ON CERTAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS
AND THEIR APPLICATIONS TO SIMULTANEOUS
CONFIDENCE BOUNDS!

By C. G. KHATRI

University of North Carolina and Gujarat University

1. Introduction and summary. In practical situations, one is generally faced
with multivariate problems in the form of testing the hypotheses or obtaining
a set of simultaneous confidence bounds on certain parameters of interest. We
shall consider here the variates under study to be normally distributed. A lot of
work on the univariate and multivariate normal populations for the simultaneous
confidence bounds on the location and scale parameters has been done, (see
references, not necessarily exhaustive). Establishing certain inequalities for
normal variates, we try to give shorter confidence bounds on variances and on a
given set of linear functions of location parameters when this set is previously
chosen for study. For the univariate case, Dunn [6], [8] using the Bonferroni in-
equality, obtained shorter confidence bounds when the number of linear func-
tions is not too large. We may note that Nair [12], David [5], Dunn [6], [7], [8]
and Siotani [22], [24] have studied the closeness of the Bonferroni inequality
while deriving the percentage points of certain statistics in univariate and multi-
variate normal cases. In this paper, we improve the Bonferroni inequality in all
the situations considered by Siotani [22], 23], [24] and Dunn [6], [7], [8], and point
out various uses of these results in obtaining simultaneous confidence bounds on
variances and on linear functions of means (or location parameters) with confi-
dence greater than or equal to 1 — o where «a is the size of the test. We mention
our main results in Section 2 for those who are interested in results and not in
proofs. Since our results are extensions of Dunn [6], [8], Siotani [22], [24] and
Banerjee [2], [3], their comments on the shortness of the confidence bounds apply

to our cases too.

2. Notations and main results.

2.1. Notations. As far as possible, a column vector (or a matrix) will be de-
noted by a small (or capital) bold face letter. A:n X m means a matrix with n
rows and m columns. An identity matrix will be denoted by I (or I, , p being the
order of I, wherever there is confusion), and a null matrix will be denoted by 0
without any discrimination. A’ means a transpose of A. |A| means the determi-
nant of A while |a| means the modulus of a scaler quantity a. If A is a symmetric
positive (semi-)definite (s.p.sd.) matrix, then there exists a symmetric matrix
denoted by A? such that (A*)® = A. A matrix A: p X p will be said to have a
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structure 1 if @i = asor (@i app) for ] £ 1,54 =1,2,--+,p, and a;; > 0

for all 7.

A region D = D(x) will be said to be symmeiric in x about the origin if x e D
implies —x & D, while a region D = D(x;, Xz, - - , X,) will be said to be sepa-
rately symmetric in X1, X2, +++ , X, about the origin if (%1, --- , X,) ¢ D implies
(eX1,+++ ,eX,)eDforalle, -+ ,e,suchthate; = +1lor —1forj=1,2,...,
n. If f(x) is the density function of x and D = D(x) is any region, then P(D) is
given by

(1) P(D) = [»f(x) dx.

Throughout the paper, E will stand for expectation over the random variables
involved. If x:p X 1 and y:q X 1 are random vectors, then Cov (x, y) =
E(x — E(x))(y — E(y))' is a matrix of p rows and ¢ columns. Note that
Cov (y, x) = [Cov (x, y)]'. We shall denote V(x) = Cov (x, x). x’(n) will be
denoted by a x’-statistic with n degrees of freedom. For > 0, we shall write
(2) B(a, by x) = [B(a, D) [54 (1 + y)™*"dy and

Ba(b, a;27") = 1 — By(a, b; x).

If x is a random vector with density funetion f(x), it is denoted by x ~ f(x).
If x;,j = 1,2, .-+, n, are independent random vectors with the respective
density function f;(x;), it is denoted by x; ~ Ifj(x;),7 =1, --- ,n.x:p X 1 ~
N(u, V(x); x) provided x is distributed as normal with mean uw and variance
matrix V(x), and if V(x) is nonsingular, it is written as

(3) Ny, V(x);x) = ) ™|[V(x)|™ exp [—3(x — ) V(X)) (x — )]
for all |z;| £ .
A random s.p.d. matrix S:p X p ~ W(p, m, £;S), m = p, provided
(4) W(p, m, £; 8) = {2 " H[IaTG0m — & + 1)[=[™™
S exp (—3 tr =7'S).

Let Tp(m) = «*® P 2T (3(m — 1 + 1)).
A random matrix Y:p X n ~ A(p, n, m; Y), m = p, provided

Alp,n, m;Y) = 7" [P {T(3(m +n — 4 + 1))/T(3(m — i + 1)}
I, + YY' [
(5) or
Alp,m,m; Y) = o [ (T(3(m 4+ 7))/T(3(m — p + i)}
L + Y'Y/,

