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0. Summary. This paper introduces the concept of epsilon-delta entropy for
“probabilistic metric spaces.” The concept arises in the study of efficient data
transmission, in other words, in “Data Compression.” In a case of particular
interest, the space is the space of paths of a stochastic process, for example
L,[0, 1] under the probability distribution induced by a mean-continuous process
on the unit interval. :

For any epsilon and delta both greater than zero, the epsilon-delta entropy of
any probabilistic metric space is finite. However, when delta is zero, the resulting
entropy, called simply the epsilon entropy of the space, can be infinite. We give a
simple condition on the eigenvalues of a process on Ly[0, 1] such that any process
satisfying that condition has finite epsilon entropy for any epsilon greater than
zero. And, for any set of eigenvalues not satisfying the given condition, we pro-
duce a mean-continuous process on the unit interval having infinite epsilon en-
tropy for every epsilon greater than zero. The condition is merely that > noa
be finite, where 0" = o’ = - - - are the eigenvalues of the process.

1. Introduction. This subject is motivated by the following considerations
relating to efficient data transmission, a subject that has come to be known as
“Data Compression.”’” Suppose one has an experimental source given by some
probability law which is assumed known. One wishes to transmit the outcomes
to a remote place using as few “bits” of information as possible. There is assumed
to be a certain ‘“fidelity criterion’” such that the actual outcome occurring is to
be known to the recipient of the message within a given fidelity after he receives
the message. One is also allowed to ignore a certain fraction of the outcomes,
that is, one does not attempt to transmit them. What is the minimum number of
bits that one can get away with under these constraints? That is, what is the
best way to ‘“‘compress” the data?

We idealize this situation by defining the concept of probabilistic metric space
and its ¢6 entropy H.;(X). Thus, define a probabilisticc metric space X =
(X, d, p) as follows:

(1) (X, d) is to be a complete separable metric space, of points of the set X
under the metric d.

(2) (X, u) is to be a probability space, where the Borel field of sets on which
 is defined is to be the completion of the class of Borel sets in (X, d), that is,
the completion of the Borel field generated by the open sets of X.

The probability space (X, u) represents the space of experimental outcomes.
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The metric d represents the fidelity criterion, stating how close one outcome is to
another.

Now any transmission system, it is reasonable to assume, works as follows:
Given the received message, there is a certain Borel set of outcomes of X that
could have arisen and still yielded the same message. The requirement that out-
comes be known within e can be translated as the requirement that the Borel sets
occurring in this way have diameters at most e. Thus, we are led to consider parti-
tions of X by measurable sets of diameters at most e (called briefly e-sets).
However, since we are allowed to ignore a certain fraction, say é at most, of X in
designing our data compression system, we need only require that the union of
the sets in the e-partition of X has probability at least 1 — &. Such a partition
we call an ¢; & partition, which is defined for ¢ < 0,8 = 0 (when § = 0, we call
such partitions briefly e-partitions of X). We consider only partitions by a finite
or denumerably infinite number of sets, or equivalently, partitions in which all
but a denumerable number of the sets lie in a set of probability 0.

Now when we have an ;6 partition of X, the number of bits necessary to
describe into which set of the partition the outcome actually falls is given by a
well-known formula of Shannon [9]. Namely, let p; denote the probability of the
ith set U; of the partition U which has positive probability. Let {¢.} denote the
discrete distribution {p:/ > p:}. This distribution has an entropy; we call this
entropy H(U), the entropy of the partition U (given in logarithms to base e):

(1) HU) = X q:logg ™.

Thus, H(U) is the minimum number of bits (except for a factor log 2 which
we ignore here and elsewhere) necessary to describe into which set of U the out-
come falls, given that it falls into the part of X covered by some set of the ¢; &
partition. However, our ¢; § partition may not have been especially well chosen.
Thus, it is natural to consider for the class U.s of ;6 partitions of the proba-
bilistic metric space X the quantity H.;(X) defined by

(2) Hoo(X) = infoe,, H(U).

This quantity Hs(X) is called the €0 entropy of X (when § = 0, we write
H.(X) and call it the € entropy of X). It will later be proved that the infimum is
actually achieved for some ¢; 8 partition U in U .

The ¢; 6 entropy of X then measures the smallest number of bits necessary to
describe at least 1 — & of X by measurable sets of diameter at most e. A further
discussion of the exact relevance of this concept to Data Compression is found
in [5].

The way H.s;(X) is defined leaves open the possibility that Hes(X) is in-
finite. That is, no e; & partition might have finite entropy. However, when
& > 0, we can prove that Hs(X) is finite. To prove this, we produce a finite
¢; & partition, which of course has finite entropy.

First observe that ¢; § partitions always exist! (in fact, e-partitions always exist).
For let {z.} be a countable dense subset of X, and let U denote the sphere of
radius ¢/2 about z; . Then the U; cover X. Let Vy = Uy, Vo = Up — Uy, V3 =
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Us — (UyuUy), ---,V,=U, — U7 U;, -+ . Then each V. is measurable
and has diameter at most e. Furthermore, U7=; V; = X, and the V; are dis-
joint. Hence, V;is indeed an e-partition of X.

Now let {V} be any e-partition of X, and let p; = u(V.). Thus deapi= 1.
Let 4 be such that Y i, pi < 8. Then {V;,1 < ¢ £ 4} is a finite ¢; 6 partition
of X. Hence, Hs(X) is finite if § > 0.

However, it turns out that H.(X) can be infinite. It is of special interest in this
subject to give conditions on certain classes of probabilistic metric spaces which
makes the e-entropy finite. In this paper, we shall do this for the class of proba-
bilistic metric spaces given by L.[0, 1] under the measure induced by a mean-
continuous stochastic process. Before we do this, however, we shall give some re-
sults on the continuity of H.;(X) in e and & valid for arbitrary probabilistic
metric spaces.

2. Semicontinuity of epsilon-delta entropy. It is the purpose of this section to
prove a lower semicontinuity result about the function H¢;s(X). Two preliminary
lemmas are needed, and will now be proved.

