ASYMPTOTIC EXPANSIONS ASSOCIATED WITH THE nth POWER
OF A DENSITY!

By R. A. Jounson
University of Wisconsin

1. Introduction and summary. Let {X,}»-1 be the sequence of random vari-
ables associated with the sequence of densities of the form

(1.1) C.k(x)f"(x) n=12 .-,

where £ is a positive function and f has a unique mode m at which it is sufficiently
smooth. It is known that n}(X, — m)b converges in law to the standard normal
distribution when b is a suitably chosen scaling constant (see Laplace (1847),
pages 400-403, or von Mises (1964 ), page 269). In Section 2, it is shown that the
cumulative distribution function F, possesses an asymptotic expansion in powers
of n* where each coefficient is the product of a polynomial and the standard
normal density. The polynomials have coefficients which are expressible in
terms of k and log f, together with their derivatives evaluated at m.

Section 3 shows that the normalizing transformation #7,(£) = & (F.(£)),
where @ is the standard normal cdf, also has an asymptotic expansion in powers
of n* and Section 4 makes the same conclusion for the percentiles of F, . The co-
efficients in each of these expansions are polynomials. Similar theorems are given
by Bol’shev (1959), (1963), Dorogoveev (1962), Peiser (1949), and Wasow
(1956).

Examples of these expansions, namely the ¢-distribution and central order
statistics, are given.

1.1. General assumptions. Consideration of the random variables b(X, — m)
where b = —f"(m)/f(m) shows that it is possible, without loss of generality,
to specialize to the case where m = 0, f(0) = 1, f(0) = 0, and f"(0) = —1.
The general assumptions are stated for this case.

AssumpTioN (i). f(x) and k(z), considered as functions of a complex variable,
are analytic for |z| £ 6, where §; is a positive constant.

AssumpTION (ii). f(x) has an absolute maximum at z = O and f(x) £ p» < 1
for all real x with |z] = & .

We further assume that £(0) £ 0 and also that f(x) = 0 whenever |z| < §.
These assumptions are chosen for simplicity and certainly are not the most
general under which Laplace’s approximation provides an asymptotic expansion.

1.2. Notation. Let F, denote the cdf of n'X, where X, has a density satisfying
the general assumptions. Denote by ® and ¢ the standard normal cdf and density
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respectively. For any 0 < a < 1, let £, denote the upper ath percentile of F,, .
It follows from the general assumptions that £, is uniquely determined if n is
sufficiently large. When considering percentiles, we shall assume that this is the

case.
The notation ~ is used rather than = for relating a function to its asymptotic

series since the series may or may not converge.

2. An asymptotic expansion for F, . The procedure used to obtain an expan-
sion of F, is to consider F,(¢) as being the ratio

(2.1) nt [0 k()" (%) da/nt 20 k(2)f"(z) da

to first find asymptotic expansions for the numerator and denominator separately
and then to form the quotient expansion.

The first part of this development, that given in Section 2, Lemma 2.1 through
Theorem 2.1, is essentially the verification of Laplace’s approximation (see
Laplace (1847), Book One, Section 22-27) given by de Bruijn (1961), Chapter
4, and consequently proofs are omitted.

2.1. Expansion of fkf' ". Under the general assumptions, it is possible to de-
termine a p > 0 and 6 > 0 with § < min (1, 8,/2), so that not only are the above
assumptions satisfied, but in addition, we have log f(z) = —z’/afor —6 S x < 6.
This last inequality enables us to establish the following lemmas.

LemMA 2.1. For every positive integer M,

2%+ [Skf = o(n™™) (n > 1).
LeEmmA 2.2.
(37 + [a-slbf™ = OCexp (—n7'/4)) (n > 87
On the remaining interval, log f has the expansion . a,z’ which converges
for |x| = 24. The principal branch of the log has been selected so that substitu-
tion for £(0), f'(0) and f”(0) gives @ = a&; = 0 and a; = —3%. Define a function
Y by ¥(2) = D isa2’” where
(2.2) a; = d’ log f(x)/dz" | ;=o/s! fors = 3,4, ---.

~ we write

Forn > 6 and |z| S n
(2.3) k(xz)f"(z) = exp (—nz’/2)[k(z) exp (na’ 2 saa"")]

and regard the first factor on the right hand side of (2.3) as being the main factor
and the second as being a particular evaluation of the function P(uw,2) =
k(z) exp [w¢(z)] which is analytic in the region {|w| < 2, |2| < 28}. Therefore

(2.4) P(w,2) = D tmeo Cmw'2"
where

(2.5) Umlem = 8""P(w,2)/8'108"2 [pmo.—0 each Lm =0,1,2, -,
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and the series converges absolutely and uniformly in the region {|jw| £ 1, |2| £ &}
(see Fuks (1963), pages 39-40, or Markushevich (1965), pages 101-105). De-
note the truncated series Y i+m<w Cimw'2™ by Px(w, 2). The integrand kf™ is ap-
proximated by exp ( —nz’/2)Px(na’, ).