2.2. Main results. We give below some of the important results with certain
applications without actual proofs.
TuporeM 1. Let D; = Di(x®) and Dy = Dy(x®) be two convex regions re-
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. PN = (x® @7y
spectively symmetric in x° and x® about the origin and let x (x
N(0, V(x);x). Then P(D1D;) = P(Dy)P(D,) provided the rank of Cov (xa), X
©8 at the most one.
THEOREM 2. P( |x,l 2c,i=12 --,p) 2 [[ZLP(|zd = c:) provided
x = (2, -, 2,) ~ N, V(x);x) and V(x) has the structure 1.
The main consequences of the above theorems are Corollaries 5, 7 and 8 of
which 5 and 7 are given in particular forms as under:
CoROLLARY 5. If X; = (m1j, @aj, -+, Tp) ~ IN(0, 2;%;),7 = 1,2, .-+, n,
.and A is s.p.sd., then :
P((xﬂ: Tty xin)A(xﬂ; e xi‘ﬂ)’ = Ci, 1= 1, Tty p)
2 [T P((zia, -+ Tin)A(a, -+, i) S €.
CorOLLARY 7' If X; = (21, o, -+ + , Tpi) ~IN(0,2;%,),j = 1,2, -+ ,n, &
has the structure I, and A is s.p.sd., then
P((xﬂ; Tty xin)A(xﬂ: ] xin), = Ci, 1= 17 Tty p)
; Hf=lP((x’Ll, Tty x’i‘n)A(xil; ctty, xin), g Ci)o
The immediate consequences of the above results in simultaneous confidence
bounds on variances, which do not require any proofs, are the following (6),
(7) and (8):
Let x; ~ IN(u, £;%;),5 = 1,2, -+, n. Let £ = D rx;/n and s;; =
Dta(wy — &), 1 =1,2, ---, p. Then, with confidence coefficient greater
than or equal to (1 — «), we have the lower limit on ¢4;, 7 = 1,2, ---, p, as

(2))

—1 .
(6) gii Z CixSii, 1 = 1,2, -+, p,

where ¢;1’s are to be calculated from (1 — «) = [[2:P(x*(n — 1) £ ¢ia),
while if = has the structure 7, the simultaneous confidence bounds on the upper

limit of 65, ¢ = 1, --+, p, with confidence greater than or equal to (1 — «)
is given by

(7) UiiéC;:-,;Sﬁ,l'= ]_,2, e, D,

where c; ’s are to be calculated from (1 — ) = [[2a P(x*(n — 1) = ci2).

We give one more application on variances. Let x;: p X 1 and y; : ¢ X 1,
j=1,2,---,nandj =1,2,---,m, be independent random vectors such that
X; ~ IN(u, =1 ; %;) and y;» ~ IN(v, Z;; y;») in which =, has the structure 1.
Let si1 = 2 -1 (24 — &:)" and sivirp = D 7o (yoyr — yo) fori = 1,2, -+, p
and ¢’ = 1,2, -+ -, ¢. Then, with confidence coefficient greater than or equal to
(1 — «), we have the simultaneous lower limit on ¢;;1/0002foris =1, ---, p
and?¢ =1, .-+, qas

(8) 0ii1/Tiire = Sia/CSiir2 for all 7 and 7’

where ¢ is a constant to be determined from (1 — &) = P(xkax1(n — 1)
Kmin2(m — 1)), Xmaxa(n — 1) = max;xii(n — 1), xhinea(m — 1)

I IA
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miny x32(m — 1) and x31(n — 1) and xpo(m — 1), =1, .-+, pand i =
1, -+, g, are independent x’-variates. Note that the distribution of the above
statistic in general is not known. Hence, we can calculate ¢ from (1 — «a) =

42 P(xoaxa(n — 1) = ext(m — 1)). The value of ¢ can be calculated by
using the tables of Pillai and Ramachandran [13] and Krishnaiah [11]. Even if
these tables are not available, we can caleulate ¢ from (1 — &) = [ [[%- -
P(xii(n — 1) £ exia(m — 1)). Similarly, we can consider the simultaneous
upper limit of ¢4 1/cs 2 for all < and ¢’ by interchanging the structure I from
X, to =1 . The proofs of (6), (7) and (8) are not given in the text and they are
left to the reader.

The following two theorems are connected with maximum (or minimum)
Hotelling 7" as defined by Siotani [22], [23], [24] when the tables are not available.

TuroreM 3. Letx;:p X 1,5 = 1,2, -+, n, be normally distributed with zero
means and Cov (x;, X;/) = bjyE forj,j =1,2, -+, h, and T is any s.p.d,
Let S:p X p ~ W(p, m, £; S) and be independent of (X1, X2, + -+, X,). Then’

(9) P(x/S7'x; £ ¢bj,j=1,---,n) = H}‘=1P(y,-'y,~ <¢,j=1---,n)

whereY:p X n = (¥1,¥2, "+ + ,Yu) ~ A(p, n, m; Y). When the tables on the right
side of (9) are not available, we can use the inequalities

(10)  P(yiy; £ ¢j=1,2-,n) 2 (B30, 5(m + 1 — p); c}”
and
(11) IDaGe, 30m + 5 = p);c0) 2 Py S 0,5 = 1, -+, n)
z w [T548G3p, 3(m +n — p);¢e)
where cay < cgy S -+ = Cmy are ordered values of c;’s, and
(12) w = [(II}5{TG(m + 7))/T(3(m — p + )}
A3 (m +n —p))/TG(m 4w

