiNITION 2.1. A family of real valued density functions {f.(z, 8)} is said to
have property M if for each @ ¢ A and for each ¢, j (¢ # j), 1 < 4,5 < k, the
following holds:

(21) z; = z; and 60; = 6; implies that f.(z, 0) = f.(z, (7, 7)0)

where (7, 7)0 is the vector § with the components 6; and 6; interchanged.

For a density function of one real variable and one real parameter, recall the
definition of monotone likelihood ratio (MLR).

DeriniTION 2.2. A family of density functions {g.(z, £) | @ € A} is said to have
a MLR if for all a ¢ A

(22) z1= 2 and & = & implies that

ga(21, E1)ga(22, &) = go(2r, £)ga(22, &).

PropositioN 2.1. Suppose a family of density functions {f.(x, 0) | @ € A} has
the form

(23) fa(xl y 2ty Tk 01 y " ok) = le=1 ga(xi ) 0,‘),

where g, is a density. Then the family {fo | a € A} has property M if and only if
{g«| @ € A} has a MLR.

Proor. The result follows directly from the definitions. []

The above result allows the construction of many densities {f,} which have
property M. However, there are multivariate densities of interest which cannot
be written in the form (2.3). The following proposition gives a necessary and
sufficient condition that a certain class of densities has property M.

ProrosITION 2.2. Let f be a positive strictly decreasing function defined on [0, )
and consider

(2.4) ha(z, 0) = c(A)f((x — 0)A(z — 6)")

where 6 and z are (row) vectors in R*, k = 2, A is a k X k positive definte matriz
and c(A) is a positive constant. Assume that hy(z, 6) s a density on R*. The following
are equivalent:

(i) ha(z, 6) has property M.

(i) A =c —coele where e= (1,1,---,1), >0, —o < /ey < 1/k,
and I is the k X k identity matrix.

Proor. Assume that (ii) holds. The conditions on ¢; and ¢, simply guarantee
that A be positive definite. For z; = x; and 6; = 6; (7 # j), a direct computation
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yields

(@ —0)Alz —0)' = (z — (4,))0)A(z — (5,/)0)'
when A = ¢if — ge'e. Since f is a decreasing function,
(2.5) ha(z, 6) = ha(z, (1,4)0),

for z; = z; and 6; = 0; . Note that we have only used that f is decreasing (not
that f is strictly decreasing) for (ii) to imply (i).

Conversely, let (i) hold so that hy has property M. For each ¢, j (z > j),
z; 2 z; and 0, = 0; implies (2.5), or equivalently,

—2zA0 + 0A6" = —2xA[(3,5)6) + [(4,7)0]A1(s, )0 .

Setting z = 0, 0 = (1,0, ---,0), (¢,7) = (1, 2) yields Ay < Ay ; while z = 0,
= (0, 1, 0, ey, 0), (’L,]) = (2, 1) yieldé ez = A1 S0 that Ay = A2 . Similarly,
all the diagonal elements of A are equal, say Ais = N\, i =1, -+ , k.

Now, settingz = 0,0 = (1,1,0, ---,0), (¢,7) =(1, 3) yields 2(A + A) <
2(N 4+ Ng); setting z=0, 6= (0,1,1,0,---,0), (4,5) = (3,1) yields
2(M 4 A3) = 2(N 4+ M\2) so that A = N\3. In a similar manner, all the off
diagonal elements of A are shown to be equal. The proof is completed by noting
that A is assumed to be positive definite. []

In his treatment of ranking problems, Lehmann (1966) considered densities
of the form

(2-6) f(z, 0) = B(G)Hlt;l g(-’m , 0:),

where ¢ is assumed to have a MLR and 8(8) is constant when the coordinates
of 6 are permuted. Of course, densities of the form (2.6) have property M. In an
unpublished manuseript, Bachhofer, Kiefer and Sobel have defined a “rank-
ability”” condition for densities of the form (2.6) where g is assumed to be in the
one parameter Koopman-Darmois family. Their “rankability” condition is
essentially property M for the class of densities they consider. Examples of
densities which cannot be written in the form (2.6) but which have property M
can easily be constructed using Proposition 2.2.

