TIMID PLAY IS OPTIMAL, II

By David Freedman¹ and Roger Purves²

University of California, Berkeley

An animal population reproduces under the following conditions. Within each generation, given the past, animals reproduce independently of one another. Each animal products $0, 2, 3, \cdots$ descendants; the mean number of descendants is positive but at most M < 2. How is the survival probability of the population maximized? The answer is, each animal should produce 0 or 2 descendants, with respective probabilities $1 - \frac{1}{2}M$ and $\frac{1}{2}M$. This theorem will now be stated formally and proved.

Let Z_0 , Z_1 , Z_2 , \cdots be a sequence of integer-valued random variables. For non-negative integer j and 0 < M < 2, say (Z_0, Z_1, \cdots) is a (j, M)-population iff $Z_0 = j$ and for all n > 0, given Z_0, \cdots, Z_{n-1} , the conditional distribution of Z_n is that of a sum of Z_{n-1} independent random variables, each taking only values $0, 2, 3, \cdots$ and having mean at most M.

The (j, M)-population (Z_0, Z_1, \cdots) is *timid* iff, for all n > 0, given Z_0, \cdots, Z_{n-1} , the conditional distribution of Z_n is that of a sum of Z_{n-1} independent random variables, each being 0 with probability $(1 - \frac{1}{2}M)$ and 2 with probability $\frac{1}{2}M$. For the timid (j, M)-population, $P(Z_k > 0) = f(j, M, k)$ is given by the formula

$$f(j, M, k) = 1 - g(M, k)^{j}$$

where

$$g(M, k) = (1 - \frac{1}{2}M) + (\frac{1}{2}M)g(M, k - 1)^{2}$$

and

$$g(M,0)=0.$$

For k > 0, 0 < g(M, k) < 1.

THEOREM. For any (j, M)-population (Z_0, Z_1, \dots) , and for any nonnegative integer k, the probability that $Z_k > 0$ is at most f(j, M, k).

A slightly more careful argument shows the inequality to be strict unless Z_0 , \cdots , Z_k are distributed like the first k+1 terms in the timid (j, M)-population.

PROOF. The theorem is trivial for k = 0. Suppose it holds for some k > 0, and let (Z_0, Z_1, \cdots) be a (j, M)-population. Of course, $P(Z_{k+1} > 0) = E\{P[Z_{k+1} > 0 | Z_1]\}$. Now Z_1 is distributed like $X_1 + \cdots + X_j$, the X_i 's being

Received 20 December 1966.

¹ Partially supported by the U. S. Army Research Office (Durham), Grant DA-31-124-ARO-D-548.

² Partially supported by the National Science Foundation, Grant GP-2593.

independent, taking values $0, 2, 3, \dots$, and having mean at most M. Given Z_1 , the process (Z_1, Z_2, Z_3, \dots) is conditionally a (Z_1, M) -population. Thus,

$$P[Z_{k+1} > 0] \le E\{f(Z_1, M, k)\} = 1 - \prod_{i=1}^{j} E[g(M, k)^{X_i}].$$

Now use the lemma below.

LEMMA. Let 0 < g < 1 and M < 2. Among all random variables X taking values $0, 2, 3, \cdots$ and having mean at most M, $E(g^X)$ is minimized when X takes the values 0 and 2 with rbspective probabilities $(1 - \frac{1}{2}M)$ and $\frac{1}{2}M$.

0 and 2 with rbspective probabilities $(1 - \frac{1}{2}M)$ and $\frac{1}{2}M$. PROOF. Let $h(x) = (1 - \frac{1}{2}x) + (\frac{1}{2}x)g^2$. Then $h(n) \leq g^n$ for $n = 0, 2, 3, \cdots$, and h is decreasing, so $E(g^x) \geq E[h(X)] = h[E(X)] \geq h(M)$.

REFERENCES

FREEDMAN, DAVID A. (1967). Timid play is optimal. Am. Math. Statist. 38 1281-1283. MOLENAAR, W. and VAN DER VELDE E. A. (1967). How to survive a fixed number of fair bets. Ann. Math. Statist. 38 1278-1280.