TuEorREM 4. Let x;:p X 1,5 = 1,2, -- -, n, be normally distributed with zero
means and Cov (%;, xj) = b;y= for j, 5 = 1,2, ---, n, T is any s.p.d. and
(bj;) has the structure I. Let S: p X p ~ W(p, m, E; S) and be independent of
(X1, **+ , Xn). Then,

(13) P(x/S7'x;z ebyii=1,-++,n) 2 [}~ PGy 2 ¢, =12 - ,n)
where Y:p X n = (Y1, V2, **, Yu) ~ A(p, n, m; Y). If the tables on the right
side of (13) are mot available, we can use the inequalities

(14') P(yj'yj‘ Zcj=12 ,n) = B(i(m + 1 — p), 3p; O

and
(14) P(yi/yiz ¢i,j=1,2 - ,n) Z [[}ap(3(m 4+ j — p), 3p; casin)
where cy £ -+ = cw are ordered values of ci’s. Note that (14") s better than (14)

when all c’s are equal.
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No applications of Theorem 4 is given. We give below some results on s1mu1-
taneous confidence bounds on the location parameters

Letxjs:p X1 ~IN(u:, Zs;%x5:) forj=1,2,--- ,n;andét = 1,2, --- ksuch
that =;,¢{ = 1,2, -+, k, have the structures [. Le’c %= DX/, (s” ) =

= > "M (X — %) (Xt — %) :p X p,S = i S;. Then, if =/s are unequal,
we have the simultaneous confidence bounds on viy = D 5—y pilye, © = 1, 2,

-,p,and y = 1,2, - | r, with confidence greater than or equal to (1 — «)
as

(15)  zig — (Db 1 f s /m)t < viy S 20y + (Db 1 fi0%:882 /my)? for all i and v,

where a,’s are given real numbers, z;, = ) s_; ayE:; and fi’s are to be determined
from Ba(3, 3(n: — 1);f) = (1 — &)™

In the above problem, let us assume that X; = 2, = . .- = X; = X(say) and
= is any s.p.d. matrix. Then, simultaneous confidence bounds on b'v, =
>k (dw)a, for y = 1, ---, r and for all non-null vector b: p X 1 with
confidence greater than or equal (1 — «) as

(16) b'z, — {o,(b'Sb)(2iaali/n)}
= by £ b2, + {o(b'SH) (Xt abe/n)}
where z, = Y tya,&:, and c,’s are to be determined from
(17) l—a=Pyy 6,y =1,2 -,71),
Yip X7 = (y1,¥2, -0, ¥0) ~ A(p, 1, 2ot — ks Y).

We use the inequalities given in Theorem 3 when the tables for (17) are not
known.

In the general MANOVA model, the columns of X: ¢ X n are independently
distributed as normals with common covariance matrix =, and E(X) = QL
where Q: ¢ X sand L: k X n are known matrices of rank s and k respectively.
IfC:p X gand A: k X r are known matrices of respective ranks p and r, let us
write

v = (riy):p X1 = CEA,
Z = (2,)1p X r = C(Q'Q)'Q'XL/(LL) A,
B = (byy)ir X r = A'(LL)'A,
So = (s:,0):q X ¢ = C(QQ)'Q'X[I — BIX'Q(Q'Q)'C’
and Zoig X ¢ = C(Q'Q)Q'E:Q(Q'Q)C".

Then, (z, — v,), v = 1, 2, ---, r, are normally distributed with zero means
and Cov (z,, z,/) = by, 2, and independently distributed of Sy ~ W(p,n — k,
JZo; So). Then, simultaneous confidence bounds on d'v, for all 4’s and for all
non-null vector d: p X 1 with confidence greater than or equal to (1 — «) as

(18)  d'z, — {cy)(d'Sed)by}t = d'vy = dz, + {)(d'Sod)bs,}?
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where ¢,’s are given by (17), and n = »_r_3n,. If Zo has the structure [, then
simultaneous confidence bounds on v;, for all + and v with confidence greater
than or equal to (1 — «) are given by

(19) iy — (ui'ybwsii.O)% S vy S 2yt (ui'ybwsii.o)i
forz =1, ceeypiy =1, 1
where ui,’s are to be determined from []:,B:(%, 2(n — k); uy) = 1 — a.

We may note that in all the above cases, we require the percentage points of
t, x> or F distributions, in some cases maximum studentized ¢-statistic [13] and
maximum Hotelling 77 [22], [23], [24] when their tables are available.

3. Some inequalities for multivariate normal distributions.
LemMmA 1. Let D = D(x) be a convex set symmetric tn X about the origin. Then

Joexp [—3(x — yob) = (x — yob)] dx

18 @ monotonic non-increasing function of |yo| if Z:p X p iss.p.d. and b:p X 1.
This follows from the following result proved by Anderson [1], p. 170-1.
Let D = D(x) be a convex set symmetric in x about the origin and let f(x)

be a function of x: p X 1 such that (i) f(x) = 0, (ii) f(x) = f(—x), (iii)

{x|f(x) = u} is a convex set for every u, and (iv) fD f(x) dx < . Then

[of(x + yob) dx = [ f(x + b) dx for0 < yo < 1.

For Lemma 1, f(x) = exp (—x'=7'x), and note that all the conditions of the
Anderson’s result are satisfied.