LemMMma 1. Forn = 1,2, --- , let U, be a partition of part of a probability space
with sets of probabilities {pi™} arranged in non-increasing order, S oe™ = .
Let

limn*gc pk(") = Pk, k= 1, 2, cet

lim, e Mo = p > 0.

If the {U,} have entropies bounded by a conslant B, then > ok = m, and
2 (pe/w) log u/px S B.
Proor. For any k; ,
2ok pe = limge pyim pk(") < liMpow pn = M,

SO Zf:l pe < p. Choose 8 > 0, and k, such that p, < 8 for £ > k.. Then for

n sufficiently large, pk(") < B for k > k. After the first ks sets of U, , the re-

maining, if any, must all have measure less than 8. Their total measure is un —
2, ™. Hence

B = HU,) = [(#ta — 2 sz p™)/Bl- (B/pia) log (wa/B);
therefore,
b pt™ 2 o, — [(1/ka) log (#a/8)]7'B.

Let n — «; then k; — % ; then 8 — 0. The result is > =1 pe = p. Hence this
sum equals u.
The inequality to be proved follows from the inequality for finite sums:

Sk (pu/w) log (u/pi) & )

liMpaw Dtz (04" /pa) 10g (ma/Pk
< lim sup.-« H(U,) £ B.

Lemma 1 is proved.
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Lemwma 2. Let {p1, p2, -+ } and {g1, g2, - - - } be lwo sequences of non-negative
numbers such that p1 = py = -- -,

Do De = Do g =1,

and for any positive integer n,

21;1 De = Zl?=1 Qi -
Then
(3) Doim gelog (1/gi) < D i pu log (1/px).

Proor. Suppose first that both sequences are zero after some integer N. The
proof in this case depends on the fact that the {g:} can be transformed into the
{p:} in a finite number of steps, changing only two at a time, always increasing
the sum on the left in (3). Let there be m values of j for which ¢; % p;. The
proof is by induction on m, 0 £ m £ N. Equality holds when m = 0. Suppose
m = M > 0, and the result is known true for m < M.

Since Y q; = 2_pj, there is a first index r for which ¢- > p. and a first index
s for which ¢, < p, . By hypothesis, r < s, ¢ > p. = p, > ¢, . If we replace ¢,
and ¢, by values ¢,, ¢.” such that

q"'+qs,=q7‘+q8) Qr>Qr'§q3'>qs,

the value of 2 ¢; log (1/g;) is increased, since the function z log (1/z) has a
negative second derivative. This may be done so that either

& =p, P»Zqg, or ¢ =p, p=4g¢.

It is easily verified that the new set of ¢; satisfy the hypotheses. By the induction
hypothesis, the inequality (3) is true. Lemma 3 is proved for finite sequences.
Now we consider the general case. Let K be any positive integer, and define

P* = Z I?=K+1Pk ’ q* = Z;:=x+1 Qk .

The sequences {pl)\"' y Pk, P*, 0: 07 } and {q17 *c, Pr, q*) 0’ O) }
satisfy the hypotheses. Hence by the above,

2 i1 qilog (1/qi) + ¢ log (1/¢%) = Dk pu log (1/pi) + p* log (1/p*).

The two sides of this inequality approach the members of (3) as K — . Hence
(3) is true.

This completes the proof of Lemma 2, and we come to Theorem 1.

TarEOREM 1. In a probabilisiic metric space (X, d, u), let {U,} be a sequence of
€, ; 8,-partitions, with ¢, — ¢, 8, > dasn — «, with e > 0,8 = 0. Then there is
an e; o-partiiion U with

H(U) £ lim inf,se H(U,).
Proor. The proof uses the fact that the closed subsets of a compact metric

space themselves form a compact metric space under a suitable metric; this com-
pactness enables one to construct a limit covering from the {U,}. Of course, X
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need not be compact, so this limit is first obtained in compact sets approximating
X in measure. The possibility of the existence of atoms in X (points of positive
probability) causes additional technical complications.

We can assume

lim infpse H(U,) = L = liMuswe H(U,),
by taking a subsequence. Let U, = {4}, with u(A.) = Pk, Pr1 = P2 = - -,
and define

my = Zl?=l Dk -

Then m, = 1 — §, . We can take a subsequence of {U,} by the diagonal process,
such that the limits px = limu.« p,x exist for all k, as well as m = limsw m, .
By Lemma 1, Q) oy px = m = 1 — 8, and
(4) 251 (pu/m) log (m/pi) S L.

The partition U will be an e-partition covering a set of measure m.

If X contains atoms, we need to take another subsequence to control the way
the {U.} cover the atoms. For any given atom z; , there is a k; such that p,, <
w(z;). For n sufficiently large, p..x, < p(z;). Then z; cannot lie in a set of U,
except the first k; — 1. Hence there is a subsequence of {U,} on which either z;
eventually lies in an A, with fixed k, or z; is not covered by more than a finite
number of { U,}. By the diagonal process, we can get a subsequence such that this
is true of all the atoms.

We can choose an increasing sequence {S;} of compact subsets of X such that

limjow u(S,) = 1

[4], p. 64. The closed sets in S; form a compact metric space in the Hausdorff
metric [2], pp. 166-172:

d*(E, F) = max{max,.s min,r d(z, y), max,. mingz d(z, y)}.

Hence by two applications of the diagonal process, we can get a subsequence of
{U,} such that in the metric d*

Bii = limpos Ane 0 S;
exists for all &, j. The explicit formula for By; is
Bi, = N7 (Us— 4.0 8).
The diameter of a set is a continuous function in the d* metric. Hence

diam (Bi;) = lim,,e diam (4,x 0 S;) < e

Also, it follows from the formula for the limit that
Ul:=l Bk} = ]-imn—»w (U;=1 Ank) n Sj )

and if », is any countably additive measure defined on the open and closed sets,
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v,(Uizy Br;) = lim Suppaw D imt v (Auk) — n(X — 8;).

