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ASYMPTOTIC NORMALITY OF SAMPLE QUANTILES FOR
m-DEPENDENT PROCESSES!

By PranaB KuMar SEN

Unwersity of North Carolina, Chapel H7ll.

1. Introduction and summary. The usual technique of deriving the asymptotic
normality of a quantile of a sample in which the random variables are all inde-
pendent and identically distributed [ef. Cramér (1946), pp. 367-369] fails to
provide the same result for an m-dependent (and possibly non-stationary)
process, where the successive observations are not independent and the (marginal)
distributions are not necessarily all identical. For this reason, the derivation of
the asymptotic normality is approached here indirectly. It is shown that under
certain mild restrictions, the asymptotic almost sure equivalence of the standard-
ized forms of a sample quantile and the empirical distribution function at the
corresponding population quantile, studied by Bahadur (1966) [see also Kiefer
(1967)] for a stationary independent process, extends to an m-dependent process,
not necessarily stationary. Conclusions about the asymptotic normality of sample
quantiles then follow by utilizing this equivalence in conjunction with the asymp-
totic normality of the empirical distribution function under suitable restrictions.
For this purpose, the results of Hoeffding (1963) and Hoeffding and Robbins
(1948) are extensively used. Useful applications of the derived results are also
indicated.

2. The main results. Let v = (X1, X2, --- ) be a sequence of random variables
forming an m-dependent process (not necessarily stationary); that is, the
random vectors (X;, ---, X;) and (X;, X;u, ---) are stochastically inde-
pendent if j — ¢ > m, where m is a non-negative integer. The marginal cumula-
tive distribution function (cdf) of X is denoted by F.(z), and the joint cdf of
(X, Xopn) by Fip(e, y) for h = 1, -+ , mand ¢ = 1, 2, --- . For any
p:0<p<1letY, = Yi(w) be the sample p-quantile when the sample is
(X1, -+, Xa). Define the empirical cdf F,(z, w) by

(2.1) F.(z, w) = (1/n) (the number of X; < z, in the sample).

Thus, F.(z, w) is an unbiased estimator of the cdf

(2.2) Fay(z) = (1/n) 2t Fi().
Define £, (the p-quantile of F(,) by

(2.3) Foy(&) = p.

It is assumed that

(2.4) SUpy [ < oo,
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and that in the neighbourhood of &, , F:(x) is absolutely continuous ¥;. Further,
one or both of the following assumptions will also be made in the sequel:

(a) fi(z) = (d/dx)Fi(xz) is continuous in some neighbourhood of £.¥<¢,
with
(2.52) 0 < inficicafi(s) < SUPr<icnfi(Ea) < oo, uniformly in n,
(which implies that
(2-5b) 0< infn.f(n)‘(gn) = SuPnf(n)(én) < o,

Whel‘efgu), = (1/n) 2iwfi = (d/dz)F ), and
(b) F(sy(z) is bounded in the same neighbourhood of &, .

It will be seen later on that for an independent process (i.e. m = 0), (2.5a) is re-
dundant and we may simply work with (2.5b). Also for a stationary m-depend-
ent process, we have F; = FV4, and hence, (2.5a), (2.5b) simplifies to saying
that F has a continuous derivative in the neighbourhood of its p-quantile, and at
the p-quantile the density is strictly positive. [It may be noted that neither &,
nor F;(z) need converge to some ¢ or F(z), respectively, as n — w.] Define

(2.8) Dui = Filka), =1, ,n; Fop(z,y) = (n— k)7 28T Fin(z,9);
(27) awn = Fanltn, ) =0 Bon= (0 — h)7 220 [pn,pn,itn — P,
forh=1, .-+, m,and let

(2:8) ano=p(1 = p), B0 = 0a"(p) = (1/n) 2oixt (Pu,i — p)".

Further, let

(29) Vim = (ano — Bao) + 22 (n — B)(aap — Ban)/n.

It follows from (2.2), (2.3) and (2.6) through (2.9) that

(2.10) nVar {Fo(én, ©)} = vam.

Finally, let

(211) Li={x:6s — . =2 £ £+ ax} Where an~ntlogn as n— .

Then, the main theorem of the paper may be stated as follows.
TureoreM 2.1. If the condition (a) is satisfied, then as n — «©

(2.12)  sup {|[Fom(z) — pl 4 [Fu(tn, @) — Fa(z, )]|: @ ¢ I} = O(n" logn),

with probability one. If in addition, inf v m > 0,

(2.13) Lo (En)[Va(@) = &/7am) = N(O, 1).
Finally, if both the conditions (a) and (b) are satisfied, then
(2.14) [Ya(w) = &lfmy (&) + [Fa(én, @) — p] = Bu(w),

where as 1 — ©R,(w) = O(n™* log n), with probability one.
The proof of this theorem rests on the following lemmas.
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Lemma 2.1. Let {Z} be a sequence of m-dependent binomial variables, where
E*(Zi) =p:,1=1,2, --- ,andlet p. = (1/n) >t ps. Define the partial averages
Pin = (1/n;"). (B; + Piremin + -+ + Dirmr—vmin), where