Lemma 2. IfS:p X p ~ W(p,m, Z;S), m = p, then P(|S| £ ¢) ©s a monotonic
non-tncreasing function of m for any given values of ¢ and p.

Proor. We note that the density function of y = |S| can be written as

£Hi(y) = {fa(m)} Y [, exp (—3 tr £7'S) dS

where D1 = Dy(S |y = [8]) and fy(m) = 2""a" "V [J2iT(3(m — ¢ + 1))
|Z|*™. Tt is easy to show that E (log |S|) = f2' (m)/fa(m) with fy'(m) = (d/dm)
fo(m). We have

P(8] £ ¢) = [i fAly) dy,

and hence

(d/dm)P(IS| £ ¢) = [7fi(x) dz [3f1(y)(log y) dy
— % fu(y)(log y) dy [§ fi(x) d

= [% fu(x) do [§fi(y)(log y) dy

— JZ Ay)(og ) dy [ fi(e) de.

Now, since (log y) is an increasing function of y, we have

S A (og ) dy [§fi(=) de z [T fi(y) dy [§ fi(w) da(log ¢)

| > [% 5i(2) do [3 i(y) (log y) dy.



INEQUALITIES FOR NORMAL DISTRIBUTIONS 1859

Hence, (d/dm) P(|S| £ ¢) is never positive and this proves Lemma 2.
Lemma 3. A s.p.d. matric N:p X p ~ MB(p, %a:, 3as; N) for (a1, as) = p
where

(20) MB(p, %a1, %as; N) .
= Th(a + a){Tp(a)Tp(a)} N[OV 4 N|THerte,

Then, MBs(p, 3a1, 3a2; ¢) = P(N| = ¢) 4s (i) @ monotonic non-increasing function
of ay for given values of p and a,, while (ii) a monotonic non-decreasing function
of as for gwen values of p and a; .

Proor. Since

27 Ty(a + a){Ty(a)} [l + N[

= BSP if S ~W(p, a, 1+N)78),
we can write P(|N| < ¢) after some transformations as
(21) P(IN| £ ¢) = L W(p, a2, 1;S)W(p, &, I; N) dS dN

where D = D{N, S| |N| < ¢|S|, N and S are s.p.d.}. Using Lemma 2 in (21), we
get Lemma 3.

LEmMA 4. Bo(a, a1 ; ¢1)Ba(a, a; ¢2) = Be(a, a1; ¢2)Be(a, Gz 5 ¢1) if a1 = az and
Co g .

Proof follows from the equality

Be(a, a1; c1)Ba(a, az; c2) — PBa(a, ar; ¢2)Ba(a, az; 1)
= constant [5=¢' [4=¢2 (xy)* (1 + & + y + ay) "™
AL 4 2)" @7 — (1 + y) T} dedy

and the expression in the curly bracket is non-negative for any value of x and y

under consideration.
LemMA 5. Let g(x) and h(x) be two functions of real random vector x. Then

Eg(x)h(x) = Eg(x)Eh(x)

provided for any two points X1 and X, either g(x1) = g(X2) and h(x1) = h(xz) or
g(x1) = g(x2) and h(x1) = h(xy), while Eg(x)h(x) < Eg(x)Eh(x) provided for
any two points Xy and Xs , etther g(X;1) = g(Xa) and h(x;1) = h(xX:) or g(x1) = g(x2)
and h(X1) = h(Xs).

Proor. Let y; and y, be any two independent and identical random vectors
having the same distribution as that of x. Then {g(y;) — g(y2)}{h(y1) — h(y2)}
= 0 for all y; and y, for the first part, while {g(y1) — g(y2)}{h(y) —h(y2)} =
0 for all y; and y, for the second part. Hence, taking the expectations we get
Lemma 5 as required.

"‘CoroLLARY 1. Let f = f(x) be a function of a random vector x. Then,

(i) Ef" = (Ef*)(Ef*) for any non-negative integers s and t such that s + t = r.
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(ii) Ef" = (Ef’)(Ef*) provided f = 0 and s and ¢ are any non-negative numbers
such that s + t = r, and

(iil) #ff > 0 and Ef " exists for anyt, then Bf’ < (Ef*)(Ef™") provideds —t =r
and s and t are non-negative.

Proof of (i) and (ii) follows from the first part of Lemma 5 and proof of (iii)
follows from the second part of Lemma 5.

COROLLARY 2. Letx;:p X 1,5 = 1,2, - -+, n, be independent and identically
distributed random vectors and be distributed independently of y: ¢ X 1. Then,

(1) P(f(xj,y) 2 ¢,§=1,---,n) 2 [P(f(x,y) 2" and
(H) P(f(xj,y)éc,j=l,2,---,n)g[P(f(x,y)éc]”

where x has the same distribution as that of x;.

Proor. Note that when y is fixed, fi(y) = P(f(x,y) = ¢|y) = 0 and then
the left side of (i) is equal to E[fi(y)]". Hence, using the Corollary 1(ii), we get
the Corollary 2(i). Similarly, the second part of the corollary can be proved.