3. The ranking problem: notation and assumptions. We begin with a descrip-
tion of the ranking problem. Consider a random observable Z = (X, Y) with
values in a measurable space (€ X Y, B(X) X ®(Y)) so that X has values in
% and Y has values in 9. The space X is assumed to be a symmetric Borel subset
of R* and ®(%) is the Borel field inherited from R* while 9 is arbitrary. It is
assumed that Z has a density

(3°1) pa(x> Y; 0) d.“(x> y)

where u is a o-finite measure on B(X) X ®(Y) and (8, a) is a parameter in a set
® X A(0eB,acd). The set © is assumed to be a symmetric Borel subset of
R, For the ranking problem, think of 8 as a vector of parameters we want to
rank while « is a nuisance parameter. In most problems, the observation Z
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represents a sufficient statistic for the parameter (6, «) based on a sample of
size n from each of k populations.

Given the above structure, the ranking problem may be described as follows:
on the basis of Z, partition the set of coordinate values of the parameter
0= (61, -, 06 into s disjoint subsets, say A1, - -+, A, , such that A\; contains
the k; largest 6;, A2 contains the k; next largest 6;, - - -, and A, contains the %,
smallest 6; where 1 £ k; < k and D_i_1k; = k. An equivalent formulation of
the above problem is: partition the set {1, --- , k} into s disjoint subsets, say
Y1, -+ ,¥s, where v; has k; elements, 1 < k; < s, D1 k:; = k and then make
the obvious association between v; and A; . It is now clear that the action space
for the ranking problem can be taken to be the set T' = {y} of all partitions
v= (71, ,79) of {1,2, --.  k} where v; has k; elements and the k; are fixed,
1Sk <k, 2iki=k

As in Lehmann’s (1966) treatment of the ranking problem, invariance plays
a central role in the treatment here. Let = denote a permutation of the set
{1, --- , k} and let GP be the group of such permutations. The element of GP
which interchanges 7 and j, leaving all other members of {1,2, --- , k} fixed, is
denoted by (7,7). For (z,y) e X X Y and = & GP, define =(x,y) by n(z,y) =
(wz, y) where wz is defined by (wz): = z,-1; . With his definition, it is easy to
check that (mm:)(z,y) = m(m(x,y)) so that the group GP operates on the
left of the space X X 9. Similarly for (6,a) e® X A and 7 eGP, =(8, a) is
defined by 7 (8, ) = (78, ) where (78); = 0,-1;. Also, for vy = (v1, **+ ,7.) € T
and 7 ¢ GP, define my by =y = (av1, - -, my:) where my; is the image of v;
under 7. For the density p and the measure u, the following invariance is as-
sumed:

(3.2) Pa(®,y; 0) = pa(72, y; 76),
(3.3) du(z,y) = du(wz,y).

A decision function ¢ is a measurable vector function on & X Y such that
¢ = {py :v €T} where 0 = ¢, =1 and > veroy=1. Let D be the class of
decision functions. For ¢ ¢ © and 7 ¢ GP, define ¢ by (7¢), = ¢r—1, . A decision
function ¢ is tmvariant if m¢(x,y) = o(7x,y), that is, if p~1,(z, ¥) = ey(72,y).
Let D; be the set of invariant decision functions. To introduce the loss structure
of the problem, let L,(8, ) be the loss for taking action vy ¢ T' at the parameter
point (6, a). Before stating the assumptions on the loss functions, we need the
following:

DeriNITioN 3.1, If v = (y1, - -+ ,v.) and v’ = (¢, --+ , 7. ) are elements of
T, then v differs ad]acently from ~" at [1, _7] if there exists an integer ﬁ 1=8<5s)
such that: (i) & vs, ¢ ev841, (i) j €74, J vpar, and (iii) (4,507 = 7.

The loss functions L, (6, a) are assumed to satisfy the following:

(3.4) If v differs adjacently from v" at [4, 7], then
L,(0,a) < Ly(0, «) when 0;=0;

(3.5) 0 £ L,(6, ) = Lpy(70, ).
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For the ranking problem, (3.4) is surely natural and, in some sense, the least we
could require of the loss functions, while (3.5) is suggested by the natural in-
variance of the problem.

Remark. We emphasize that the group operations have been defined so that
the group GP operates on the left of T, &, ® and D. If the group GP operates
on the left of T and we define zm, 6r and or by (z7)i = Zxi, (07); = 6,; and
(¢7)y = @y , then GP operates on the right of &, ® and D. Now, consider the
following assumption on the loss function

(35,) L‘Y(oy a) = Lr‘v<07ry L\C).