Let Z be the set of atoms of X, and Z, the set of atoms which are eventually
contained in A4,; as n — o . Define

Y, =72 — Uia Z:.

This set consists of the atoms which eventually do not liein 4,1, -+ , A,, . Any
finite subset of ¥, will not intersect Uf—; A, if n is sufficiently large. Hence if we
define

VT(E) = “(E - Yr)v

then
lim SUPaw Doimt 7o (Auk) Z My 2ot w(Ame) = Dt P,
and
(5) p(Uic Bij — V) = 2iam — u(X — 8 — 75).
Define

B, = U4 By, .
Bu , By, - - - form an increasing sequence of sets. Hence
diam (B;) = lim;,, diam (By;) £ e
Let j — « in (5). We get
p(Uisa By — Y,) = D icipr.
Define {C)} inductively by

Cy =B — T,

C, = Uia B — ¥, — Uidi G, rz2
Then the C; are disjoint e-sets, and
(6) 2k pw(Ch) Z 2 ps

Also, Zy C By, so it is easy to show by induction that Z n C, = Z .
It follows from (6) that

(7) D w(C) = 2o = m.

If equality holds here, define {C'} = {Ci}. Otherwise, we will define a sequence
{C/}, with € < C%, such that

(G’) ZZ‘;‘I ”(Ck/) Z/:=1 Pk r = 1) 2) Tty
(8) Do w(CY) = m.
We have u(Z:) £ pi. Hence if D iy u(Ci) > m, there is a first index k; such

v



1006 E. C. POSNER, E. R. RODEMICH AND H. RUMSEY, JR.

that
2k p(C) + X w(Ze) > m.
Then
2 w(Ch) + 2 w(Zk) £ m.
Define
C =Cx, k<ky, C =2Zi, k>k.
Then

w(Zy,) =m — Zk#kl w(C) < u(Cyy).
The set Cx, — Zy, is non-atomic. Hence it has a subset of any positive measure

between zero and u(Ck, — Z,). It follows that we can choose Ck,, Zi, C Cx, C
Cx,, such that

p(Ciy) = m — Dy w(CY).

Then (8) is satisfied. Now (6') is equivalent to (6) for r < ky . Forr = ky, (6')
is implied by (8) and the inequality

2= w(C) = 220 w(Ze) £ 2 i, r> k.
Now Lemma 2 applies. If U = {C}}, by (4), (6) and (8) we have
H(U) £ X (pe/m) log (m/pe) < L.
This completes the proof of Theorem 1.

3. Consequences of lower semicontinuity. It is the purpose of this section to
derive some consequences of the preceding lower semicontinuity theorem. The
first states that the infimum of (2) is actually achieved.

THEOREM 2. For every € > 0 and & = 0, there exists an ¢; 8 partition U of X such
that H(U) = H.s(X).

Proor. In Theorem 1, let every e, be equal to ¢, and every &, be equal to §,
where {U,} is a sequence of ¢; § partitions of X such that

H s (X) = lim,,, H(U,).
Theorem 1 produces an ¢; § partition U of X with
H(U) = lim,., H(U,),

as required. Theorem 2 is proved.

The following theorem is of interest in its own right.

TuEOREM 3. Let (X, d, n) be a probabilistic metric space, let 0 < p = 1, and let
e = 0. Suppose thal for every p’ < p, there is a Borel set B(p') of diameter at most
e such that u(B(p')) = p'. Then there is a Borel set B(p) of diameier at most e
such that u(B(p)) = p.
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Proor. First let ¢ = 0. The hypothesis is that atoms exist of probability at
least p’, for every p’ < p, and we are to produce an atom of probability at least
p. But since the sum of the probabilities of the atoms of X is finite, there is an
atom of maximum probability. The hypothesis implies that the probability of
this atom is at least p.

Now let ¢ > 0. Let p, converge to p from below, and let {B(p,)} be Borel
sets of diameter < e such that u(B(p.)) = p» . In Theorem 1, let s, = 1 — p,,
6 =1 — p. We are told that for every n, there is an ¢;0, partition U, with
H(U,) = 0; namely, the partition {B(p.)} consisting of one set will do. By
Theorem 1, there is an an €; 6 partition U of X such that H(U) = 0.

But if H(U) = 0, then U consists of one Borel set of positive measure, which
we call B(p). Since U is an ¢; § partition,

diam (B(p)) = ¢,  w(X — B(p)) = 4.

Thus u(B(p)) = p. Theorem 3 is proved.

The next theorem states that H.;(X) is jointly continuous in ¢; § from above.
We note that separate continuity in €; 8 from above is enough to force joint
continuity, since H;(X) is non-increasing in e and .

TuEOREM 4. The function H.;(X) is jointly continuous from above in € and & for
e> 0,6 =0.

Proor. Let €, converge to ¢ from above, and §, converge to é from above. By
Theorem 2, there exist €,; 8, partitions U, such that

H(U") = HGnian(X)'
By Theorem 1, there is an ¢; § partition U of X such that

H(U) £ liminf,,« H(U,).
Thus,
Hc;&(X) é 1ime'->e+,6'->6+-He’;ﬂ’(X)-

The inequality
He;&(X) g 1ime'->e+.6'—¢6+ He’;&’(X)

follows from the fact that the function H.;(X) is monotone non-increasing in
e and 4. Thus

He;&(X) = 1im¢'-—>e+,6'->§+ He’\;&'(X),

which proves Theorem 4.

Continuity of H.;(X) from below in § does not necessarily hold. For example,
let X be the two-point probabilistic metric space, where each probability is % and
the two points are at distance 1. Then Hy;;(X) = 0, whereas lim;,;— Hy:(X) =
log 2. However, the following theorem holds.

THEOREM 5. Let X either be non-atomic or have infinate e-entropy, for given ¢ > 0.
Let 0 < 6 < 1. Then H.5(X) s continuous in & from below.
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Proor. First let X be non-atomic. Let n > 0 be given. We shall find a §' < §
such that for every p, 8 < p < 6, there is an ¢; p partition U of X with H(U") <
H.s(X) + 5. Thus, lim,.;_ H..,(X) £ Hes;(X), and H.;(X) will indeed be
continuous in § from below.