TuporeM 1. Let Di = Di(x®) and D, = Dy(x®) be two convex regions re-
spectively symmetric in x¥ and x® about the origin and let x = (x, x? ~
N(0, V(x);x). Then P(DiDs) = P(Dy)P(D,) provided that the rank of Cov (x*,
x®) s at the most one.

ProoF. Let xP:7 X 1 and x®: (p —r) X 1. We shall first prove the result
when V(x) is s.p.d. Let us consider the random variables (x'yo) ~ N(O, V(x'y0)";

(x'10)") where

. V(x(l)) COV (X(l), x(2)) a
Vv < > = | Cov (x?, x7) V(x?) b | is s.p.d.
Yo a b’ 1

Then, it is easy to see that x ~ N(0, V(x); x) and x given yo ~ N(ayo, V(x") —
aa’; x)N(byo, V(x®) — bb’; x®) provided Cov (x¥, x®) = ab’. Since the
rank of Cov (x*, x®) is at the most one, we can always find two vectors a and
b such that Cov (x(l), x?) = ab’. This means that the distributions of x® and
x® given ¥, are independent normal. Using these facts, we can write P(D1D,) =
Eg(yo)h(yo) where

9(Yo) = fbl N (ay,, V(x(l)) _ a.a/; X(l)) dx® and
h(yo) = fD2 N (byo, V(xm) — bb,; x@)) clx(2’.

Note that Eg(yo) = P(D;) and Eh(y,) = P(D.). Then, using Lemma 1
and the first part of Lemma 5, we get

P(DiDy) z Eg(yo)Eh(yo) = P(D1)P(D:)

which proves the result when V(x) is s.p.d. When V(x) is singular, we consider

w® = x® 4+ y® and w? = x® + y® where x ~ N(0, V(x);x),y = (y",

y®) ~ N(0, ¢I;y), x and y are independently distributed and ¢ > 0 (however
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small) such that V(x + y) = V(x) + ¢l is s.p.d. Since V(x + y) is s.p.d.,
we have

(22) P(Dy(w®)Do(w®)) = P(Dy(w®))P(Do(w®)).

We note that as ¢ — 0%, y — 0 and consequently w — x. Hence taking limits in
(22) as ¢ — 0", we get Theorem 1 for the singular case too. Thus, Theorem 1 is
completely proved.

CoroLrArY 3. Let x; = (x5, ,%") ~ IN(0, V(x,); %,),7 = 1, 2, n,
such that the rank of Cov (x,°, x;%) is at the most one for all j and V(x;) I (x] ),
j# . Let Dy = Dy(x,",j = 1, , oo ,n) and Dy = D4(xf”,j 1,2, -+, n)
be convex regions respectively separately symmetric in 0, i=1,---, n, and in

x;?,j =1, -+ ,n, about the origin. Then, P(Ds;D,) = P(Dg)P(D4).

Proor. Let N; = N(O, V(x,); x,), N1 = N(0, V(x,); x;) and N, =
N(O, V(x,®); x,%), forj = 1,2, -+, n. Then,

P(DsDy) = [o40, ] 171 (N, dx;).

Now, since D; and D4 are convex regions respectively separately symmetric in
x;(j=1,---,n)andinx;® (j = 1, --- , n) about the origin, we get Ds and
D, as convex regions respectively symmetric in x" and %, about the origin
when %%, -+, %%, %@, - -+, x,.% are kept fixed. Hence, using Theorem 1 for

integration over x; , we get
P(D3D4) z fD3D4 N1’1N1'2 dxl(l) Xm(Q) H;L:Z (N] de).

Continuing this type of arguments for x,, then x;, - -, and lastly for x, , we
get

P(DsDi) Z [oyny J15-1 (Vi1 dx; "N ;2 dx;?) = P(Ds)P(D).

CoROLLARY 4. Let D; = D{z:j,5 = 1,2, --- , n) be a convex region separately
symmetric i s, J = 1, -+, n, about the origin for © = 1, 2, --- , p, and let
Xx,:p X 1 ~ IN(O, V(x;);%;),5 = 1,2,--+, n. Then P(D\D, --- D,) =
12 (P(D)}.

This follows from Corollary 3.

COROLLARY 5. Let X; = (&yj, Taj, =+ , Xp;) ~ IN(0, X5%;),5 = 1,2, -+, n,
andlet A;:n X n,72=1,2, -+, p, be given s.p.sd. matrices with real elements such

that they are reducible to diagonal matrices by a single orthogonal matrixz. Then,
P((x'ily 7xin)Ai(xi1y 7x13n), é C,;,?: = 1} yp)
= 1?=1P<(xz“17 yxin)Ai(xﬂ) yxiﬂ), = Ci)'

ProoF. Since A/’s are s.p.sd. and are reducible to diagonal matrices by a single

orthogonal matrix Q: n X n, say, then A; = QTQ, fori =1,2, - -, p where
T?s are diagonal matrices with non-negative diagonal elements. Let
Q(wa, -+, xin>, = w;, 1 =1, 2,---, p. Then, (wiy, -, wpf)l ~

IN@O©, =; (wyj, -+, wp)),7 = 1,2, - -+, n. Then, the left side of Corollary 5 is
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equal to P(w/Tw; < ¢;,7 = 1,2, ---, p) and then using Corollary 4, we get
P(w/Twi < ci,i=1,---,p) 2 [[2 P(wi/Tow; < ¢:)
= the right of Corollary 5.