If (3.5") holds, then the results established in Section 4 still hold. However,
(3.5") is a much stronger assumption than is needed to obtain the desired results.
We note that the results of Karlin and Truax (1960) and Lehmann (1966) are
proved under assumption (3.5"). The author is indebted to Professor C. Stein
for emphasizing the distinction between operation on the right and the left and,
in particular, for pointing out the above pitfall when dealing with the permuta-

tion group.
The risk function of ¢ € D is defined by
(3:6) p(e, 6, @) = [ 22 04(2,y) Ly (6, @)pale, y; 0) du(, ).

Also, if F is a probability measure on ® X A(® X A is assumed to be a meas-
urable space with ®(®) the Borel sets of ©), then the Bayes risk of ¢ ¢ © is

(3.7) ple, F) = [p(e, 6,a) dF (8, a).

The terms admissible, minimax and Bayes applied to decision functions will be
as defined in Blackwell and Girshick (1954).

4. The main result. Throughout this section, assumptions 3.2-3.5 are to
hold. The results below establish certain optimum properties of the decision rule
¢" which ranks the vector 8 according to the ranking of the observed vector X.
To specify this decision rule more precisely, for each y = (y1, -++,7,) € T, let

(41) B, ={z|zeX,2; = - 2a;, foralli;ey;,j=1,---,8.
For each z ¢, let H(x) = {y|veT, z¢B,} and let n(z) be the number of
elements in the set H(z) so that n(z) = 1. The decision rule ¢" is defined by
(4.2) o' (z,y) = 1/n(e) if yeH(),
=0 ‘ if +yeH(z).

Thus ¢* = {o," |y £ T} is not a function of y and it is easy to see that o e Dr.

Now let ® be the class of probability measures on (0 X 4, ®(0) X B&(4))
such that F & ® if and only if F = F\F,, where F1[F,, resp.] is a probability
measure on O[4, resp.] and F; is invariant under the group GP operating on ©.

Note that each 7 ¢ GP is a measurable function on ® to © since B(®) is assumed
to be the usual Borel subsets of R* restricted to ©. Fix F & ® and for v & T define
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(2, y) by
(4.3) (2, y) = [ufo Ly(8, @)pa(z, y; 8) dF1(0) dFa(a).

To establish the main result, it is convenient to first show that if p has property
M then for each v ¢ T,

(44) ry(z,y) S rp(x,y) forall zeB,,yey, v eT.

The next two lemmas establish (4.4).

LEMMA 4.1. Let po(x,y; 0) have property M for each ye Y. Consider
v=C(yi, - ,v.) e and suppose that v e T differs adjacently at [i,] from
¥ el and ievygand jeys. If B < 9, then
(4'5) r‘r’(x; Z/) é 7‘7'(13, y) fOT Te B‘Y yY € ty‘

Proor. Let @y = {0]|6; = 03}, ©, = {6]6;,> 0 and O, = {8 I 6; < 05 so
that
(4'6) 7'1”(-7: Z/) - 7‘1'(13, y)

= 2 1w [af6; [Lye(8, @) — Ly(8, @)lpa(z, y; 0) dF1(6) dFy(a).
The invariance assumptions imply that L,»(8, @) = L,.(6, «) for 6 € ®, and
(4.7)  [fe, Ly (8, @) = Ly (8, @)Ipa(z, y; ) dF1(8) dFz(a)
= —[afe, [Ly (8, &) — Ly (6, a)lpa(=, y; (4, 7)) dF1(8) dFs(e).
Thus we can write (4.6) as
(4.8) ryr(z,y) — (2, 9)
= [afe, [Ly+(8, @) — Ly (8, @)][pa(z, y;8) — palc, y; (5,7)6)] dF1(8) dFs(a).

Since 4’ differs adjacently at [¢, 7] from v”, 6 € ©; and (3.4) imply that L,(6, a)
— L, (6,a) = 0. Also, if ¢ B, then z; = z; since 8 < 4. Consequently,

Pa(2,y;0) — pa(@,y; (4,7)0) 20 for zeBy,0¢0;.

Since the integrand in (4.8) is non-negative on the range of integration (for
z ¢ B,), (4.8) is non-negative for z ¢ B, . []
LemMa 4.2. If pa(zx, y,; 0) has property M for each y € Y, then for each v € T,

(4.9) ry(z,y) < ry(x,y) forall zeB,, Y eT,yey.

