A REMARK ON THE LAW OF THE ITERATED LOGARITHM¹

By David A. Freedman

University of California, Berkeley

1. Introduction. Let X_1 , X_2 , \cdots be random variables on a probability triple $(\Omega, \mathfrak{F}, P)$. Use E for expectation with respect to P, and $\exp x$ for e^x . Let $X(n) = X_1 + \cdots + X_n$.

THEOREM 1. Let $S = \sup_{n\geq 3} (n \log \log n)^{-\frac{1}{2}} X(n)$. If X_1, X_2, \cdots are independent, identically distributed, uniformly bounded, and $E(X_i) = 0$, then $E\{\exp(hS^2)\} < \infty$ for any positive, finite h.

This theorem will be proved in Section 2.

Let \mathfrak{F}_n be an increasing sequence of sub- σ -fields of \mathfrak{F} , such that

(1)
$$X_n$$
 is \mathfrak{F}_n -measurable

and

$$(2) E\{X_{n+1} \mid \mathfrak{F}_n\} = 0.$$

Let
$$V_n = E\{X_{n+1}^2 \mid \mathfrak{F}_n\}, V(n) = 3 + V_1 + \cdots + V_n$$
, and

(3)
$$T = \sup_{n \ge 1} [V(n) \log \log V(n)]^{-\frac{1}{2}} X(n).$$

THEOREM 2. Under conditions (1) and (2), if X_1 , X_2 , \cdots are uniformly bounded, then $E\{\exp(hT)\}$ < ∞ for all finite h.

The proof of this theorem is omitted. It is similar to that of Theorem 1, using (30) and (31) of [1] in place of (4) and (8).

Suppose now X_1 , X_2 , \cdots are independent, \mathfrak{T}_n is the σ -field spanned by X_1 , \cdots , X_n , $E(X_i) = 0$, and $V_i = E(X_i^2) < \infty$. In particular, (1) and (2) hold.

Example 1. It can happen that $\sup_{n\geq 1} [V(n) \log V(n)]^{-\frac{1}{2}} X(n) = \infty$ a.e. Example 2. Even if $|X_i| \leq 1$, it can happen that $E\{\exp(h|T|^{1+\epsilon})\} = \infty$ for any positive h and ϵ .

These examples will be constructed in Section 3.

2. Proof of Theorem 1. Let $a = \inf_{n \ge 1} P\{X(n) \ge 0\}$. The central limit theorem implies a > 0. As is well known,

(4)
$$P\{X(n) > y \text{ for some } n \le m\} \le a^{-1}P\{X(m) > y\}.$$

Plainly, for $1 < L < \infty$, $E\{\exp(hS^2)\}\$ is no more than L + I, where

$$I = \int_{L}^{\infty} P\{\exp(hS^2) > w\} dw.$$

Received 12 August 1966.

¹ Prepared with the partial support of the National Science Foundation, Grant No. GP-5059; and by a Grant from the Sloan Foundation.

Now $I = I_+ + I_-$, where $I_{\pm} = \int_L^{\infty} P\{\pm S > x\} dw$ and $x = h^{-\frac{1}{2}} (\log w)^{\frac{1}{2}}$. It is enough to show that for L large, $I_+ < \infty$, the argument for I_- being symmetric. Fix any r > 1. Let J be so large that $r^J > 3$. Then $\{S > x\} = \bigcup_{j=J}^{\infty} A_j$, where

$$A_J = \{(n \log \log n)^{-\frac{1}{2}}X(n) > x \text{ for some } n \text{ with } 3 \leq n \leq r^J\}$$

and for j > J,

$$A_{j} = \{(n \log \log n)^{-\frac{1}{2}} X(n) > x \text{ for some } n \text{ with } r^{j-1} < n \le r^{j}\}.$$

Plainly, $\int_{L}^{\infty} P(A_J) dw < \infty$, and it is enough to choose J and L so large that $\sum_{j=J+1}^{\infty} \int_{L}^{\infty} P(A_j) dw < \infty$. But A_j is a subset of $\{X(n) > y \text{ for some } n \leq r^j\}$, where $y = [r^{j-1} \log (j-1)]^{\frac{1}{2}}x$. In view of (4), $P(A_j) \leq a^{-1}p_j$, where $p_j = P\{X(r^j) > y\}$. Consequently, it is enough to choose J and L so large that