Let V be an ¢; 6 partition of X suchthat H(V) £ He.s(X) 4+ 9/2. If u(V) =1,
V is already the type of €; p partition desired, for any p = 0. Otherwise, let A be
the set (of positive probability 1 — u(V) = §) not covered by any set in V.
Since A contains no atoms, A contains a set By of diameter < ¢ and positive
probability X £ X\, for any N > 0 (merely take a set of positive probability
from any sufficiently fine partition of 4). Choose Ny > 0 so small that if U =
VU({B\, |[H(U) — H(V)| < /2. Then H(U) < H.3(X) + 5. And of course
U is an ¢; § — M partition of X. Let & = 6 — A to conclude that U is an ; p
partition of X for every 8’ < p < é. This proves continuity from below in case X
has no atoms.

Now let H.(X) be infinite. That is, let there be no e-partition of X of finite
entropy. As above, choose an ¢; § partition ¥ and assume that its uncovered set
A has positive probability <4. We need to show that for every Ay > 0, A contains
a set of probability greater than zero but =)\, and of diameter <e. If for some
N > 0 every set of diameter <e of positive probability in A had probability
>\, then A could be covered by finitely many sets of diameter <e¢, say By,
By, -+, By. Then U = Vu{B;, ---, By would be an e-partition of X of
finite entropy. Theorem 5 is proved.

We observe that not even the absence of atoms makes H.;(X) continuous
from below in e. For example, let X be the circle of radius 1 in the Euclidean
plane, let d be Euclidean distance, and let 4 be angular measure divided by 2.
Then Ho(X) = 0, whereas lim.,o. H(X) = log 2. The latter is true because
when e < 2, no set in an e-partition of X can contain a pair of antipodal points.
However, it is shown in [3] that H.(X) is indeed continuous from below when X
is the probabilistic metric space consisting of L,[0, 1] under L,-norm, where the
measure is that induced on L]0, 1] by a mean-continuous Gaussian process.
Since such X are non-atomic, we conclude from Theorem 4, together with Theo-
rem 5 and the remark preceding it, that H.;;(X) is jointly continuous in e and 6
for X equal to L,[0, 1] under the measure induced by a mean-continuous Gaussian
process.

Let us now define H..5(X) (and H.(X)) for ¢ = 0 as follows: Hy; 1s infinite
if there is no partition of at least 1 — § of X by sets of diameter 0 (atoms); if
there is such a partition, the definition is the same as before. With this definition,
Hy.5(X) is continuous in 8 from above, as is easy to see. And H.;5(X) is continu-
ous from above in e as e — 0, 8 fixed, as Theorem 1 shows (a simpler proof suffices,
not using the Hausdorff metric d*). The following result is also true:

THEOREM 6. If the sei Z of aloms of X has measure 1 — 8o, then Ho5,(X) =
H(Z) and Ho;(X) 18 finile for & > &y , infinile for § < & .

Proor. Any 0; §, partition of X has as its sets all the atoms, and perhaps other
sets of probability zero; hence its entropy is H(Z). For § < 6, there are no
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admissible 0; é-partitions, while for § > & , there are finite 0; & partitions. Thus
all the statements of the theorem follow.

The following theorem is of interest, but is to be expected: one should expect
to need arbitrarily many bits to prescribe a nonatomic probabilistic metric space
with arbitrary precision.

TaEOREM 7. If X s non-atomic, Hos(X) is infinite for every & < 1. Thus,
H (X)) > o ase— 0, for 8 < 1. If X s not purely atomic, H(X) — « as
e— 0.

Proor. Combine Theorems 4 and 6.

4. Finite-dimensional euclidean spaces. As preparation for the final section,
this section considers the e-entropy of distributions in Euclidean n-space (with
ordinary sum-of-squares metric). This certainly yields a probabilistic metric
space. We assume that E(]|z]|?) < «, where E denotes expectation, |z| denotes
Euclidean norm. We can prove

THEOREM 8. Let X be Euclidean n-space with a probability distribulion such
that ||z||2 has finite expectation. Then H.(X) is finile, for every ¢ > 0. In fact,
H(X) = nlog (1/¢) + C for small e, where the constant C depends only on n and
E {]?.

We first need three lemmas.

LevMma 3. Let X be a product space,

X = H§=1XJ;

where J s a positive integer or «. Let there be some probabilily distribution on X,
inducing marginal distributions on each X ;. Let U; be a denumerable partition of
X for each j, and consider the product partition U of X given as

U= {Il;=4} = II}= Us,
where each Aje U; . Assume all the sets are measurable. Then if
2 H(Uj) < =,

all but a denumerable number of the sets of U lie in a subset of X of probability
zero, and

(9) H(U) £ 2 5= H(U)).

More specifically, if U; = {U j}, with the sels arranged in order of non-increasing
probability, all sets of U which involve infinitely many U j, with k > 1 lie in a set of

probabilily zero.
Proor. Suppose first that J is finite. Then U is denumerable, and the only
thing to prove is (9). For z, ¢ X;, let z; be the index of the set of U; to which

z; belongs. Then z;, - - -, z; are discrete random variables, and (21, - -, 2,) is
a vector random variable designating the set of U containing z ¢ X. Inequality
(9) is equivalent to H(z , ---, 27) < D=1 H(z;), which is one of the basic

inequalities of Information Theory. ([1], p. 16; the proof there is easily extended
to variables which take an infinite number of values.)
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Now let J = . First we prove the last statement of the lemma. For each 7, U 5
is one of the most likely sets of U; . Hence u(Uj) = ¢ *Y?, and u(X; — Uj) <
1 — ¢ % < H(U,). Summing,

DXy — Up) £ 25 HU,)) < .