Proor. The essence of the proof is the construction of a sequence in T, v,
y® oo 4™ (for a fixed v and v') such that v© = v/, ¥ =y and (2, y)
< ryG-v(z,y) forze By, yeY, and ¢ = 1,2, - -+, n. To accomplish this, fix
vyeT and consider the function P, on T to I' defined as follows: write
v=C(y, ,v) and let ¥ = (v/, -+, %) € T be such that v > 7. Let j be
the smallest index such that y; = v; and let C = {41, -+ , 45} be the elements

in v; which are not in v; . Note that C' nv, is empty for ¢ = 1,2, - -+, j. Let
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» be the smallest index such that C nv,’ is not empty and define :* to be the
smallest element in C'nvy,’ . Since » > j, there exists a smallest element
e ~v-1 such that 7* £ v; and j* € v, where = > j. The function P, is then defined
by
(4.10) Py(y') = (557, i A =,
=7, if ¥ =

It follows easily from the definition of P, that for each %' &T, there
exists a finite positive integer n (depending on ') such that P,"*(y’) =
P,(++-(Py(¥"))--+) =~. Also, if v’ 5 v, then P,(y’) differs adjacently from
v at [1*,7%]. Setting v© =+ and v = P,(y'" ") for i =1,2, .-+ ,n(y)
where n(y) is the smallest n such that P, (y") = v, it is easy to show that the
conditions of Lemma 4.1 are satisfied for each pair (v*?,v%™). Thus ry (z, y)
=< r,¢i-v(z, y) for z € B, , y € Y which completes the proof. []

Now that (4.4) has been established, the result below follows easily.

TuEOREM 4.1. Suppose p.(z,y,; 0) has property M for all yey. If F e @,
then ¢ is Bayes for F, that is,

(4.11) p(¢*, F) = inf,.q p(e, F).

Proor. For each z £ X, let v(z) be a fixed element of H(x). Since z € By ,
Lemma (4.2) implies that r,q (2, y) < ry(z,y) for all ¥’ e T and y £ Y. Also,
if v & H(z), then ryq (2, y) = ry (2, y) for all y & Y. Thus,

(4.12) Z‘vel‘ ¢7*(x1 yIr(z,y) = (l/n(x))znﬂ(x) (2, Y) = Ty (2, y)

so that for every ¢ € D,

(4.13) 2ver oy (2, Y)14(3, ¥) = Ty (2, y)
S Dver or (2, y)ry (2, 7).
Consequently,
(4.14) p(¢%, F) = [ 2oner 04" (2, y)ry(2, y) du(z, y)
= [ 2 er(@, y)ry(2, ) du(z,y) = ple, F)

for all p ¢ D. []

The following is a generalization of the result presented by Lehmann (1966)
which was proved in its original form by Bahadur (1950) and Bahadur and
Goodman (1952).

Tueorem 4.2. If p.(z,y;0) has property M for all ye<, then for all
(6,a) e® X A

(415) P(&O,*, 0, Ol) = P(‘pl 0, a) fOT' all p€eDr.

Proor. Fix 6 and « and let F, be the probability measure on 4 which puts
mass 1 at a. Let F; be the probability measure on ® which puts mass 1/k! at
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w0 for each 7 ¢ GP. Then Fy = F1F; £ ®, so that p(o*, Fo) < p(e, Fo). However,
if ¢ is invariant then p(p, Fo) = p(p, 6, o). Since ¢* £ D;, we have p(¢*, Fo) =
p (10*1 07 a)' D

Note that if Theorem 4.2 is assumed to hold then Theorem 4.1 can easily be
proved, so that the conclusions of the two theorems are equivalent. From Theorem
4.2, we conclude that ¢* is both minimax and admissible within the class D; of
invariant decision functions. Since the group GP is finite, it follows that ¢* is
both minimax and admissible in D (see Blackwell and Girshick (1954) Chapter
8). Thus the following theorem holds.

THEOREM 4.3. If po(z, y; 0) has property M for all y £ , then ¢ is minimaz
and admaissible.

5. A partial converse. In this section we consider a random variable X =
(X, -+, X&) taking values in a symmetric Borel subset & of R*. It is assumed
that X has a density p(z; ) du(x) where u is a o-finite measure on  and 6 ¢ © is
a symmetric Borel subset of R*. Assume further that for each = ¢ GP,

(5.1) p(rz;x0) = p(x;0),
(5.2) du(wz) = du(z).