LemMA 2.3. For every positive integer N, there exists a constant A, such that

-3 _IN— _
rtte 2| P(nad, 1) — Py(na®, x)|de £ Am ™ for no> 870

We now state a lemma which justifies the integration of the approximation over
the whole real line.
LemMMma 2.4. For each fixed positive integer N,

2+ 2} [Pyl ™ 2 de = O(n” exp (—n}/4)  (n> 1).

From the above, we obtain the asymptotic series for the normalization constant.
THEOREM 2.1.

2o k(2)f"(z) dz ~ 270 B MY (n > 1)
where
(2.8) B; = 0, for 5 odd
= DN e L 2T(r +5/2 4+ 8), for § even.

The cin’s are given by (2.5).

Throughout this section, it is assumed that n goes to infinity through the in-
tegers, so that the expressions hold for n = 1 if the bounding constants are suit-
ably modified.

Upon integration of Py exp ( —na’/2) over (— w, ¢n*), we obtain the follow-
ing result.

THEOREM 2.2.

JET R ~ i gy (nz1)
where
(27) ai(8) = Yiocris [Lu e P dy  foreach j=10,1,2, -,

and the ci,’s are given by (2.5). Here the error in using any finite sum is uniform in §.
Proor. For fixed but arbitrary integer N, consider the error in using the ap-
proximation when £ is arbitrary but fixed. The error is bounded by

(227 4 [2-8k(2)f"(2) + |Pal €™ P da + [2.2% [k(2)f"(z) — Pwe ™ | da
which, according to Lemmas 2.1-2.4, is O(n***?). Integrating the approxima-
tion and combining terms having the same power of ™, we establish the result.
The change of variable y = n** has been made so as to obtain (2.7).

We now obtain the desired asymptotic expansion of F,, .

THEOREM 2.3. Under the general assumptions, F,(£) admats the expansion

(2.8) Fa(§) ~ ®(§) + D2 imvi(§)n ™" (n21)

uniformly in . Each v; is the product of a polynomial and ¢.
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Proor. The assumption k(0) 5 0 implies that ao(£) = (27)'k(0)®(£) and
Bo = (2m)*k(0) are different from zero. It follows from argument given by
Erdelyi (1956), Chapter 1, that the asymptotic expansion for a quotient such as
(2.1) exists, and the coefficients may be obtained by formal substitution. The
uniform property is clear if we first find the expansion

(n [Zalf™) ™ ~ 2 87"
and then multiply and collect terms, recalling that the numerator expansion is
uniform for all £ and noting from (2.7) that each «;(£) is bounded.

The sequence {v;(£)};-0, obtained by formal division of the two asymptotic
series, satisfies

(2.9) ai(§) = S ovi(£)Bi, each j=10,1,2 ---,

where 8; and «;(£) are given by (2.6) and (2.7). In Section 2.2, it will be shown
that vo = ® and that v, is of the form asserted. We proceed by induction.From
(2.9), it is sufficient to prove that a;(£) — B;vo(£) does not have a term involving
®, If j is odd, this result is clear from the expressions (2.6) and (2.7) for 8; and
a;(£). When j is even, it suffices to show that

[roy™e " dy — @20 (r + /2 + §)
does not involve ®. Repeated integration by parts confirms this result.

2.2. Calculation of the first few terms. Focusing our attention on the integrals
fiw y'e? e dy which enter the v; through the a,’s, we see that there is some arbi-
trariness as to their expression in terms of known functions. Upon repeated in-
tegration by parts, we express the integrals in terms of ®(£) and polynomials
multiplied by ¢.

By straightforward calculation from (2.9), we find the first four terms of the
expansion:

vo(§) = ®(£); () = —e(E)cwlat’ + 2) + cal;
vo(§) = —@(£)coleat” + (5ew + cu)E + (15c20 + 3eu + co)tl;
(2.10)  vs(§) = —o(E)coo e’ + (8czo + cu)E + (48cz + 6cu + i)
+ [192¢30 + 24cn + 4c12 + 30 — 6106&1(602 + 3eu + 15¢20)]8
+ [384c30 + 48ca + Scie + 2¢03 — €0 (2e10 + can)
“(cor + 3eu + 15¢0)]}.

The coefficients which enter the v;(£) may be expressed as functions of the deriva-
tives of k and log f. The coefficients ¢, are defined by (2.5) and by the definition
of P, they can be seen to be functions of k£ and ¢ together with their derivatives.
Since ¢(z) = D a.2"° where a, is given by (2.2), we may ultimately express each
¢ as a function of k and logf together with their derivatives. Table 2.1 gives
these expressions for the first few cum .

The entry in row [ column m is ¢ . For example, cp = k”(0)/2. In the table,
k" = k"(0) ete.
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TABLE 2.1
Coefficients cim in lerms of derivalives of k(-) and log f(-)

m

l 0 1 2 3
0 k A k" /2 k" /6
1 kaa k(h + k,aa kas + k'a4 + k”a3/2

2 ka3’/2 kaam + k’a32/2

3 kas®/6

3. Normalizing transformation. Let n,(§) = ® (F.(£)). That is, 7,(¢) is the
solution of the equation

(3.1) ®(n) = Fa(§).

