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NOTES

A NOTE ON THE ADMISSIBILITY OF POOLING IN THE
ANALYSIS OF VARIANCE!

By ArtHUrR COHEN

Rutgers-The State University

1. Summary. Consider, for the moment, a balanced fixed two way layout of
the analysis of variance assuming interactions and replications. Suppose a
hypothesis of interest is that the row effects are all equal. A test statistic for such
a hypothesis is the ratio of the mean square for rows (MSR) divided by the mean
square for error (MSE). Another test procedure frequently used in practice is as
follows: Test whether the interaction effects are zero. If it is decided that these
effects are not zero, then test for the equality of row effects by MSR/MSE. If
it is decided that the interaction effects are zero, then test for the equality of row
effects by MSR divided by the pooled mean square error. That is, the pooled
mean square error consists of the sum of squares for error plus the sum of squares
for interaction divided by the sum of degrees of freedom for error and inter-
action. This latter type of procedure is called a ‘“‘sometimes pooling” procedure.
For a more general description and discussion of such procedures see Bozivich,
Bancroft, and Hartley (1956).

In this note we consider the general linear hypothesis model. We prove, in this
general framework, that the “sometimes pooling” procedure is an admissible
test procedure. The proof follows from a well known invariance result and a
theorem of Matthes and Truax (1967). The ‘“‘sometimes pooling” procedure can
be viewed as a test procedure which depends on the outcome of a preliminary
test. It is interesting to note that estimation procedures which depend on a
preliminary test were found to be inadmissible for the squared error loss function.
(See Cohen (1965).) In the next section we state the model and prove the ad-
missibility result.

2. Main result. Consider the canonical form of the general linear hypothesis
model. That is, let z = (21,2, -+, 2»)” be a random vector distributed accord-
ing to the multivariate normal distribution with mean vector ¢ and covariance
matrix o°1. Here ¢ is such that ¢{; = 0,¢ = 7 + 1, - -, n. We wish to test the
hypothesis Hy: {: = 0,72.= 1,2, --- , k, k < r, against the alternative that not
all¢;=0,4=1,2, -+, k Write 2’ = (2%, 2%, 2®") where z is k& X 1, 2®
is (r — k) X 1and 2®is (n — r) X 1. Let ¢(2), the probability of rejecting
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H,, be the procedure defined as follows:

o(2) =1, it (2%%2%/29%:%) > ¢ and (P2 /29%DY > g,
(2.1) =1, if ®%®//99) < ¢
and (2072 ® /2@ 4 0,0y 5 ¢
=0, otherwise.

Here ¢, ¢, ¢; are positive constants determined by the size « of the test. (Recall
the size of the test is defined as the supremum of the probabilities of rejecting
when the null hypothesis is true.) The main result of this note is that the test
procedure ¢(z), given in (2.1), is admissible. In order to prove this we will
show that ¢(z) is admissible among all procedures which are invariant with
respect to the compact group @, of transformations, which are orthogonal trans-
formations of 2. It will then follow from a version of the well known Hunt-
Stein theorem, that ¢(z) is admissible among all procedures. Note that the set of
statisties (2, 2%, 2'2) is sufficient and has a multivariate exponential distribu-
tion. Furthermore it is clear that ¢(2) is a function of the sufficient statistics and
may be written ¢(2, 2?, 2’2). Now we state the

TuroreEM. The test procedure ¢(z) given in (2.1) is admissible.

Proor. Since the group G of transformations mentioned above leaves the
problem invariant, from the above remarks we need to prove that ¢(z) is ad-
missible among all invariant procedures. Suppose then that ¢(z) is not admissible

. N . . . 1
among all invariant procedures. Then there exists an invariant procedure ¢ (2%,

2, 2'2) which is better than ¢(z). Furthermore such a ¢ can be found which is
admissible. This follows since the space of decision procedures for this problem
is compact with respect to regular (weak) convergence; the weak limit of a
sequence of invariant procedures is invariant, thus making the invariant pro-
cedures compact; and the fact that the admissible invariant procedures form a
minimal complete class of procedures among invariant procedures. Now by the
Hunt-Stein theorem again, any admissible invariant procedure is admissible.
Also from Matthes and Truax (1967), Theorem 3.1, a complete class of procedures
for this problem consists of procedures whose acceptance regions have convex
sections in 2 for fixed (2?, 2’z). Hence, if ¢(z2) is inadmissible there exists an
invariant procedure (2", 2%, 2’z), which is better than ¢(z), with an acceptance
region whose (2%, 2’z) sections are convex. The invariance property of ¢ can
be described by

(2.2) ¥, 2%, 29) = 9(ge?, 2, 2P,

. 1
where ¢ represents an orthogonal transformation on 2.

Now for any fixed (2%, 2'2), let 8(z®, 2’z) be the set of points 2" for which
Y(2?, 2®, 2’2) = 0. Then S is either the whole space of possible values of 2,
or, from (2.2) and the fact that S must be convex, S is a sphere centered at the

origin.
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Note that if ¢ is at least as good as ¢, then
(2.3) J (W — o)f(z?, 2@, 2'2) d=® dz® d(2'2) = 0,

for all (¢, o) with equality whenever {® = 0. Here f(z", 2®, 2'2) is the distribu-
tion of (2, 2®, 22). The equality whenever { = 0 follows from the continuity
of the power function of ¢ and ¢. Hence, by completeness of the family of den-
sities of 2%, 2®, 2’z it follows from (2.3) that

(2.4) J @@ = e(2)u(d?;2%,2%) =0,
for every (2®, 2'z), where u(dz®; 2®, 2’z) is the conditional distribution of
2 given 2®, 2’2, when {® = 0. But (2.4) implies that for every given (2?, 2’2,

¥ and ¢ must have the size with respect to each conditional distribution of
2", given (2®, 2'z). Since the acceptance regions, for any given (2?, 2'2), are
spheres with centers at the origin for both ¢ and ¢, (see 2.1), (2.4) implies that
these spheres must coincide. Thus ¢ = ¢, and ¢ cannot be dominated by any
invariant ¥. This completes the proof of the theorem.

REMARK. The referee has pointed out that the result can be obtained with-
out using the theorem of Matthes and Truax. For if ¢ is invariant and inad-
missible there exists an invariant test ¢ which beats it and ¢ has convex (2%,
#'z) sections. This is so since (22, 2®, 2'2) is a maximal invariant and the
conditional distribution of 2®'2® given (2, 2’z) has a monotone likelihood
ratio in ;‘”';m /o*. Hence if ¢ did not have convex sections it could be dominated
conditionally by a test ¢1 whose acceptance region is 2"’z =< k(z®, 2'z). The
function % is determined uniquely by a relation like (2.4) and is easily seen to
be measurable since the conditional size of ¢ is measurable.
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