The Borel-Cantelli lemma then implies that the set of points of X whose projec-
tions into the X; lie outside an infinite number of the Uj’s has probability zero.
It now follows that

HWU) = limy,o H(U; x Uy % -+ x Uy)
< limyaw 225 H(U,) = 2254 H(UY),
by the result for finite J. This completes the proof of the lemma.
ReMaRrk. This lemma can be applied to separable Hilbert space, by embedding
it in the (non-metric) space which is the product of the one-dimensional coordi-
nate spaces, forming the product partition, and restricting the product sets to

Hilbert space.
Levmma 4. Let {p1, p2, -} and {q, q, --- } be sequences of non-negative

numbers with
Z:;l Pr = Z:=1 Qk = 1.
Then

Do pelog (1/py) £ D ores pr log (1/gx)

(any term with p, = 0 s inlerpreled as zero; pr log (1/qx) = © of ¢ = 0 = pi).
Proor. If 1, -+, a, and by, - -+, b, are two sets of non-negative numbers

with D_ryax = X k= br = 1, we have
Do arlog (1/ar) < Do ax log (1/by)

[1], p. 13. For any positive number ¢, replacing ay , by by cax , cbr changes both
expressions in such a way that the inequality is preserved. Hence Y a; and > bk
can have any common positive value.

Apply this inequality to

o = pi, be = qr, k=n-—1,
@ =14 Dora e, bo=14 Drnge.
We get
2oia pilog (1/px) + alog (1/a,) = 2285 pelog (1/q) + aa log (1/b,).

Asn — =, a,, b, — 1. Hence the last terms on each side of this inequality ap-
proach zero, and the desired inequality is obtained.
LemMma 5. Let a real vector-valued random variable £ have finile second moment

o’ e, E(||E]") = o If
pr = plke = &l < (k + 1)d, k=012-.--,
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then
(10) H = 2% pi log (1/ps)

A

2¢ log (ed’/€), €

2¢(5°/€") log (e€’/a"), I

IIA

g,

IIA
IIA

Also, for ¢ = o,
(11) H = log (a/¢) + C,

where C is a universal constant. ‘
Proor. Let « be any positive number, and 4 = Y 1 e *". By hypothesiis,
€ D k'px < o°. Hence if we apply Lemma 4 to the sequence {pi} and {e”**’/

A, k = 0}, the result is

2iapilog (1/pe) < 2iopilak’ +log 4) S ao’/e + log 4 = Fla, ¢/0).

The bounds to be established are bounds on the function
G(e/a) = F(é/d", ¢/a),

F(1 + 2log €¢/o, ¢/0),

o
lIA
N

\Y%
Q

For! = 1, we have
e <1+ I e du = 1 + #t/2,
hence
(12) G(t) =1+ log (1 + «'/20) < log (1/t) + 1 + log (1 + ='/2),
verifying (11). Fort = 1,
Dl Y = 3 (ef) T < e/ (eff — 1) S 1+ 1/(e — D)E;
hence
(13) G@) £ (1 +2logt)/t + 1/(e — 1) = (1/8*)(e/(e — 1) + 2logt).
From (12) and (13), it follows that (10) is valid, since
max {e/(e — 1), 1 + log (1 + 7'/2)} < Ze.
This completes the proof of Lemma 5.

Proor or TueEorREM 8. [irst let n = 1. One possible e-partition is formed by
decomposing the line of values of z into intervals of length e, with end-points at
0, ¢, +2¢, - - - . This partition U is a refinement of the partition of Lemma 5,
decomposing each set of probability p; into two sets of probability ¢i, 7+ . By
Lemma 4,

e log (1/qc) + 7 log (1/1%) < qu log (2/px) + mi log (2/px)
= pi log (1/pi) + px log 2.
Hence, applying Lemma 5,
H(U) = 2t lgelog (1/qi) + i log (1/m)] < 2 im0 [pelog (1/pe) + pi log 2]
< log (¢/€¢) + C + log 2
for ¢ £ ¢. Theorem 8 is proved for n = 1.
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If n > 1, let U, be lthe partition of this ty}l)e of the jth coordinate line, using
intervals of length e/n’. If ¢ < n min [E(z,)]}, we have, from above,
H(U;) < log {(1/&)[nE(z,)]} + C + log 2.

The product partition U formed from { U} is an e-partition of n-space. By Lemma
3

IIA

25 (log {(1/€)[nBE(z)} + € + log 2)
nlog (1/¢) + n{log [nE{|z|}1* + C + log 2}.

This completes the proof of Theorem 8.

REeMARK. In [5], sharper results on the e-entropy of finite-dimensional distribu-
tions in Euclidean spaces are proved, for example in the case in which the distri-
bution is absolutely continuous with respect to Lebesgue measure with a con-
tinuous density function. In particular, the relation between e-entropy and the
“differential entropy” (| p log (1/p) dx for p a density function) is pointed out.

H(U)

IIA

5. Mean-continuous stochastic processes. The first theorem of this final section
can be regarded as a generalization of Theorem 8 to countable-dimensional
Euclidean spaces, in particular, to L0, 1]. Let Y (¢, w), w £ 2, be a separable
mean-continuous stochastic process on the closed unit interval (see [3], Chapter
X for definitions). Let R(s, t) = E(Y (s, w)Y({, w)), a continuous positive-
definite function. Let oi® = 02° = --- = 0 be the eigenvalues of the integral
equation f R(s, t)¢(t)dt = o°¢(s), with associated normalized continuous eigen-
functions ¢, (). (It is known that R(s, t) = D 0,’¢x(s)¢.(t) uniformly on the
unit square; also, ) _m=1 o, is finite and equal to E( f% Y*(t, w) dt).) Then there
exist uncorrelated random variables £,(w), E(£.”) = 1, such that with probability
1onQ

Z)Z=l U'nén(w)(i’n(t) - Y(t) w) in L2[0) 1]

a8 N — .

