MULTISTAGE SAMPLING PROCEDURES BASED ON PRIOR
DISTRIBUTIONS AND COSTS

By W. ScHULER
Unaversity of Bonn

1. Introduction.The subject of this investigation is a problem of quality
control: An article is produced in large lots; by means of a sampling procedure,
distinguishing between “effective” and ‘‘defective’ items, the decision upon ac-
ceptance or rejection of the lot is made.

The most general form of such a sampling procedure is a multistage test with
variable sample sizes. The maximum number of stages (k) may be any integer
between 1 and the lot size (N'). Then the k-stage sampling procedure consists of
the following instructions: Firstly, a fixed number between 0 and N is deter-
mined to be the size of the first sample. Secondly, for each stagej (j =1, ---,
k — 1) of the procedure, the size of the (7 + 1)st sample, as a function of the
outcome of the first j samples, is given. Thirdly, for the final stage k and for all
those cases where on stage j the size of the (j + 1)st sample is zero, it is pre-
scribed (in terms of the sampling outcome thus far obtained) whether the lot
has to be accepted or rejected. If all sample sizes are fixed in advance, then it is
merely necessary to determine whether the procedure on stage 7 is to be con-
tinued and, if not, what terminal decision is to be made.

We intend to take economic considerations as a basis for the construction of
such sampling procedures. We thus assume the costs and the prior distribution
of the number of defective items in the lot to be given. Then among all k-stage
sampling procedures the one with the lowest total expected costs is considered
optimal.

2. Optimal k-stage sampling procedures. To the 7th item in a lot of size N
the random variable z; (¢ = 1, --- , N) is assigned, asuming the value 0 or 1 if
the item is effective or defective, respectively. Then the sampling space is

(1) S={zx= (1, ,an):zi=00rl,e=1,---, N}

More generally, S can be thought of as the cartesian product of some sets
Si, -, 8v,1e.8 =8 x --- x Syandx = (21, :-+, z~), With z; £ S;
(¢=1, ---, N). Let F be the s-field of events over S, let F; be the o-field of
events which can be described by (z1, ---, z;), and let P be a probability
measure over F. Then Fo C F; C -+ C Fy with Fy = {, S} and Fy = F.
Let the symbol E; denote the conditional expectation of a random variable
depending on z, given F; (¢ = 0,1, --- , N). Thus E, or E means the uncondi-
tional expectation.
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Our first aim is a sub-division of S into subsets upon which terminal decisions
are made at stage 0, 1, 2, - - - . By means of a decision function these subsets will
be divided into regions of acceptance and rejection, so that the sampling pro-
cedures are uniquely described.

Let n1, - - -, ni be the sizes of the samples on the different stages of the sam-
pling procedure and put ny + -+ +n; = v; ( = 1, - -+ , k). Let the size of the
jth sample depend on the outcomes of the foregoing ones. Then we get a system
of functions v = {v;(x)} which evidently satisfies the following conditions:

(a) vj(z) is measurableon F,;_, (j = 2, - -+ , k);
n(x) = const;

(2) (b) vi(x) is an integer with 0 < v; =
(C) vj(x) = U]'—l(x);j = 1’ Tty k’

(d) from v;(z) = v;_1(x) follows vi(z) = v;4(x) forz = 7, ---, k and
j=1,---,k

A
=
.
I
J—"
=

For convenience we define
(2) (e) wvo(x) =0, vpa(x) = vi(x).

