THE CONDITIONAL LEVEL OF STUDENT’S ¢ TEST!

By L. BrownN

Cornell University

1. Introduction. Buehler and Fedderson (1963) considered the conditional
significance level of Student’s two-sided {-test and the coverage of the related
confidence intervals. They conditioned on a subset of the form |%|/s < ¢ and
found in one special case (n = 2, « = .5) that for any values of o and ¢” the con-
ditional level of the ¢-test that the population mean is po is smaller than the uncon-
ditional level. In fact it is strictly smaller than a constanta < a = .5. (Forc¢ = %
they were able to choose a = .482). Hence the conditional confidence coefficient
of the confidence interval procedure is greater than 1 — a > .5.

In this note we will show that similar results are valid for Student’s two sided
t-test at all levels and for all sample sizes, n = 2. Also we show that the disparity
between the conditional and unconditional levels is larger than was previously
assumed. For example, in the case n = 2, @ = .5 we show that the conditional
probability of acceptance given |Z|/s < tan /8 = 2! 4 1 is bounded helow by 3.

In view of the well known optimum properties of the ¢-test it is not clear that
the results of this note can possibly lead to any practically useful new procedures.
(It is not even clear that any remotely reasonable test procedures exist for this
problem which do not have conditional properties similar to those described
here.)

We hope that these results about the ¢-test will help add to the general knowl-
edge concerning its characteristics. In particular, let us point out that these
results are somewhat related to the fact that the usual invariant estimator of ¢
is inadmissible (see Brown (to appear)). However it would appear that, if any-
thing, these results concerning tests depend more strongly on normality than do
the results for estimation.

2. Statement and proof of the main theorem. Let X;, X,, -+, Xn,n 2 2,
be. independent normal random variables with mean p and variance o Let
g=n"2 rax;and & = n' Qi (z; — £)°. Let the (unconditional) rejection
region for testing u = wo be of the form K = {&, s:| — wo|/s > k}. Then the
level of significance, « = Pr (K | w , o), is independent of ¢°. Let the “condition-
ing” set be C = {Z, s:|%|/s = ¢}.

TuaeoreM. Suppose ¢ > k/[(1 + k) — 1]. Then there is a constant a < o such
that Pr {K |(Z, s) € C, po, o} £ a < aforall w, a.

Proor. Since K and C depend only on the ratios #/s and u/s, and /o,
Pr{K|(%, s) € C, uo, o} is a function of the parameters only through the ratio
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Fig. 1

wo/o. There is therefore no loss of generality in assuming ¢® = 1, and u = o and
we shall do so for the remainder of the proof. The theorem is clearly true if u, = 0.
Using symmetry there is then no loss of generality if we assume g > 0.

Throughout the proof we will constantly refer to figure one. In this figure the
axes are T and s, 4o is the point (g, 0), the region contained in 4,444, is the ac-
ceptance region K'. C is the region in Bi0B:, AP L 0B,, and A,C; L 04,.

The condition ¢ > k/[(1 + k*)' — 1] is precisely the condition which implies
£CAC, > 2- LCAP. (“ £LC24,P” denotes the radian measure of the angle
between C2A, and AoP.) It follows that P ¢ K and PC; = PC, and 4,C; = A,C; .
The lines 0B and 4,4, may intersect in a point @. as shown in Figure one or they
may not intersect at all for s = 0. If they do not intersect for s = 0, write
AoQ; = . In either case 4oQ: > A,C; . When A,Q, = « the lines 4,4, and 0B,
may intersect for some s > 0. Call the point of intersection @, . As above, if there
is no such intersection we define 4,0; = .

We consider a system of polar coordinates in Figure one with A, as its center,
ie.r” = (& — w)’ + sand tan 8 = s/(F — o).

Since &, s are values of a random variable, r and § may also be considered values
of random variables whose probability density is

f(r,0) = @™ (sin®)" %™  r20 0<£6<m.