Using the techniques of [7], what we really have is a probability distribution u
on an abstract separable Hilbert space with orthonormal basis {¢,} (the form of
{¢n} has nothing to do with the L,-structure of the process). The measure p is
uniquely determined from the finite-dimensional distributions of (&, &, -,
£,), all n. The distribution in this n-space is that of D_j=1 o,£;¢; . All other facts
about the process can be ignored in what follows.

For convenience, we call the e-entropy of the probabilistic metric space X,
consisting of L,[0, 1] under L,-norm with measure u, the e-entropy of the process.
It might be reasoned by analogy with Theorem 8 that, since > 0.’ < oo, this
e-entropy should be finite for every positive e. Such however is not necessarily
the case. (Don’t try to find an example of a mean-continuous process which is
Gaussian with infinite e-entropy for some ¢ > 0, though. It is shown in [6] that
the e-entropy of a Gaussian process is always finite.) We need three preliminary
lemmas before getting to Theorem 9.
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LemMA 6. Let a maximal set of points on the unit sphere in n-space (n = 1) with
mutual distances =6 (6 = 1) contain N points. Then

B—n-f-l é N é 4n8—-n.

Proor. If n = 1, the inequality is trivial. Henceforth assume n = 2. The area
of a cap of radius r on the sphere (» < 1) can be given an integral formula by
projecting onto an equatorial hyperplane and using spherical coordinates in
(n — 1)-space. If m, is the area of the unit sphere in n-space, the cap has area

A(r) = msy [58770dE/ (1 — )}

where r’ = r(1 — %rQ)%. Replacing (1 — £)* by its upper and lower bounds, then
integrating,

[rat/(n = D))" 2 A(r) £ [ma/(n = D)0/ — 3%,

Our set has the property that the closed §-neighborhoods of the points cover
the sphere, while the open §/2-neighborhoods are disjoint. Hence NA(8/2) =<
7 = NA(8). Using the above bounds on A4 (r),

gu[8(1 — 8°/4)' 7" (1 — 38°) = N = gal36(1 — 8*/16) ",

where g, = (n — 1)m, /71 = 20'T((n 4+ 1)/2)/T(n/2). Since 5 < 1, we have
19, 8" = N < ga(5(15)/8) "

From the relation g,42 = (1 4+ 1/n)g. , together with g = 2, g» = =, it follows
easily that 2 < g, < 2((15)}/2)""". Hence

M < N = 2(8/4) " < (4/8)".

LemMma 7. The e-entropy of any disiribution over an (n — 1)-sphere X of radius
p in n-dimensional Euclidean space is al most n log™ (8p/¢).

Proor. The result is clearly true for ¢ = 2p, for then H.(X) = 0. Suppose
e < 2p. Take a maximal set of points in X at distances at least ¢/2. If the set
contains N points, then, by Lemma 6, N < (8p/¢)". The closed ¢/2-neighborhoods
of these points form an e-covering of X, from which an e-partition can be ex-
tracted. Since there is an e-partition containing at most N sets, H.(X) < log N <
n log (8p/¢). This proves Lemma 7.

LeMMA 8. Suppose Y ey 20" = S < . Then there is a sequence { &}, with
Sea & = €, such that

H = Zloco=1 2k ]0g+ pk2/€k2 < 5S/€2.

Proor. We can choose {e;} so that eventually ¢ = px, and the series for H
terminates. If any e > pi, then decreasing this e while increasing an ¢ < py
decreases H. Hence, we may suppose that ¢, < pr on some finite set of indices P,
and ¢ = p; on the complement P’.

We have H = 2_» 2° log (p*/&’), where these &’s must satisfy the condition
Dre’ =€ — 2 p & By varying the ¢ subject to this condition, it is seen that
H is maximum when ¢’ = 2°A4, where 4 is some constant. It follows that the
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best e’s have the form ¢’ = min (2*4, pi’). Put p,° = 2°Ag, . Then

gr =1 on P, gr =1 on P',
and
(14) A a4 = S,
(15) A, 2+ Zp2g) = ¢, H=2,2logg.

When g; = 1, k can be put in either P or P’, whichever is convenient.

For variations of {gi} in P subject to (14), we find that H is maximum when
gr = max (2B, 1), k¢ P, where B is a constant. Putting & in P’ whenever
gr =< 1 and eliminating A from (14) and (15), we have

(16) E(2r2'B + 2p 4g) = S(2r2° + 2w 29,
while H = ZP 2¥log (27*B). Vary gi, (ki1 ¢ P') and B, subject to (16). We have
E(Dp2%)8B = (8 — 20¢)-2M5g,,.
A variation of g, which increases B increases H. Hence we may assume that
gr =0 for 2°¢ = 8,
g =1 for 2% < 8,

fork e P'.
Now, all &’s for which g, = 0 can be put into P. Thus, we need only consider

the case

gr = max (27*B, 1), keP,
g = 0, keP.
We have
(17) € Y pmax (2°B, 4%) = § D, 2%

also, H = > 2% log" (27*B).
Let K be the last index for which there is a non-zero contribution to H. Then

(18) H = D51 2log (27%B) £ D om=0 25 "[log (B/2¥) + m log 2]
= 2"[log (B/2") + log 2.

If K is the last index in P, then from (17) we have 2B¢’ < 2" S and 2B = 4%
Thus 2¥ < B < 2S/¢ which makes

(48/€)-(2/B) log (B/2¥) + (48/¢) log 2
< (48/€) (e + log 2),

(19a) H

IIA

since the function z log (1/z) has maximum value 1/e. ]
The case remains in which the last indices of P have B < 2*. Then the number
K in (18) can be increased, if necessary, so that 2¥ < B < 2" and, if L is the
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last index in P, K < L. Thus H < 2°*" log 2. From (17),
4" ¢ < 2'M8 2k < 28/é.
Hence

(19b) H < (48/€) log 2.

Since the maximum of H satlsﬁes either (19a) or (19b), and since 1/e + log 2 <
2, we certainly have H < 5S/¢.

Lemma 8 is proved, and we can return to the statement and proof of Theorem
9.