Since the density p satisfies (5.1), to verify that p has property M, it is sufficient
to verify Definition 2.1\for t=1and j = 2. Also, if 2, = z; or if 6, = 6, then
(5.1) implies that '

(5.3) p(z; 0) = p(x; (1,2)0)

so it is only necessary to verify Definition 2.1 for z; > z, and 6, > 6,.

Now, consider the following ranking problem: On the basis of X, decide whether
6; > 0, or whether 6, > 6,. For this two-action problem, let L;(6) be the loss
for taking action ¢ for ¢ = 1, 2, and assume that

(5.4) L;(0) < L;j(6) if 6,>0;,
(5.5) 0 = Li(0) = Lri(w0)

for 7, j = 1, 2(% # j) where 7 is an element of GP(2)—the subgroup of GP
which acts only on {1, 2}, leaving {3, 4, - - - , k} fixed. Writing Z = ((X;, X,),Y)
where ¥ = (X3, ---,X:) and a = (63, ---, 6;), the above problem is a
special case of the ranking problem considered in Section 3. For this problem,
let ¢* = (1", ¢2*) be the decision function as defined by (4.2) so that ¢* is
only a function of (X;, X;). If we assume that p(z, ) has property M, then
Theorem 4.2 holds. To provide a partial converse, we now show that if the con-
clusion of Theorem 4.2 holds for the problem considered above then, under
regularity conditions, the density p has property M.

To the set X C R* assign the metric topology of R* and assume that: (i) for
each 8¢ 0O, p(-;0) is a continuous function on X, and that (ii) the measure u
assigns positive measure to each non-empty open subset of €. Let D, be the
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class of decision rules for the problem above which are functions of (X;, X,)
only and which are invariant under GP(2).

TrEOREM 5.1. Suppose the density p satisfies (5.1) and the measure u satisfies
(5.2). If p(¢*, 8) = p(e, 0) for all ¢ € D, then p has property M.

Proor. As noted earlier, it is sufficient to show p has property M for 7 = 1
and j = 2. Let ¢ ¢ D, and write

(5.6) (e, 8) — p(¢*, 8) = [ D i Li(0)lpi(x) — o (x)Ip(x; 0) du(z)
Z:=0 fn,« Z?=l Li(0)[pi(x) — 40:'*(33)]1’(33; 0) du(z),

where By = {z |21 =2}, By = {z |21 > 23} and B; = {z | 71 < 25}. From the
invariance of ¢ and ¢*, we have ¢:(z) = ¢;"(z) = % on the set B, for 7 = 1, 2.
Using the invariance assumptions, it follows directly that

(5.7)  [5, 221 Li(0)[pi(z) — o:*(2)]p(x; 0) du(z)
=[5 (L) ea(z) — " (2)] + La(0)[en(2) — o1*(2)1}p(a; (1, 2)6) du(z).
Noting that ¢; = 1 — ¢z, ¢" = 1 on By, we can write (5.6) as
(5.8) plp, 0) — p(e", 0)
= [, [L2(8) — Ls(0)]l1 — en()][p(=; 6) — p(a; (1,2)6)] du(x).

Now, fix 2° &€ B; and let N; be an open sphere of radius § > 0 centered at z° such
that N; C B; (N; is a sphere in the metric space %). Choosing the decision rule
¢ 50 that ¢; = 1 on By — N3, ¢1 = % on N; such that ¢ £ D%, (5.8) yields

(5.9) s [L2(0) — L1(0)][p(2, 0) — p(=, (1,2)0)] du(z) 2 0,
where the assumption that

ple, 8) = p(e*, 60) forall ¢eD®
has been used. Fixing 6° so that 6, > 6, (5.4) and (5.9) yield

(5.10) Jns (2, 6") — p(=, (1,2)6")] du(=) 2 0.
Letting § — 0 and using the assumptions on p and u, we conclude that
(5.11) p(2’; 6") = p(2; (1, 2)6").

Combining this with (5.3) yields the desired result. []

6. Most economical decision rules. In this section we extend some results
of Hall (1958), (1959), concerning most economical decision rules, to include
the class of densities with property M. Consider a sequence of random obser-
vables Z?¥ = (X®;,Y?), i =1, 2, , taking values in a measurable space
(x? x Y@, aa(sc ’)) X (B(‘y('))) where sc"’ is a symmetric Borel subset of R*.
Assume that Z® has a density p.'”(z,y;0) du'®(z, y) where u® is a o-finite
measure on the sample space of Z and (6, o) ¢ ® X A. As usual, O is a sym-
metric Borel subset of R*. Then densities p'™ and the measures u(”) are assumed
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to satisfy (3.2) and (3.3), respectively. In most applications, Z™ is a sufficient
statistic for (6, @) based on n observations from each of k populations.