From knowledge of the expansion for F, as given in Theorem 2.3 and the results
of Section 2.1, it is possible to conclude from the proof given by Wasow (1956),
page 255, that 7,(£) possesses an asymptotic expansion which is uniform in every
finite ¢ interval.

TueOREM 3.1. Under the general assumptions, equation (3.1) possesses a solution

1a(£) which admats an asymptotic expansion of the form
(3.2) m(E) ~ &+ 2 Fm wi(E)n " (n— =)

uniformly in every finite & interval. The functions w; are polynomials.
The terms are obtained by formal substitution of (2.8) into the series of .
In particular, we have

(3.3) w=v/e and @ = (v2/9) + E(n'/2¢").

The coefficients may be expressed in terms of the c¢;, through the expressions
(2.10).

4. Expansion of the percentiles of F, . For any 0 < « < 1, let n and £,.(n)
denote the upper ath percentiles of ® and F, respectively. That is (1) = 1 — «
and ®(n) = F.(&(n)). Recall that the basic assumptions imply that
F.' (£.(n)) > 0 for all sufficiently large n and 5 in any bounded interval. There-
fore £4(n) is uniquely determined and lim,., £.(n) = %. The expansion for £,(7)
is obtained by inverting (3.2). The argument given by Wasow (1956), pages 256-
257, established the following theorem. For an alternative approach, see Johnson
(1966).

TrEOREM 4.1. Under the general assumptions, £,(n) admits an asymplotic ex-
pansion of the form

(4.1) Ea(n) ~ 4+ 2 ri(n)n " (n— =),

uniformly in every finite n interval. The functions 7; are polynomials.
The coefficients may be obtained by formally substituting the expansion (4.1)
into (3.2), setting the coefficients of each power of n™* equal to zero and solving.
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In particular, we have the following expressions for 7, and 7. in terms of the ¢;m
which are defined in (2.5).

(4.2) = coo(com’ + 210 + cor)
and
(4.3) 7= (5eacoo + cucos — CuCiocao )1’
+ (2¢ioco0 — corcao /2 + 15¢aco0 + Beucoo + Coacon ).

To obtain the expression (4.3), it is necessary to employ the relationship between
¢ and ¢y as given in Table 2.1 to show that the coefficient of 7’ is zero.

We remark that £"(n) = 7 + 2 _1=17i(n)n"" is an approximate upper ath
percentile for F,, when 7 is the upper ath percentile of ®. This follows directly
upon expanding F,, about £,(n) and then noting that F,’ is bounded in some neigh-

borhood of 5 for all sufficiently large n.
THEOREM 4.2. Under the basic assumptions with £ (1) defined above,

Fo(£85(n2)) = 1 — a + O(n ) (n—> ) foreach N =1,2,---.

5. Examples. In this section, we shall consider two examples. Others may be
found in Buehler (1965).

Let Z, be the (An 4 1)st order statistic from a sample of size (A + p)n + 1
where N and p denote positive integers. Let G and g be the population cdf and
pdf respectively. Assume that (1) there exists a 2o such that G(2) = N/(A + u)
with g(2) > 0 and (2) g is analytic in some neighborhood of 2. Then X, =
(Zn — 20)9(20)bs, where by = (A + w)’(N™ + p™), has a density which satisfies
the general assumptions. Calculating the first few derivatives of log f and & and
then the coefficients ¢;» , we obtain from (2.10) the following terms of the ex-
pansion for F :

7(E) = e(8)[(g'/26°" — bs/3bA)E" — 2b4/3bo],
(5.1) v2(£) = o(£)[E'(129°9'bobs — 4¢'b" — 997°bs") /724",
+ (g"/6g°bs — 5bs’/18bs" + by/4b,%)E*
+ (3by/4bs — 5bs/6bs")¢]

where b; = (A 4 ) N7 — (=) forj = 2, 3,4, --- It is understood that g
and all its derivatives are all evaluated at z, .
The normalizing transformation is found from Section 3 to have

(g'/2g°bs" — by/3bat)E: — 2b3/3be}

as a first correction term w; .
The percentile has the first two correction terms:

= (—g'/20°bs" + bs/3bs})n* + 2bs/3bot,
(5.2) 7o = (—¢"/6g°bs + 5b5’/18b° — bs/4bs + ¢%/2¢'b. — ¢'bs/3¢°bs)n*
+ (—3by/4bs" + 19b57/18b° — 2¢'bs/3g°b")n.
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As a second example, let k(x) = (1 + )7 = f(2). The basic assumptions are
clearly satisfied and n*X, has the (-distribution with n degrees of freedom. Using
Table 2.1, we obtain expressions for the ¢, from the expansion of log f(z). The
expansion becomes

Fa(8) = @(£) — [o(&)(£ + £)/4n7+ O(n™3) (n — =)

which agrees with Fisher (1925), who also gives more terms. Pieser (1949) has
shown the error is of the correct order. Both IMisher and Pieser, as well as others,
seem unaware of the relation to the work of Laplace.

Hotellingand Frankel (1938), page 89, give the normalizing transformation, and
Pieser (1949) gives the expansion for the percentiles.
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