A REMARK ON THE LAW OF THE ITERATED LOGARITHM!

By Davip A. FREEDMAN
Unaversity of California, Berkeley

1. Introduction. Let X;, X, - -+ be random variables on a probability triple
(R, F, P). Use E for expectation with respect to P, and exp z for ¢". Let X(n) =

X1+ -0+ X
TueorREM 1. Let S = sup.>s (n log log n) " X(n). If X1, X2, -+ are inde-
pendent, identically distributed, wuniformly bounded, and E(X.) = 0,then

Efexp (hS?)} < = for any positive, finite h.
This theorem will be proved in Section 2.
Let F, be an increasing sequence of sub-s-fields of &, such that

(1) X, is Fn.-measurable
and
(2) E{Xnn|Fa} = 0.

Let Vo = E{Xo |5}, V(n) =3+ Vi+ -+ + V., and
(3) T = supaz: [V(n) log log V(n)]*X(n).

TueoreM 2. Under conditions (1) and (2), if X1, Xz, «-- are uniformly

bounded, then E{exp (hT)} < o for all finite h.
The proof of this theorem is omitted. It is similar to that of Theorem 1, using

(30) and (31) of [1] in place of (4) and (8).
Suppose now X;, X,, --- are independent, F, is the o-field spanned by
X1, -+, Xn,E(X;) =0,and V;, = E(X?) < . In particular, (1) and (2)

hold.
ExawmprLi 1. It can happen that sup.>: [V(n) log V(n)]”*X(n) = o a.e.
Exameie 2. Even if |X;| < 1, it can happen that E{exp (A|T|"™)} = o« for

any positive 4 and e.
These examples will be constructed in Section 3.

2. Proof of Theorem 1. Let ¢ = inf,>1 P{X(n) = 0}. The central limit
theorem implies ¢ > 0. As is well known,

(4) P{X(n) > yforsomen = m} < a 'P{X(m) > y}.
Plainly, for 1 < L < o, E{exp (hS%)} is no more than L + I, where
I = [7 Plexp (S*) > w} dw.
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Now I = I, + I_, where I+ = [7 P{+S > z} dwand z = E (log w)?. It is
enough to show that for L large, I, < o, the argument for 7_ being symmetric.
Fix any r > 1. Let J be so large that 7’ > 3. Then {S > z} = U7, 4;, where

A, = {(nlog log n)*X(n) > = for some n with 3 < n < ¢’}
and forj > J,
A; = {(nlog log n)*X(n) > z for some n with '™ < n < 7).

Plainly, f’ ZP(As;) dw < o, and it is enough to choose J and L so large that
> J2P(A;) dw < . But 4; isasubset of {X(n) > y for some n < r},
where y = [’ log (j — 1)]*z. In view of (4), P(4;) £ o 'p;, where p; =
P{X(+’) > y}. Consequently, it is enough to choose J and L so large that

(5) 2 [Tpidw < .
By Chebychev’s inequality, for any ¢ > 0,
(6) P{X(m) > y} < exp (—ty)[B{exp (tX1)}]".
Plainly, there is a positive real number ¢ such that for all ¢ > 0,
(7) Elexp (tX1)} = exp (of).
Combine (6) and (7) to get
(8) P{X(m) > y} < exp {—ty + mat’}.
Put ¢t = y/(2mo) in (8) to get
(9) P{X(m) > y} < exp {—y"/(4ma)}.

Consequently, with z = 7%, the jth term in (5) is at most

(10) [7exp [—2"/(40)]dw = b; [,z exp {&'[—1/(40) + rh/log (j — 1)]} dz,
where
b; = 2rh/log (7 — 1)
and
L; = [r'n™ log L log (j — 1)].

For sufficiently large J, j > J implies

—1/(40) + rh/log (j — 1) = —1/(50).
Then the right side of (10) is bounded above by
(11) d; exp [~L/(50)] = di(j — 1),
where d; = 50rh/log (7 — 1) and f; = (50rh) ™" log L. For sufficiently large L,
the right side of (11) sums, completing the proof.

The boundedness of X; was used only for (7), the critical values of { being
near 0 and «.
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3. Examples.

ExampLe 1. The random variables X; , Xz, - -+ are independent, have mean
0, finite variances Vi, Vz, -+ -, such that, if X(n) = X1 + -+ + X, and
V(n) =3+ Vi+ -+ + Va, then

lim Supnaw [V(n) log V(n)]*X(n) = © ae.
ConsrtrUCTION. Forn = 1, P{X, = +1} = 3. Forn = 2,
P{X, = =*[n(log n)2"P} = (2n log n) 7,

and P{X, = 0} =1 — (nlog n)
Proor. Plainly, E(X,) = 0,and forn = 2, V. = E(X.) =2"V(n) = omt,
Suppose by way of contradiction that P{lim sups-« [V(n) log V(n)]_*X (n)
< w} is positive. By the 0-1 law, this probability is 1. By symmetry, and because
Vin — 1) ~ V(n),

P{lim Supn.« [V(n) log V)X (n —1)] < »} =1,
SO
P{lim sup [V(n) log V(n)] "X, < »} = 1.

But X, = [n(log n)2"]% for infinitely many =, a.e., by the Borel-Cantelli lemma,
completing the proof.

ExampLE 2. Let f be a positive function on [3, ). The random variables
X, X, - -+ , are independent, have mean 0, and are bounded by 1 in absolute
value. Let V, = B(X.), X(n) = X1+ -+~ +X,,V(n)=3834+Vi+ -+ Va,
and U(n) = f[V(n)]X(n). For any ¢ > 0 and any k& > 0, '

supaz: Elexp (RUM)[M)} = .

CoNSTRUCTION. Let 0 = no <y < m2 < -+, where n; grows sufficiently
quickly. Let & = 1/(m — ne—1). For npy < m = ma, let Xm be —8; or +1,
and have E(X,) = 0. In particular, E(Xn) = V= 8&,and V(m) =k + 3.

Proor. Let Z be a Poisson random variable with parameter 1. For any real
number 2, and any positive real numbers H and e, E{exp (H|Z + 2|"™)} = o.
Now 2 {X::mer < ¢ = ml}is essentially distributed like Z — 1. So, given X
for 1 < 4 < me, U(m) is conditionally distributed almost like f(k + 3)-
[Z — 1 4+ X(n1)], and E{exp KU (n)|"™} is very large, completing the proof.
Naturally, the faster f decreases, the more quickly n; must grow.
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