THEOREM 9. If Z ne, <, any mean-continuous stochastic process on [0, 1]
with eigenvalues {0} has fini.e e entropy H, . Specifically,

H, = o(1/é) as €—0,
where the function o depends only on the eigenvalues a,” of the process.
Proor. We actually prove that if € < Y no,’, then
(20) H. <12 3 no,’/é

We then use Theorem 8 as follows. Let N be so large that D .ox no.’ < n,1Ma
given positive number. Then the process which is related to the original process
by ignoring the first N elgenfunctlons has elgenvalues (o'n)" with D e_, (o) <
7. Hence, for €/2 £ > n(d,)’, the ¢/2} entropy of the related process is less
than 34567 /¢". The N-dimensional subspace has ¢/2*- entropy bounded in Theorem
8. The e-entropy of the entire process is bounded, as in Theorem 8, by the sum
of the entropies of product e/2- -partitions obtained from the two factor spaces
in question, as in Lemma 3. Hence, for sufficiently small e depending only on the
o', We can guarantee that

H, < 34564/€ + N log (2'/¢) + C,

where C depends only on the an . So for small enough e depending only on the
., we can guarantee that H, < 3457 n/¢’. We conclude that H. is o(1/€") as
e — 0, where o depends only on the eigenvalues of the process. Hence it is indeed
enough to prove that for € < D ne,’, (20) is valid. This we now proceed to do.

The idea is to group the coordinates into successive longer and longer finite-
dimensional subspaces. Each such subspace is partitioned into “spherical shell
regions” of constant radial separation in each space. However, the radial separa-
tion depends upon the space. The entropy of the product of these shell partitions
is shown to be finite. In the nth finite-dimensional space, we subdivide each shell
region by a partition whose entropy is estimated by projecting on to the inner
sphere. The parameters involved in these partitions are so chosen that the parti-
tion of all of L,[0, 1] obtained from taking the union of the products of the parti-
tions of the shell regions is an e-partition of finite entropy. The previous lemmas
allow the choices of parameters to be made so that the required facts can be
proved.
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Recall that the ¢,’s are non-increasing. For k = 1, 2, --- | group the coordi-
nates &r-1, -+, &_1 into a vector yi of 2k components. Then y; has second

moment a;’ given by

E(||ka2) =q = Zi]::zlk—l Un2;
and
(21) 2onet =8 = 22’ £ 22 na.

Let {8} be a sequence of positive numbers with D6k < L. We will first
consider the partition U of the space formed by taking the product of a sequence
of partitions of the y; ; the 2°""-dimensional space of y; is subdivided into the

spherical shell regions
b < [lyell < (T4 Dés, 1=0,1,2, .

The sequence {6;} will be chosen so that if H, is the entropy of the kth compo-
nent partition, ), Hy < . It will follow by Lemma 3 that all but a denumerable
number of sets of U lie in a region of probability zero, and H(U) = S Hy .

By Lemma 5,

(Y

O ,
Ok «

2¢ log (ear’/8:”), ax

%e(a;f/&;f) lOg (e&k2/ak2), ar

H,
H;
Put 8’ = (€/98)-2"a;’. Then
H(U) = Xoases Jelog (9e8/2°¢) + Dnrases 36(95/2"¢") log (2%€'/98S).
If 2& = 98,

(22) H(U) S (6e8/€) 37 27"{log (e€/95) + k log 2)
= (6eS/&) log (4e€/9S).

1A

IA
lIA

Il

If 2& < 98, the case of interest, let the integer K = 1 be such that 2k = 98,
with 0 = 0 < 1. Then

H(U) = 275 Zellog (9eS/€") — k log 2]
+ Pimri 3e[(98/2°€) log (e€'/98) + k log 2]
2¢K log (9¢S/é) — %eK(K + 1) log 2 + (6eS/2°¢")
[log (e€/98) + (K + 2) log 2]
(2¢/3 log 2) log (98/¢€") log (9e8/€) + %e(1 + log 2),

lIA

I\

which certainly implies
(23) H(U) £ 4ellog (9eS/€)I".
Let the sets of positive probability in U be
A; = {liade < well < e + Do, b =1,2, --- }, J

1,2, .
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If V; is any e-partition of 4, then V = U; V, is an e-partition of the space,
and, by the well-known formula for conditional entropy [9],

H(V) = H(U) + 2_u(4,)H(V;).

To construct V;, we can take any ¢/3- partltlon W; = {Cjn} of the set S; =
{lyell = Ladk , &k = 1,2, --- }, and define (., & V, to be the set of all points of
Aj; which project into points of C;,, when each y; has its length decreased so that
lyll = Lude . For, if {y:} projects into {y's},

2o llye — ¥l = X8k = é/9.
Hence, if {2} lies in the same C;,, as {y:} and projects into {z's},
(2 lex =l = (2 llow = 24}
F (X = vl + (Xl — vl = e

Thus, each V; is an e-partition of 4, .
If V; is formed in this way, H(V;) can be made arbitrarily close to the ¢/3-
entropy of the distribution on S; induced by the projection. Thus

(24) H. < infrixea v HV) = H(U) + 2 u(4;)HS},

IA

where H{J) 73 is the ¢/3-entropy of this distribution on S;.

For fixed 7, let {n,:} be some positive sequence of numbers with Y ey n% =
1é, to be chosen later. Then if Aj is the g;-entropy of the marginal distribution
of y'x on the sphere |[y's|| = pjx = lixdi , we have H) < D2 by .

By Lemma 7, we have

Hy £ 25 27 log™ (8pi/mn) = 32 e 2 log™ (64p/n%).

It follows from Lemma 8 (using 8p; for pi, ;% for & , and ¢/9 instead of ¢)
that

Hojs < 35200256405/ (3€) = (720/€) e 2% .
Using this estimate in (24),
He = H(U) + (720/€) 2% 2°( 227 u(4,) p3).
In 4;, |lyxll = o . Hence
2 w465 = E(llul®) = .
Thus
H. < H(U) + 720 S/é.
We have from (23)
H(U) £ 4eflog (9eS/&)]’ < 1448/¢,

for 2¢ < 98. By (21), 1f é < D no,’, then certainly & < 398, and H, <
8648/é = 17282 no,’/é. Theorem 9 is proved.
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REMARK. It follows from (22) that for large e the entropy has a bound of the
form

Const (Y ne,’/€) log (€/2 na.l).