Consider the ranking problem described in Section 3 with action space
T'={y|veTl}.ForyeT,let

(6.1) W,={0]0;>0;,>--->0;forallt;ey;,j=1,---,8,

and assume that

(6.2) 0=U.rw,.

Let the loss functions L, (6, a) be defined by

(6.3) L,(6,a) =0, if  6eW,,
=1, if 0zW,,

so that {L,} satisfy (3.4) and (3.5). Corresponding to the notation used in
Sections 3 and 4, let D™ be the class of decision functions on Z™ and D, be
the class of invariant decision functions on Z‘™. Also, let ¢*™ be defined on
Z™ by (4.2) so that ¢*™ & D,. For any o™ & D™, the risk function is

(64) o(¢™,0,0) =1 — [0, (2, 9)pa(x, y; 6) du(z,y) for 6eW,.
Setting
(65) P3x(CD | ™) = [ 0, (x, y)pal, y; 0) du(z,y) for 6eW,,

P§»(CD | ‘™) represents the probability of making a correct decision at the
parameter point (0, ) when using o' ¢ D™

Let 8 be a fixed real number (0 < 8 < 1) and let Ds'™ be those decision rules
in ™ such that

(6.6) inf,e0xa Ps% (CD |o™) = B.

Following Hall (1958), (1959) we make the following:

DerintrioN 6.1. The smallest integer, say m, such that D™ is non-empty is
called the most economical sample size. If '™ & D™, then '™ is a most economical
decision rule.

In some important ranking problems, D™ is empty for all n. However, if a
finite most economical sample size exists we have the following:

TrreorEM 6.1. Suppose p.'™ (z,y; 0) has property M for each n = 1,2, ---
and each y £ Y'™. If m is the most economical sample size, then ¢*™ & Dg'™

Proor. Since D™ is non-empty,

(6.7) SUD pepgtm) [info.m1054 Pore (CD | 0)] = 8
so that

(68) inj{‘vsﬂ)("‘) [Sup(o,a):eXA p((o) 0’ a)] =1- 67
\
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since Dg™ < ™. From Theorem 4.3, ¢*™ is minimax so that
(6.9) SUP(,meoxa ple" ™, 0,0) S 1 — 8

which yields

(6.10) info,8x4 Pie (CD |™™) 2 B.

Hence ™™ ¢ D™. []

It is emphasized that the only property of ¢*™ used in the proof of the above
theorem is that ¢*™ is minimax for each n. Thus if it has been shown that ¢*™
is minimax for each n for the problem of this section, then ¢*™ is most economical
whether or not p.™ (z, y; 0) has property M. This remark is used explicitly in

some of the examples of Section 7 to conclude that ¢*™ is most economical.

7. Examples. In this section we consider specific applications of the results
previously established.

7.1. Ranking main effects in analysis of variance. 'Consider observations
(7.1) Yii = Bi + Eij + €

wheret =1,.-- ,K,j =1, ..., J. The vector of parameters 8 = (B1, - , Bx)
is assumed to lie in a symmetric subset of R and 8 = (1/J) X_j &; is assumed
to be independent of 7. The random variables ¢;; have a joint normal distribution
with mean 0 and covariance matrix = = ¢’[(1 — p)I + pee] where I is the
KJ X KJ identity matrix, e is the vector of 1’s, ¢” is the common variance of
the ¢; and p(—1/(KJ — 1) < p < 1) is the correlation between any two
different e;; .

Consider the problem of ranking the 8; with action space T = {y} and loss
functions L.(8) which satisfy (3.4), (3.5) and L,(Bi+c¢, - - ,Bx+¢) =
L,(B1, -, Bx) for real numbers ¢. To transform the problem so that the results
of Section 4 are applicable, let ¥ = (11, , %10, "+ ,Yx1, *** , Yg,s) and
let Z = (Z;,Z;,) = YA where A is a KJ X KJ column orthogonal matrix,
Zy is 1 X K such that Zy; = (1/J) 2 ju yi; for 4=1,.-- ,K and Z, is
1 X K(J — 1). From the structure of = and the column orthogonality of 4, it
is easy to show that Z; and Z, are independent, Z; has a normal distribution
with mean vector 6 (6, =8;+6, ¢=1,---,K) and a K X K covariance
matrix 2y = (¢*/J)[(1 — p)I + Jpé'e], and Z, has a normal distribution with
mean vector ¢ which does not depend on 8 and a diagonal covariance matrix
2, . Since the loss functions L,(B8) are translation invariant, an equivalent
problem is to rank the parameter vector 6 with loss functions L,(6;, -+ - , 0x) =
L, + 6, -+ ,Bx + 8). However, the problem is now in the form described
in Section 3 so that the results of Section 4 are directly applicable. That the
density of Z; has property M follows from Proposition 2.2.