Now we assume such a system v = {v;(z)} to be given. Then we denote by
G;(t) the set of all points x ¢ S for which v;(x) has the value ¢,

Gi(t) = {xeS:vi(x) = ¢}, j=01---,k;t=0,1, ---, N.
Note that Go(0) = S. With
(3) Ti(v) = Z¢o<¢1<"'<¢j Go(to)Gr(t) - -+ Gi(t))Gia(ts)
(G=0,1,---,k;t = 0)
we have
(4) To(v) + Th(v) + -+ + Ti(v) = 8.
For in

20 Ti(v) = 250D <ect; Go(te) -+ Gi(t;)Gra(ty)

we may write the intersection Go(to)Gi(t) - - - Gi(t;)G;(t;) because of (2)(d),
as Go(to) -+ Gi(t;)Gia(t;)Gia(ti) -+ Gu(t)Graa(ts), getting

,;'=o Tj(v) = Zloéhé'“élk Go(to)Gl(tl) st Gk(tlc)Gk+l(tk)~

Of this, equation (4) is an immediate consequence, because for each point
z £ S the system of functions v is defined and takes on a system of values of
typeto = h = -+ < b

Thus each system of functions v satisfying the conditions (2) leads to a sub-
division T'(v) = {Tj(v)} of S into k + 1 disjoint subsets, where T'; means the
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event of a terminal decision on stage j of the sampling procedure. T is either
equal to the empty set & or to S depending on whether a sampling procedure
is undertaken or not.

The description of a k-stage sampling procedure is completed by the definition
of a decision function D(T'(v)), which attaches to each point x £ T;(v) a value
out of a set A of possible terminal decisions. (If we denote by A the acceptance
and by R the rejection of the lot, we have in our case A = {4, R}). However,
with each point z ¢ T;(v) all other points with the same initial coordinates

T1, ***, Ty also lie in T'j(v); consequently the decision function becomes in-
dependent of T'(v), if we write it in the form D = {dy, - - - , dy} where d; = di(x)
is measurable on F; and d;e¢A, ¢ = 0, 1, ---, N. Thus having constructed

T(v) and having observed x ¢ T';(v) with v;.1(z) = v;(x) = 7, we arrive at the
terminal decision di(x).

The basic quantity for the following considerations is the conditional expecta-
tion of the costs caused by this terminal decision, given x; , - - - , #;. This quan-
tity will be denoted g.(x, di(x)). It is an F;-measurable function which arises
from the underlying model of costs and from the probability measure P on F.
This might be given in terms of a distribution fx(Y) of the number Y of defec-
tives in a lot of size N. Then the probability of y; defectives in a sample of size
1 1s given by

Pi(ys) = 27="G) o) /(Y.

Now the conditional expectation p.(y;) of the fraction of defective items in the
uninspected part of the lot, given the sample (¢, y:), can easily be computed as
pi(ys) = [(ys + 1)/(Z + D]-Pia(y: + 1)/Pi(y.),

(cf. Hald [2], p. 293, formula 48).

As a model of costs one can take, for example, that of Hald [2] which takes
into account the costs (k;) of sampling inspection per item inspected, the costs
(k) per item arising from the rejection of a lot (e.g. costs of sorting), and the
loss caused by the acceptance of a defective item (taken as unity). Then the
function g¢;, depending only on the sum y; = z; + --- 4 z; of the first ¢ co-
ordinates of z, has the form

gi = ik + (N — )pi(ys)  fordi = 4
= ik + (N — Ok, for d; = R.

But whatever the special form of g;, the expectation K(7T'(v), D) of the total
costs of the sampling procedure, corresponding to the sub-division 7'(v) of S
and to the decision function D, is given by

K( T(”)) D) = Z§=0 Zl’o<---<tj Iao(lo)"'0j+1(f.7') gli(xy dt,(x)) ap.

It is clear that an optimal decision function D* = {d;*} will be obtained by
determining d;* such that
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(5) gi(x, d¥) = ming,.s gi(z, di), i=01 ---, N.

For then gi(z, d;*) < gi(z, d:) holds for all d;, consequently K(T(v), D*) =<
K(T(v), D) for all D. We may write, for abbreviation, K(T(v), D*) = K(T(v))
and g«(z, di*) = gi(x).

Now a system of functions »* has to be found such that K(T'(v*)) < K(T(v))
holds for all admissible v.