The following theorem shows that Theorem 9 is the best possible, in the sense
thatif D no’ = «, thereis a process under which 7,[0, 1] has infinite e-entropy.
The construction can be shown to have the property that with probability 1,
only finitely many £, are nonzero. Thus, the sample functions can be made say
entire functions with probability 1. We need one last lemma.

Lenma 9. Let S(z, €) denote the closed spherical neighborhood of radius e about
a point z of the probabilistic metric space X. Then

H(X) z E(log {1/u[S(z, O1}).

Proor. For any e-partition U, let p(x) denote the probability of the set of U
containing x. Then

p(z) = w{S(z, &)},
hence

H(U) = E(log {1/p(x)}) 2 E(log {1/u[S(z, €)1}).

The conclusion follows immediately, since H(X) is inf H(U) over all e-parti-
tions. Lemma 9 is proved, and we come to Theorem 10, the last of this paper.
TureoreM 10. If D no,’ = ©, there ts mean-continuous stochastic process on
[0, 1] with eigenvalues {¢,,"} which has infinite e-entropy for every ¢ > 0.
Proor. Let ax = o2t , k = 0. If we define

’ k-1 k
O = a, 2" <n=2, k=0,

we have ¢', < o, for all n. An infinite-entropy process will be set up for these
eigenvalues. The process for the original eigenvalues can be obtained by suitably
expanding the scales of the random variables involved, which can only increase
the entropy. Since
ik=+21k+1 n0n2 = 2%“041:2 = 823:/;2k‘2+1 n(a/n)z,
the new sequence of eigenvalues satisfies the hypothesis, which can also be
stated as D pm 2%a;> = . Each eigenvalue o’ has multiplicity »., where
vo=1,um=2""Fk=1.
The stochastic process will be set up in the form

.’l)(t) = Z:=l &nd’n(t))

where {¢.(¢)} is any orthonormal sequence of bounded continuous functions on
[0, 1], and {£.} is an orthogonal sequence of random variables with E(&,) = 0,
E(&") = (o'»)% The {£,} are defined below.

For each «; , there is to be a set of », random variables ¢, with variance o
These £.’s form a v-vector y, which is to be independent of all other £,’s. This
¥ has a distribution composed of two parts. The first is a uniform distribution
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on the unit sphere in v-dimensional space, with probability p, = nar (we
assume without loss of generality that mai. < 1). For the second part, 3 = 0
with probability 1 — p. . From the symmetry of this distribution, it follows
easily that for ¢, a component of yx , E(£,) = 0, E (&%) = a, and the &,’s are
uncorrelated.

It will be shown that this process has infinite e-entropy for ¢ < %, by showing
that the lower bound given by Lemma 9 is infinite.

Let a be fixed between 2¢ and 1. By Lemma 6, there are at least a=™"" points
with mutual distances =a on the unit sphere in m dimensions. Hence, the proba-
bility that yx lies in an e-neighborhood on the unit sphere in », dimensicns is
less than @”* 'pi . Let z(t) be such that yi, , Y&, , - - * , Yx, are non-zero, and the
rest of the y,’s are zero. Then

ulS(z, ) < ITimo (1 = p) IT— ™ 7'pes/ (1 — i)
2(t) has this property with probability JJr-o (1 — pe) [ L= 21,/ (1 — ;).

m

Hence,
H(X) z E(log {1/ulS(z, e)]})
> > ITime 1 — po) - o,/ (1 — 1)1 {log 1/]Te (1 — pi)]
+ Diillog (1 — pi;)/pr; + (miv; — 1) log (1/a)]}.
Simplifying this expression, we find
H.zlog[1/ ]I (1 — )] + im0 pitlog [(1 — i) /pel + (m — 1) log (1/a)}.

This is infinite because of the last term in the braces, for
D (e — Dpe = D 2t — 1
is infinite.

The process used above was only shown to have infinite e-entropy for e < 3.
However, a similar construction gives a process which can be shown by the same
method to have infinite e-entropy for any ¢ > 0. This can be accomplished by
taking the sphere used in the distribution of yx to have radius R, with lim,«
Ri = . Then let p, = wmai’/ R.’, and infinite entropy follows if the R, increase
slowly enough that

i1 (22kak2/ R’) = .
Since such R; always exist if > 2%q,” diverges, Theorem 10 is proved.

Theorem 10 can be used as in [8] to show for example that > ne. < o for
processes on [0, 1] whose covariance function R(s, t) satisfies |2R(s, t) —
R(s,s) — R(t, 1) = 0(]s — ') as|s — {| > 0,6 > 0.

REMARK. It can be shown that there exist mean-continuous stochastic processes
on the unit interval (Gaussian in fact; see [6]) with finite e-entropy for every
positive e, but such that H. is an arbitrarily rapidly increasing function as e — 0.
Of course, for these processes, > no,’ diverges. Examples can also be given of
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processes with finite e-entropy for some e but not others (these can be taken to
have the support of u be a bounded set in Ls).

We note that in [6] it is shown that the Wiener process on [0, 1] has e-entropy
H, with 1/2¢ < H. £ 1/¢. For this process, o, = 1/7°(n — %)’,n 2 1, and so
> ne,’ diverges, as it must by Theorem 9. By Theorem 10, however, there exists
a non-Gaussian process with the very same eigenvalues whose e-entropy is in-
finite for every ¢ > 0.

As we have remarked previously, [6] shows that for any eigenvalues 0.’ with
> o, finite, no matter how slowly decreasing, there exists a process with those
eigenvalues with finite e-entropy for every positive e. Namely, any Gaussian
process with those eigenvalues will do. In other words, no given slow rate of decay
of the eigenvalues guarantees infinite e-entropy.
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