Hence the conditional density of the variables R, © given R = r is b(sin )"

for 0 £ 6 £ w, and is independent of the given value of R. It follows that for all

r>0,Pr(K'|R =7) =1 — a. (As before, K’ denotes the complement of K.)
Let

p(r) = Pr(K'nCn{6:0 < n/2}|R = r);
Pr(Cn{6:0 < n/2}|R = r);

I

pa(7)
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ps(r) = Pr(K'nCn{6:0 > n/2}|R = r);
ps(r) = Pr(Cn{6:6 > 7/2}|R = r);
p(r) = [p1(r) + ps(r))/Ipe(r) + pa(r)] for r > A,P.

(For 7 £ 4P, pi(r) = 0,7 = 1, 2, 3, 4; hence p(r) is undefined.)

We need consider only the case r > A,P. For r < A,C; and r = AQps(r) =
pa(r). For 4,C; < r < AeQps(r) = (1 — «)/2 and ps(r) < %. (Here we use the
fact that the conditional density of ® is symmetric about /2.) Hence
pa(r)/pa(r) 2 1 — aand pi(r) = 3.

Using Figure one and the expression for the conditional density of ® given
R = r we see that for » £ A¢Cs, p1(r) = po(r) = 0; for 4,C, < r £ A,Q,,
pi(r) > 0;and forr > 4,Q,, p1(r) = (1 — @)/2 and

pa(r) < b [aitie (sing)"?do < L.

It follows that there is an ¢, > 0 such that pi(r)/p:(r) = 1 — @ + & whenever
pa(r) # 0. - - -

Note that 4,0, < A4,C; and that p1(r) is strictly increasing for 4,0, < 7 < 40Q,
and non-decreasing for all » > A,C,. Hence there is an e > 0 such that
ps(r)/pa(r) < 1implies ps(7) > €.

Hence, using the above, either

(i) ps(r)/pa(r) > 1 — a + &, in which case

p(r) = [p1(r) + pa())/[pa(r) + pu()] > 1 —a + @,
or (ii) 1 — a < p3(r)/ps(r) and pa(7) > e, in which case
p(r) = [p(r) + pa(r))/[pa(r) + pa(r)]
[p1(r)/p2(r) + (1 — a)ps(r)/p2(1)1/[1 + pa(r)/pa(7))
1 —a+ea/ll +p(r)/p(r)] 21— a+e

where ¢ = /(1 + 1/e) > 0.

Since Pr {K'|C} = E(p(r)) we have Pr{K'|C} = 1 — a + ¢ which implies
Pr{K |C} = a — e This completes the proof of the theorem.

Note that the conclusion of the theorem will clearly remain true even if the
restriction ¢ > k/[(kK* + 1)! — 1] is somewhat relaxed, however some restriction
on ¢ is necessary, because ¢ < k™ implies £ A,C;Cs > =/2 which implies that the
conditional significance level tends to one as pg — .

v

v

3. Numerical results for n = 2. When n = 2 the distribution of &, s given r is
uniform on the arc of radius 7. The computation of p(7) then becomes a simple
geometrical exercise. It can easily be checked that if ¢ = k™ = tan ar/2 then
p(r) is non-increasing for » < 04, and non-decreasing for r > 04, . The minimum
value of p(r) therefore occurs when r = 04, . If we then choose ¢ to maximize
this minimum value we find that for & = 37* the appropriate choice of ¢ is such
that 4,0 = 4,0, i.e.¢ = k + (1 4+ k%) = cot ar/4 > k. In this case p(40) =
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min, p(r) = 1 — a/(2 — ). Hence, for example, fora = 1,k = 1and ¢ = 1 + 2.
The conditional significance level is bounded above by %. In general, the con-
ditional significance level for a properly chosen c¢ is bounded above by a number
which is asymptotic to «/2 as @ — 0. It is not clear that we have obtained the
best possible inequality in the sense that a slightly smaller choice of ¢ may yield
a smaller bound on the overall conditional probability (even though min
p(r) < 1 — a/(2 — a)). For our choice of ¢ the conditional level is exactly
@/(2 — @), when po = 0. (When po = 0, p(r) = 1 — @/(2 — @) forallr). In
that sense our upper bound on the conditional level is sharp.

In the less interesting case when k& < 37} (a > 2) the best choice of ¢ according
to the above reasoning is ¢ = k' = tan ar/2. For this value of ¢, min, p(r) =
(1 — @)/a, so that the conditional significance level is bounded above by
(2a — 1)/a < a (fora < 1).
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