This system may be obtained by means of the following

THEOREM. Let the F i-measurable and P-integrable functionsg; (¢ = 0,1, --- | N)
be defined over the set S = S; % - -+ x Sy with elementsx ¢ S. Letk = 0,1, --- /N
be arbitrary, but fixed. For each system of functions v = {v;(xz)} satisfying the
conditions (2) let T(v) = {Tj(v)} be the sub-division of S defined by (3). Let

(6) K(T(v)) = Z,Jc'=02to<'--<tj fGO(tO)"‘Gj+l(tj) ge; ap.

Furthermore, define the F i-measurable and P-integrable functions w; : (7 = 1, - -+ , k;
1 =34, ,N;j=1=0) according to the recursion formula

Wi =¢:s fori =k -+, N;
wj,i = min {gs, Bt = 7+ 1, .-+, N)}
forj=1,---,k—1,7=3,--- , Nandforj =< = 0.
Then K(T(v) is minimized by the system v* = {v;*(x)} with
0;%(x) = vja(x) =1 forxelx:wia:=gd and
v (x) =t > vfa(z) =1
for x{xz: wi1,i = Eaw;j,, ewir,: < min [g:, Baw;. (1 < )]}
G=1,---,k;t=0,1,---,N).
This system of functions yields K( T(®*)) = wopo.

3. Proof of the theorem. The proof proceeds by complete induction with
respect to k. If £ = 1 we have

K(T() = [aoaongdP + 225 [ewew o 9u P
whence by Go(0) = S, ni(z) = n, = const, va(z) = v (z) follows
K(T(v)) = [sgn dP = Ega,,
regardless whether n; = 0 or n; > 0. Forming
Wi, = §s fore=1,---,N and
min {go, Bwy, (t =1, --- , N)}
= min {Eg,:t = 0,1, --- , N}

according to the conditions of the theorem we have to determine un* from

Il

Wo,0
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wo,0 = Egy» = min {Eg,:t =0,1, ---, N}.

Then K(T(v*)) = Eg,+» < Eg., = K(T(v)) for all v». Note that K(T(v*))
= wo,0,, thus proving the propositions for £ = 1.
In the general case

Go(to)Gi(t) -+ Gra(te1) Gu(te) € Fy_,

because for x & Gri(tr1) wvi(z) it already determined by the coordinates
X1, c &y, . Putting g, = wy,., we have

joo(to)mGk(tk) [/ dpP = foo(to)~~'0k<tk) Etk—lwkv‘k dpP.

Hence
K(T(v)) = 22528 Dteccty [ ooty 51 gt AP
(7) + D toce<tis | G0t auctnp) Gty AP
+ Z,0<...<t,c J‘Go(to)...qk(tk) E.,_wk., dP.
Assume the functions v,(z), - -+, ve1(x) to be given and v(x) to be deter-

mined in such a way that K(T(v)) becomes minimal; i.e., the sum
2 to<eer<tion J ooty aptemy) Gror AP+ D<o <ty [ aotior - autt Boy_ Wi, AP
= Dtp<rctio L eottor o ti_panu_p gu_, AP
+ fGo(to)-~-Gk__l(tk__l)Gk_l(t+l) Etk_l'LUk,tk__1+1 dP
+ 0+ fGO(tO)"'Glc——l(tk—l)ok(N) Etkﬁlwk,N dP]

is to be minimized with respect to v;(z). Obviously the minimum is obtained by
splitting the set Go(to) - -+ Gr_1(te—1) for all to, - -+, ty—y into N — £;,1 + 1 sub-
sets in such a way that on the union of these subsets just the function wi,s,_, is
integrated. Thus to the first subset (on which v, = 1) we attribute all those
points z for which

Jtr_y = min {glk-x ) Eik~1wk-5k(tk =Hta+1,---,N)},
to the second (on which v, = ;3 + 1) all those points x for which
Elk~1wk-5k—1+l = min {gtk—x ) Etk~1wk,lk(tk =+ 1, N)};

and so on. Those points z for which the minimum is assumed simultaneously by
several functions may be arbitrarily assigned to the corresponding sets. For ex-
ample, a unique sub-division is obtained by postulating