Thus Corollary 5 is proved.

THEOREM 2. P(|zy| = ¢i, i = 1,2, -+, p) = [[2 P(lzi| = ¢i) provided
X = (21,%, ,2) ~ N0, V(x);x) and V(x) has the structure I.

Proor. Since V(x) has the structure I, we can write it as V(x) = T + «d’
where T: p X p is a diagonal matrix with diagonal elements /(1 — &%), V(2:) =
o, i=1,2,---,p,and & = (o010, -+ , 0p0), |aj] £ 1. Let us assume that
V(x) is s.p.d. Consider the random variables (x'yo)" ~ N (0, V(x'y0)’; (x'%0)"),

where
X T + «d )
V< = <  Yisspa
Yo (1 1

Then, it is easy to see that x ~ N(0, V(x); x) and z; given
Yo ~ IN(ciatjo, 0i(1 — a);25), 4= 1,2, -+, p.
Hence,
P(led 2 ¢i,i=1,-+-,p) = E TP 94w0)
where
9i(%0) = [(ai120s N(oiatyo, oi(1 — af); i) das, i=1,2--,p.

Note that Egi(y) = P(|zs = ¢;) and by Lemma 1, gi(yo) is & monotonic non-
decreasing function of |yo|. Hence, using the first part of Lemma 5, we get
Theorem 2 when V(x) is s.p.d. When V(x) is singular, we can use the similar
arguments as employed in proving Theorem 1 for the singular case of V(x).

COROLLARY 6. Let x; = (tyj, -+, p;) ~ IN(0, V(%);%),5 = 1,2, -+, ,
such that all the matrices V(X%;),7 = 1, - -+, n, have the structure l. Then,

P(X Nt Z ciyi= 1, ,p) Z [[E P(2 3 hiads = c)

where \;,; = 0 and ¢; = 0 for all © and j.
Proor. Let N; = N(O, V(x;); x;), Nj; = N(O, V(zs); xs) and
Di= D2 taNiji; = ¢i)fori =1,---,pandj = 1,2, ---, n. Then,

PO taNiighi Z ciyi=1,+++,D) = [o;pgn, L15=1 (N;dx;).

With the help of Theorem 2, the integration over x; when X, , - -+ , X, are fixed
gives

P(Z;;l )‘i,ix%j Zci,t=1,-,p) fDng-o-D‘, (Hf=1 Ny dxn)(H;-;z N;dx;).
Continuing this type of arguments for x, , - - - , and lastly for x, , we get Corollary

6. Note that the above arguments are similar to those given in the proof of
Corollary 3.
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COROLLARY 7. Let X; = (215, o, -+ - , Tpj) ~ IN(0,2;%,),5=1,2,--- ,n,
and let A;:m X n,2=1,2, ---, p, be given s.p.sd. matrices with real elements such
that they are reducible to diagonal matrices by a single orthogonal matriz. Then, if
X has the structure 1,

P((xily :x'in)Ai(xﬂ) ’xtn)lg ci)i =1--- )p)
g Hf=1P((x1,1, Ty, xm)Az(xu y Tty xin)' % C,;).

The proof is similar to that given for Corollary 5. We do not repeat what is
done in the proof of Corollary 6.

Combining Corollaries 5 and 7, we get the following result:

CoROLLARY 8. Letx; :p X 1 ~ IN(0, £ ;%;),¥i : p X 1 ~IN(0, =5 ; y;r) for
i=1,2 - ,mandj =1,2, -, ny and let them be mutually independent. Let
Ai:my XnandB;:ng X ng,i=1,2, -+, p, be given s.p.sd. matrices such that
A/s are reducible to diagonal matrices by a single orthogonal matriz and B/sare re-
ducible to diagonal matrices by a single orthogonal matrix. Then, if 2o has the struc-
ture [, then

P((za, iy ) Al @i, -+, Tiny)
ci(y’il PR ymz)B'b(yﬂ y " yinz)’) 1= 1: e 7p)
T2 P((2aa, -y Tiny ) ATty ++ v Tiny)

S cilYa, 0 Ym)Blya, 0, Ying))-

Theorems 3 and 4 are given in Section 2 and since they are slightly lengthy, we
do not rewrite them at this place. Their proofs are given below:

Proor or THEOREM 3. Since the statistics x;/S7'x;,7 = 1,2, -+, n, are in-
variant under the transformations £7?Sx™* — S and = 7’x; — x;, we assume
without loss of generality = = I. Hence, when S is fixed, the use of Corollary 5
gives
(23) P(x/S7% S biej,j =1, -+ ,n|8) 2 [} P(z/87'2 £ ¢]8)
where z; : p X 1 ~ IN(0,1;2;),7 = 1, 2, ---, n. Using the transformation
S_’zf = Yj)j =1,2---,n, and wrltng = D(Yj/Yi = Cj,j =1, 2, e 7n)y
we get