$$\sum_{j=J+1}^{\infty} \int_{L}^{\infty} p_{j} dw < \infty.$$

By Chebychev's inequality, for any t > 0,

(6)
$$P\{X(m) > y\} \le \exp(-ty)[E\{\exp(tX_1)\}]^m.$$

Plainly, there is a positive real number σ such that for all t > 0,

(7)
$$E\{\exp(tX_1)\} \le \exp(\sigma t^2).$$

Combine (6) and (7) to get

(8)
$$P\{X(m) > y\} \le \exp\{-ty + m\sigma t^2\}.$$

Put $t = y/(2m\sigma)$ in (8) to get

(9)
$$P\{X(m) > y\} \le \exp\{-y^2/(4m\sigma)\}.$$

Consequently, with $z = r^{-j/2}y$, the jth term in (5) is at most

(10)
$$\int_{L}^{\infty} \exp \left[-z^{2}/(4\sigma)\right] dw = b_{j} \int_{L_{j}}^{\infty} z \exp \left\{z^{2}[-1/(4\sigma) + rh/\log (j-1)]\right\} dz,$$
 where

$$b_i = 2rh/\log(j-1)$$

and

$$L_j = [r^{-1}h^{-1}\log L\log (j-1)]^{\frac{1}{2}}.$$

For sufficiently large J, j > J implies

$$-1/(4\sigma) + rh/\log(j-1) \le -1/(5\sigma).$$

Then the right side of (10) is bounded above by

(11)
$$d_j \exp\left[-L_j^2/(5\sigma)\right] = d_j(j-1)^{-f_j},$$

where $d_j = 5\sigma rh/\log (j-1)$ and $f_j = (5\sigma rh)^{-1} \log L$. For sufficiently large L, the right side of (11) sums, completing the proof.

The boundedness of X_1 was used only for (7), the critical values of t being near 0 and ∞ .

3. Examples.

EXAMPLE 1. The random variables X_1 , X_2 , \cdots are independent, have mean 0, finite variances V_1 , V_2 , \cdots , such that, if $X(n) = X_1 + \cdots + X_n$, and $V(n) = 3 + V_1 + \cdots + V_n$, then

$$\lim \sup_{n\to\infty} [V(n) \log V(n)]^{-\frac{1}{2}} X(n) = \infty \quad \text{a.e.}$$

Construction. For n = 1, $P\{X_n = \pm 1\} = \frac{1}{2}$. For $n \ge 2$,

$$P\{X_n = \pm [n(\log n)2^n]^{\frac{1}{2}}\} = (2n \log n)^{-1},$$

and $P\{X_n = 0\} = 1 - (n \log n)^{-1}$.

PROOF. Plainly, $E(X_n) = 0$, and for $n \ge 2$, $V_n = E(X_n^2) = 2^n$, $V(n) = 2^{n+1}$. Suppose by way of contradiction that $P\{\limsup_{n\to\infty} [V(n) \log V(n)]^{-\frac{1}{2}}X(n) < \infty\}$ is positive. By the 0-1 law, this probability is 1. By symmetry, and because $V(n-1) \sim V(n)$,

$$P\{ \limsup_{n\to\infty} |V(n)| \log |V(n)|^{-\frac{1}{2}} |X(n-1)| < \infty \} = 1,$$

so

$$P\{\lim \sup [V(n) \log V(n)]^{-\frac{1}{2}} X_n < \infty\} = 1.$$

But $X_n = [n(\log n)2^n]^{\frac{1}{2}}$ for infinitely many n, a.e., by the Borel-Cantelli lemma, completing the proof.

EXAMPLE 2. Let f be a positive function on $[3, \infty)$. The random variables X_1, X_2, \cdots , are independent, have mean 0, and are bounded by 1 in absolute value. Let $V_n = E(X_n^2), X(n) = X_1 + \cdots + X_n, V(n) = 3 + V_1 + \cdots + V_n$, and U(n) = f[V(n)]X(n). For any $\epsilon > 0$ and any h > 0,

$$\sup_{n\geq 1} E\{\exp\left(h|U(n)|^{1+\epsilon}\right)\} = \infty.$$

Construction. Let $0 = n_0 < n_1 < n_2 < \cdots$, where n_k grows sufficiently quickly. Let $\delta_k = 1/(n_k - n_{k-1})$. For $n_{k-1} < m \le n_k$, let X_m be $-\delta_k$ or +1, and have $E(X_m) = 0$. In particular, $E(X_m^2) = V_m = \delta_k$, and $V(n_k) = k + 3$.

PROOF. Let Z be a Poisson random variable with parameter 1. For any real number z, and any positive real numbers H and ϵ , $E\{\exp(H|Z+z|^{1+\epsilon})\} = \infty$. Now $\sum \{X_i: n_{k-1} < i \le n_k\}$ is essentially distributed like Z-1. So, given X_i for $1 \le i \le n_{k-1}$, $U(n_k)$ is conditionally distributed almost like f(k+3). $[Z-1+X(n_{k-1})]$, and $E\{\exp h|U(n_k)|^{1+\epsilon}\}$ is very large, completing the proof. Naturally, the faster f decreases, the more quickly n_k must grow.

REFERENCE

 Dubins, L. E. and Freedman, D. A. (1965). A sharper form of the Borel-Cantelli Lemma and the Strong Law. Ann. Math. Statist. 36 800-807.