Tt is clear that if ¢® is unknown, then no most economical sample size can exist.
However, if o* and p are assumed to be known and if the components of 6 are
sufficiently separated, then a most economical sample size exists and the decision
rule ¢* based on Z; is most economical.



OPTIMUM PROPERTIES OF RANKING PROCEDURES 135

Many authors have considered variants of the above ranking problem. For
example, see Bechhofer (1954), Dunnett (1960), Paulson (1949) and Seal
(1955).

7.2. Ranking variances in normal populaiions. In this example we consider
observations Y, ¢=1,---,k j=1,---,n, where Y;; is N(u;,0o’) for
j =1, .-+ ,n. The problem is to rank the unknown variances with loss functions
L,(a1’, - -+, 0x’) which depend only on the unknown variances. The sufficient
statistic for this problem is Z = (X, W) where W;= (1/n)>.7 Y, and
Xi= 22 (Yy— W) for i=1,---,k The problem is clearly invariant
under translations of the vector W by b & R*, and any invariant decision rule
will be a function of X only. But for such invariant decision functions, the results
of Section 4 are directly applicable since the density of X has property M.

From Theorem 4.3, we have that the decision rule ¢* is minimax within the
class of rules invariant under translations of the vector W. However, invoking a
general theorem due to Kiefer (1957), we have that ¢ is minimax in the class of
all decision functions for each sample size n. From the results in Section 6, it
follows that if a most economical sample size exists, then ¢* is most economical
in the class of all decision rules. This example has been treated in detail by
Bechhofer and Sobel (1954) and in somewhat less detail by Hall (1959) and
Lehmann (1966).

7.3. Ranking correlation coefficients. We now discuss the problem of ranking
correlation coefficients in bivariate normal populations. Consider observations
Y, i=1,---,k; j=1,--- ,n+ 1, where Y, has a bivariate normal
distribution with mean vector u; and covariance matrix 2;forj=1,--- ,n+1
and 7 = 1, --- , k. For population ¢, reduce to the sufficient statistic (X, V;)
where X; = (1/n + 1) 220 Y, and V= D27 Y'Y, — X/X: so that
X has a normal distribution N(u;,1/(n + 1)Z;) and V,; has a Wishart dis-
tribution with n degrees of freedom and expectation nZ; .

Setting p; = o12,s/ (ou1.i002.5)} we consider the problem of ranking these
correlation coefficients p; with loss functions L,(p1, - -+ , px), ¥ € T which satisfy
the assumptions of Section 3. Introducing the transformations

(7.2) (X:, V) = (XiD; + b;,D,V:Dy)
and
(7.3) (pi, Z:) = (uDi + b:, DZ:Dy)

where D; is a 2 X 2 diagonal matrix with positive diagonal elements and b; ¢ R?,
it is straightforward to verify that the above problems remains invariant under
the group of such transformations on each population. Setting r; =
1,4/ ( 11, 02.:)}, the maximal invariant under the transformation (7.2) is r; and
under (7.3) the maximal invariant is p;. Thus all decision functions for the
above ranking problem which are invariant under (7.2) will be functions only
of (11,79, ~~+ ,Tk).

However, if we now regard (71, --- , ) as the observation vector the results
obtained in Sections 4 and 6 are applicable since the joint density
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f(ra, «++ ,re 5o, -+, px) has property M. In particular, the decision rule ¢*
based on (71, :--,7) is minimax within the class of rules invariant under
(7.2). It then follows from a result due to Kiefer (1957) that ¢* is, in fact,
minimax within the class of all decision rules. Thus if the & populations are
sufficiently different (in terms of their correlation coefficients) so that a most
economical sample size exists, then ¢* based on (r1, - - - , ) is most economical
within the class of all decision functions.
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