Ey_wi,g_,+i <min {ge,_, , B wrg_,+5(0 < 1)}, 1=1,--+ N —tlp1.
Then the optimal value v, *(z) of v(x) is given by
v (x) = by if Te{xiwiy_, = gu_i)s
i (x) = by + 0 if el wirn_, = Ey_Wey_ 14,

Wh—1,t,_, < min [glk_q ) Et}.«,_1wk:¢k—1+i(j < %)]}) 1= 1) ) N — lo—1 -
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Carrying out this process for all admissible &, - -+ , {1 we have determined
v (z) for given n(z), - -+ , vea().

Instead of the (k¥ + 1)-stage sum (7) we now have to minimize the following
k-stage one:

(8) K( T(v,)) = I;;g Zto<“'<tj foo(to)"'G,.;.x(tj) ge; dP
+ Zto<"'<tk_1 fGo(to)'-'Gk—l(tk_l) Wr—1,t,_q ap.

However, according to the induction assumption, (8) can be minimized. This
defines the functions

wj"i=min{giyE’fwf+l-l (t=.7+1’ yN)}y
j=1>""k_2;i=j>"'yN andj=i=0,

and hence 0, *(z), - - -, vi1(z), according to the conditions of the theorem. These
values are used in the above expressions for v,*(x), given m(x), - - -, ves(Z).
Thus the minimization of K(7T(v)) by the system v* = {v;*(x)} is achieved as
stated in the theorem.

Moreover, using (v')* = {»®, --+, vj—y} instead of v’ in (8), we obtain the
relation K(T(v'*)) = wo, already proved for k = 1. However, as shown above,
the sum remains unchanged on passing to the system »* = {»,*, -+, w.*};
K(T('™*)) = K(T(v*)). Hence K(T(v*)) = wo, which completes the proof.

4. The case of fixed sample sizes. Consider the case where n,, -+, n; are
given in advance as fixed integers. Then the function v;(x) can assume the fixed
values mo, my, -+, m;only, withm, =no +m + --- +n, (¢t =0,1, -+ ,7;
j=0,1,---  k;no = 0). However, the essential question is whether v;(z) = m;
or v;(z) < m; holds. Defining the sets

Gi = {z:v;(x) = my}
and
G/ = {z:vi(x) <mi} =8 — G
(3=0,1, -k + 1; mpp>me arbitrary), we have because of (3)
Ti(v) = GGy - -+ GG G=0,1,---,k).
As T;j(v) € Frn; we are able to write the sum in question as

K(T(v)) = 2o frj(v) Gm; AP.

It is easily seen that for this special case our theorem can be formulated with-
out reference to the system of functions v:

COROLLARY. Letk = 0,1, - - - , N be arbitrary, but fixed. Let mo , ma, - - - , my be
given integers with 0 = mo < m1 < -+ < my . Let Fp;-measurable and P-in-
tegrable functions gm; (j = 0,1, - -+ , k) be defined over S = Sy x -+ x Sy. For
each subdivision T = {T;,j = 0,1, --- , k} of Swith Tj & Fp, , form the sum

K(T) = ZI;=0 ij Gm; ap.
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Define the F,-measurable and P-integrable functions wn; according to the recursion
Jormula

Wy, = Jmy, 5

Wm; = Min {gmj ’ Emjwmj+1} G=0,1,---,k—1)

7

and thereby the sets
Hpy = {%: Wn; < gm;} and Hp, =8 — Hn, (j=0,1,---,k).
Then K(T) 1s minimized by the sub-division
T* = {T;*} with T;* = HueHm, -+ Hun;_Hn;, (j=0,1,--, k)

This result could also be derived from a theorem of Richter ([3], p. 29). His
idea for a proof was extended to prove the above theorem.

The optimal sequential sampling procedure is obtained from the corollary by
puttingk = N andm; =5 (5 = 0,1, --- , N). This special case was investigated
earlier by Arrow, Blackwell and Girshick ([1], p. 218).
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