TIMID PLAY IS OPTIMAL!

By Davip A. FREEDMAN

University of California, Berkeley

You are in a gambling house T' which is infinitely wealthy and offers all sub-
fair bets, except

(a) it transacts business only in integer multiples of a dollar,

(b) it allows no credit, and

(¢) money must be won or lost on each bet.

You start with a finite number of dollars, and keep betting until you go broke.
How should you gamble so as to delay this fate as long as possible? Provided you
have money, you should gamble next time so as to win or lose a dollar with proba-
bility 4 each; that is, you should play timidly.

This theorem will be stated formally as Theorem 1, and proved below. A very
similar result was obtained independently by Molenaar and van der Velde (1967).
I first learned of the gambling house T' while reading a draft of Leo Breiman’s
book for Addison-Wesley. Breiman showed that you do go broke.

Theorem 2 partially extends Theorem 1 to the continuous case. Theorem 3 is an
analog of Theorem 1, with all bets uniformly subfair in a certain sense. Of course,
Theorem 3 can be extended to the continyous case.

Let Xi, X, --- be integer-valued random variables, Sp = 0, S, = X; +
.-+ + X, . Let j be a nonnegative integer. Say ;7 + S, :n = 0,1, --- is aj-
process iff foralln = 0: (i) 7+ S, = 0; (ii) EXana | Xu, -+, Xa) £ 0; (iid)
Xn1 #0o0nj+ S, # 0. From (i) and (ii), X,1a = 0onj + S, = 0. Informally,
J+ Sa:n=0,1, .- is a possible process of fortunes if you gamble in T, start-
ing with j (dollars). Let N; be the least n = 0 if any with 7 + S, = 0; if none,
N j= .

TaEOREM 1. For nonnegative integer j and k, among all j-processes, P(N; > k)
1s maximized when: given X1, -+, Xy, onj + Su > 0, Xaq1 ts =1 with condi-
tional probability % each, for0 = n < k — 1.

CoroLLARY (Breiman). P(N; < «) = 1.

The proof is easy, with the help of Lemmas 1, 2 and 3. A slightly more careful
argument shows the maximum is strict. To state Lemma 1, let w = {u(n):n = 0,
1, - - -} be a sequence of real numbers. Define T'u, another sequence, as follows:
(Tu)(©0) = 0and (Tu)(n) = 3u(n +1) + 3u(n — 1) forn = 1,2, --- . Say
u is nice iff u(0) = 0, u(n) is nondecreasing with n, and u(n + 1) — u(n) is
nonincreasing with n.

Levma 1. If u 7s nice, so ts Tu.

Proor. Easy. []

To state Lemma 2, let »(0) = 0 and v(n) = 1 for n = 1. Plainly, » is nice.
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Let Y1, Y2, --- be independent and identically distributed, Y, being 41 with
probability 3 each. Let Zo, =0and Z, = Y, + --- + Y,.

Lemma 2. (T") () = PG+ Z, > 0 foralln < k).

Proor. Induction on k. []

For Lemma 3, let » be nice, and suppose

(1) m is a nonnegative integer, X; is an integer-valued random variable
and either

(2) m = 0, Xi=0 ae.

or

3) m >0, m—+ X, =20 ae, (X3l = 1 ae, E(X;) = 0.

Lemma 3. E{u(m 4+ X1)} £ (Tu) (m).

Proor. Convexity argument. []

Proor or THEOREM 1. The theorem is trivial for £ = 0, and easy for k = 1.
Suppose the theorem holds for some k. That is, by Lemima 2, the probability that
a j-process does not hit zero on or before time & is at most (7") (j) = w(5). Now
consider the probability = that an m-process {m, m + X1, m + X; + X,, ---}
does not hit zero on or before time k& + 1. Plainly, m and X; satisfy (1) and either
(2) or (3). Given X, , the process {m + X;,m + Xi: + Xo, m + X1 + Xo +
X3, - -} is conditionally an (m 4 X;)-process. By the inductive assumption,
r £ E{u(m 4+ X,)}. By Lemmas 1 and 3, E{u(m + X;)} < (Tu)(m) =
(T*") (m). ]

The idea behind this induction is, of course, familiar to dynamic programmers.