IT5= P(2/S7'2; < ¢;]8) = (20)7"" [ S/ exp (—} tr SYY') d¥,
where Y:p X n = (y1, ¥z, - - , ¥2). Hence, integrating over S, we get
(24)  EI[-P(z/S7'2 < ¢;|S) = P(y/yi S ¢, = 1,2,--+ ,n)

where Y:p X n ~ A(p, n; m; Y). Taking the expectation of (23) and using (24),
we get the result (9). When ¢; = c for all 7, the use of Corollary 2(ii) and (24) in
P(z/S7'z; £ ¢,j = 1,2, ---,n) gives the result (10), for P(z/S7'z; £ ¢) =

Ba(3p, 2(m + 1 — p); ¢). We note that |[I + Y'Y| < J]5 (1 + y'y;) and so
(25) A(p,m, m;Y)
2 w [[= {T(30m + )T (3(m + n — p)I (L + yiy) ™)

IA

v
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forall Y:p X n and w being defined in (12). From (25), we get the right side of
the inequality (11). For the left side of the inequality (11), we note that if

= (y1,Yo), I + YY| = I,y + Y,Yo|(1 4+ yi' (I, + YoYy) 7'y1). Using the
transformation v = (I, + YZYQI)_%yl , the domain yllyl =< ¢, is changed to the
domain v1'(Ip + Yng,)V1 =< ¢ and this domain implies the domain wwLa.
Hence,

Ba(3p, 5(m + n — p); c1)

=P £ ¢1) = P(yi'yi = w'(I, + Yo¥o)wi < 1| Yo).
Using this in the right side of (24), we get
P(yfy; S ¢i,j=1,--+,n)

< B(3p, 3(m 4+ n — p); e)P(yily; £ ¢;,5 =2, -+, ).

If we integrate y;, instead of y1 , we shall get ¢;, in place of ¢; . Proceeding in this
way, we get

P(yiyi<ci,ij=1,2--+,n) £ JI}=8(3p, 3(m +j — p);cs;.)

where (j1,72, ** , Ja) 18 any permutation of (1,2, - -+ , n). Using Lemma 4, we
get the left side of the inequality (11). This proves Theorem 3 completely.

The proof of Theorem 4 is exactly similar to that given above, but in order to
eliminate certain inequalities, we use Lemma 3 for p = 1 only.

ReMARK. For any non-singular ¥ (x) matrix in Theorem 2, it has been shown
that P(|lz)| = ¢i, 4 = 1,2, -+, p) is locally minimum at Cov (z;, z#) = 0 for
i5#4,4,7 =1,2, -+, p. This gives some hope that Theorem 2 may be true for
any V(x).

4. Simultaneous confidence bounds on a set of linear functions of location
parameters.

4.1. On the means of k independent multivariate normal variates with different
covariance matrices having the structures I. Let X;;: p X 1 ~ IN(u:, =t Xjt),

j=12---,ns,and¢ = 1,2, .-+, ksuch that £,,¢ = 1,2, --- , k, have the
structures 1. Let (Zae, @ae, -+, &pr) = & = 25t Xj/n, (s$) = 8§, =
Somt (% — %) (X — %) :p X p. Here, we obtain the simultaneous confidence
bounds on viy = X et Gyetiz, 4 = 1,2, -+, p,andy = 1,2, - - - , r in the similar

form as that given by Banerjee [2], [3] for r = p = 1. Let 2z, = D Ny
Then, 25, for all 2 and v are jointly distributed as normal with means v;, and co-

variances given by Cov (24 , 2iy) = D tm1 Qi) /my fori,4 =1, --- , pand
v,v =1, -+, r and they are independently distributed of S, ~ IW (p, n; — 1,
=:;S8:),t=1,2, .-, k. Since X, has the structure I, so using Corollary 7 and

taking f; = 0 for all ¢, we get
P((2iy — viy)® £ D iafidbisi?/my, forall 4 and v|zi’s,Ss, -+, Sk)
= P((Zw - Vi»,)2 = f1a%,1<7$))(z ("1/1 - 1)/n1

+ orafalsi?/ng, forall 4, v]|2i’s, S, -ce, Sk).
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Now, using the same type of arguments for S, , -- - , Si, we get
P((2iy — viy)* < D beafudlesi?/n, forall 4, y|zi's)
= P((2sy — viy)’ < Zt=1fta.,,¢r£i xi(ng — 1)/n; forall ¢ and « [2iy’s),

where x*(n; — 1), = 1,2, --- ,pand¢ = 1,2, --- , k are independent x*-vari-
ates with n, — 1 degrees of freedom. Now, using Corollary 5, we get
(26) P((2iy — viy)’ = D b afud2esi?/n, forall <, v)

2 P(viy £ 2t fwsexd (ny — 1) forall 4, v)
where Wive = (avta'w)/nt)/(Zt'—l a'yt’o'u /nt') Zt—l Wiyt = 1 for all 7 and
¥, 0y ~IN(0, 1; v,.,),i =1,2,---,pandy = 1,2, ... |r, and are independently

distributed of all x(n; — 1). Referrmg Banerjee [2], p. 357, [3], p. 361, we can
write

(27) P(Joi] £ (Db fwmxi(ne — 1)) forall 4, y| all x2(n — 1))
2 JLin {22t wilP(vly < fix(ne — 1) all x(n. — 1)}.
Combining (26) and (27), we get finally
(28) P((2iy — viy)" S 2 ta fuayesi? /ng forall 4, )
= Hz'y Zt—lwzvtﬂ2 3, 3(ne — 1); fo)}

because P(v, < fixi(ne — 1)) = Bo(3, 2(n; — 1);f:). The rlght side of (28) can
be made equal to (1 — «) by choosing f; such that 8x(3, 3(n; — 1); f,) =
(1 — a)?". Hence, with confidence greater than or equal to (1 — a), we have
simultaneous confidence bounds on »;,’s as given in (15).

4.2. On the means of k independent multivariate normal distributions with equal
covariance matriz. With the same notations as in Section 4.1, we have
% = .-+ = % = X (say) which is any s.p.sd. matrix. We consider the problem
of obtaining the simultaneous confidence bounds on b'v, = > _; (b'u;)a,. for all
v and for all non-null vector b:p X 1. Let S = D 51 S;and z, = ) iy a,&; .
Then, z,,v = 1,2, - -+ , r, are jointly distributed as normal with means v, and
Cov (zy, Zy) = (D e ayyi/n)E and is independently distributed of
S~W(p,n—k=) % in —k =;S). Then by Theorem 3, we have
(29) P((zy — Vv)ls_l(z'r — ) = 07(2'5=1 a%yt/nt) forall v) =z (1 — @)
where ¢;, ¢, - - -, ¢- are to be determined from
(30) P(Y‘/Y'r ScC,y=1--- ;7‘) =1- oc,Y:p Xr

) =(yl’“';yT)NA(p"r;n_k;Y)'
From (29), we have simultaneous confidence bounds on b’v, for all non-null
vector b: p X 1 and for all v with confidence greater than or equal to (1 — «) as
givenin (16). Whenp = land ¢; = --- = ¢, , then the tables are available from
Krishnaiah [10], Dunn [7] and Pillai and Ramachandran [12]. When p > 1, some
tables are available from Siotani [22], [24]. When the tables are not available, we
can use the inequality (10) or the right side of the inequality (11) established in
Theorem 3.
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4.3. General MANOV A model for the growth curve problems. Let X: ¢ X n be
independently distributed as normals with common covariance matrix =, and
E(X) = QZL where Q: ¢ X s and L: & X n are known matrices of rank s and &k
respectively and &: s X k is an unknown matrix of location parameters, (see
Khatri [10], Potthoff and Roy [14]). We are interested in obtaining simultaneous
confidence bounds on (vs):p X 7 = v = CEA, where C:p X gand A: k X r are
known matrices of respective ranks p and r. Let A'(LL"Y'A = B = (byy):
r X 1, Zip X r = (25) = C(QQ)T'QXL(LL)7'A, = = C(Q'Q)™-
Q'=Q(QQ)7'C" and So: p X p = (si0) = C(Q'Q)TQX[, — L'(LL")"'L]-

X'Q(Q'Q)7'C’. Then, z, = (21y, *** , 2py), v = 1,2, --+, r, are jointly dis-
tributed as normal with means v, = (viy, -+, vpy), and Cov (z,, z,) =
byyZ, for v, = 1,2,---,r, and is independently distributed of

So~ W(p,n — k, Zq; So), (see [14]).

Cask (i). If X is any s.p.sd. matrix, then using the similar arguments as in
Section 4.2, we get simultaneous confidence bounds on d’v, for all non-null vector
d:p X 1 and for all ¥ with confidence greater than or equal to (1 — «) as given
in (18).

Case (ii). If =, has the structure [, then using Corollary 8, we get
(31)  P((2iy — viy)® < Uibmsiioforalld, v) = [Lay P((ziy — vir)* £ UirbysSiio).
Hence, simultaneous confidence bounds on »;y for all ¢ and v with confidence
greater than or equal to (1 — «) are given by (19).

Case (iii). If X, has the structure I, n; = (va, vaa, -, ) and v; =
(24, ,2i) fori=1,2, -+, p, then using Corollary 8, we have

(82) P((vi— n)'BH(vi — w) £ gisiso, s =1,--+,p)
= Hf;l P((v; — n) BTV — ) = ¢iSii)-

From this, we have simultaneous confidence bounds on e'v; for all non-null vector
e:r X 1 and for all 7 with confidence greater than or equal to 1 — « as

(33) e,Vi - (Qisii,ﬁe/Be)% = e'm = e'v,-
+ (gsie’Be)? forall i andnon-null e

where g¢/’s are to be determined from [[2: Bx(3r, 3(n — k); qi) = 1 — o

In concluding, we remark that simultaneous confidence bounds obtained in
Section 4 will be shorter than the traditional ones when the number of linear
functions is not too large and in some cases it may nearly be the shortest. All
the results of Section 4 can easily be extended to regression-like parameters (in
testing independence of two sets), to testing the multicollinearity of means (or
to covariance analysis), and to the step down procedures, but they are not given.

I am thankful to Dr. D. Basu for some suggestions especially for Theorem 2.
I am thankful to the referee for the helpful comments.
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Note added in proof. The condition on Cov (x, x®) in Theorem 1 is not neces-

sary and this will appear elsewhere.