The theorem can be partially extended to cover real-valued variables. Let
X1, X5, - be real-valued random variables, So = 0, S, = X1 4+ --- + X, .
Let r be a nonnegative real number. Say ¢ + S, :n = 0, 1, --- is an z-process
iffforalln 2 0: )2+ 8, 20; () EXpa | X1, -+, X2) £0, (iil) | Xp| 2 1
onz+ S, =1; (iv) Xppp = 0onz + S, < 1. Informally, condition (a) on
T is dropped, but (c¢) is modified so that on each bet at least a dollar is won or
lost. Let N, be the least n if any withx 4+ S, < 1, if none N, = «. Thus, N,
is the waiting time to a fortune where you cannot bet.

Define random variables Y1, Y,, --- as follows. For 2 = 0, all vanish. IFor
z > 0, Y; has mean 0 and x + Y, is either the least integer greater than x or
the greatest integer less than x. Onz + Yy + -+ 4+ Y. = 0, Y,u = 0. Given
Yi, -, Y,,onz+ Y+ - +Y,>0, Y,; is £1 with conditional proba-
bility 1 each. The process a + Y1+ -+ Y,:n=0,1, - is almost an z2-
process; it misses for noninteger x > 0 because |Yy| < 1. Let M, be the least
nz0wthae+Y 4+ - -+ Y,=0. Plainly, x — P(M, > k) is continuous,
takes the value (T") () for # = 7, and is linearly interpolated.

Tueorem 2. P(N, > k) £ P(M, > k).

Proor. As for Theorem 1. []

CoroLLARY. P(N, < =) = 1.
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Here is a different generalization of Theorem 1. Let r > 0 with r ¢ 1. There is
a unique probability number p, namely p = r/(r + 1), such that pr—" 4+ (1 —
p)r=1(Forl <r< o, <p<l;for0<r<1,0<p<3i)LetX;, Xz,
-+ - be integer-valued random variables, So = 0, S, = Xy + -+ + X, . Let j
be a nonnegative integer. Say j + S, :n =0, 1, --- is an (j, r)-process if for all
n=0: (i) j+ S, =0; (ii) r > 1 implies E(@¢™+' | Xy, ---, X,) < 1, while
r < 1 implies E(**' | Xy, -+, X,) = 1; (iii) Xops # O0onj+ S, > 0.

Plainly, on j + S, = 0, X,41 = 0. (Of course, for » > 1, E(¥) < 1 implies
E(X) £0;forr <1, E*) = 1 places no restriction on E (X), but does limit
P(X =z n) for n > 0.) Let N; be the least n if any with j 4+ S, = 0; if none,

Nj = 00,
THEOREM 3. For nonnegative integer j and k, among all (j, r)-processes, P (N ; >
k) s strictly maximized when: given Xy, +-- , Xa, onj+ S, > 0, X1 s —1

with conditional probability p and 41 with condilional probability 1 — p, for
0<n=k-1

Proor. As in Theorem 1, with these modifications. Replace 7' by 7', , where
(Tou)(0) = 0 and (Tpu)(m) = pu(m — 1) + (1 — p)u(m + 1). Replace
nice by p-nice, where u is p-nice iff w(0) = 0, u(n) is nondecreasing with n, and
umn) Z2pun — 1) + (1 — plu(n + 1) for all n = 1. The only new problem is
to show that form > 0, X = —m, |X| = 1, E¢™) = 1, and p-nice u, Eu(m +
X) £ (T,u)(m). To do that find @ and b with ™™ 4+ b = u(m — 1) and
ar™ ™4+ b=u@m+1). Forr>1,a> 0, whileforr <1, a < 0.) Check that

4) ar™ 4+ b = (Tpu)(m)
and
%) ar"+b=um) for nm n=01- ..

So E{u(m + X)} £ E(@™™ 4+ b) = ar™ 4+ b = (T,u) (m). One easy way to
check (4) and (5) is this. Introduce a continuous function » (for » > 1, defined
on [1, =), while forr < 1, defined on (0, 1]), whose value at 7" is 4 (n), and which
is linearly interpolated betwecn. Because u is p-nice, v is concave. []
CoroLLARY. If r > 1, P(N, < =) = 1.
The analog of Theorem 2 can also be proved.
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