=[n+m+1-35/(m+1)], j=1--,m+1L
Finally, let
(2.15) 7a Zmax; Cu(n*) H{ (log n*)pfn(1 — piw)}; O > 2,n" = min;n,".
Then
(2.16) D P{(1/n) 201 Z: — Pal Z va} < oo
Proor. Consider the partial sums
(217) Sin = Zi + Zironiy + *++ + Zropnmn, J=1,,m+1,

and define [; = n;*/n. Thus, 0 < L, -+, lnua < 1, > 741 1; = 1. On using then
(5.21) of Hoeffding (1963), it follows easily that

(2.18) P{n'IZ?qu — Pn = Yn}
=< Z;":lll {exp [ hnf*'yn]}E{eXp (R (Sin — nf*?f.n)]}-

Then, by Hoeffding’s (1963) Lemma 1 and by the proof of his Theorem 1, it
easily follows that

(219) Pin™ 2 Zi — Pu Z 1}
< T L+ 7@k (1L = a1 = ph) T,

(where the jth term on the right hand side of (2.19) is to be replaced by 0 if
pis is equal to 0 or 1). On making use of the simple relation that

(2.20) log (1 +2) =z — %’ 4+ o(a®) as z—0,
we obtain from (2.19) and (2.20) that
(221) P{n™' 230w Z:i — Pa Z va}

< Y Lexp {—n vl + o(1))/207a(1 — pia)}-
Now, by virtue of (2.15)
(2.22) 07/ 2pfn(1 — pim) > (1 + 8) logn™; §>0, (m+1)n*~n.
From (2.21) and (2.22), we have for adequately large values of n

(2.23) Pn™ Xt Zi — P Z 1a} SO0,
where C is a finite positive quantity. Similarly, for adequately large n
(2.24) Pn 'Yt Zi — Pa S —va} S Cn7 40,

(2.53) and (2.24) along with D1 2~ < o imply (1.16). Q.E.D.



SAMPLE QUANTILES FOR 7-DEPENDENT PROCESSES 1727

2REMARK. For m = 0, p}, are redundant and v, = Cy{pa(1 — p.)(log n) /nt,
Ccy > 2.

The following lemma is a slight generalization of Theorem 1 of Hoeffding and
Robbins (1948), whose condition (b) is relaxed here.

Lemma 2.2. Let {Y} be a sequence of m-dependent random variables, with
E(Y) =0and E|Y{’ <R < w foralli =1,2,---.Let Sp = > 1 Yiand

= ()N (Lia B(Y?) + 2 200 230 E(Ye-Yaw)). Then, if infaon > 0,

n- Sn/a,. converges in law to a standard normal distribution.

Proor. Define

Ui=Yenrnn+ -+ Yam, i=1--,v,
=200 Yamat -+ Ya) + (Yoema + -+ + Vo),

where k = [n%],0 < & < $ and v = [n/k], so thatn = vk+ r,0 < r < k. Proceed-
ing as in Hoeffding and Robbins (1948), p. 775, it follows that

(2:25) (i) E(T*) = o(n) = |T| = o,(n’);

(2.26) (i) DimE UL = o(h).

Further, straightforward computations yield that

(2.27) [(1/%) 28 E(K U — 0’| = o(1),

and hence, by the hypothesis inf, ¢, > 0, we obtain that ) _» =1 E (k—?U ) = O( v).

Thus, for the independent sequence of random variables {k~ Uz ,1=1,3,: },
the Liapounoff’s condition on the central limit theorem holds 1.e., :
(2.28) Mg { 251 B KU/ 250 EGTUD) = 0.

Noting that S, = T + Uy + --- 4+ U,, the proof of the lemma, follows from
(2.25), (2.28) and some s1mp1e reasonlngs Q.E.D. .

Levma 2.3. If infu v2 o > 0, S Fa(f, w) — P)/vn.m) — N(0, 1).

Proor. Let c¢c(u) be 1 or 0 according as u is = 0 or not. Then ertmg
Fultn, w) = 0" Dt c(t — X.), the proof directly follows from (2. 10) and
Lemma, 2.2 (as further simplified for zero-one random variables). Q.E.D.

LemuMa 2.4. Let ky = np + o(ntlogn), and let V,(w) be the kath smallest ob-
servation among (X1, « -+, Xa). If inf, Juy(£a) > 0, then Va(w) & I, with prob-
ability one,asn — . ‘

Proor. By virtue of (2.5b) Fy(fn — @n) = p — O(ntlogn). Also,
max; pra(l — Pia) < 1, where p;, is defined as in Lemma 2.1, with p; =
Fi(t — an), 7 = 1, 2, --- . Hence, it follows from (2.15) and (2.16) that if
Zy,Zy, -+, are m-dependent random variables with E(Z;) = Fi(& — a.),
i=1,2, ---,then for v, = C(logn)/n}, C > 0 (chosen adequately large),

(2.29) 2o P{Q1/n) 200 Zi — Fauy(bn — @n) Z 7a} < .

The rest of the proof of the lemma follows precisely on the same line as in Lemma 2
of Bahadur (1966), with his (11) and (12) replaced by (2.29). Q.E.D.
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Proor oF TaEOREM 2.1. The proof of (2.12) follows along with the same line as
in Lemma 1 of Bahadur (1966 ), provided it can be shown that his (13) also holds
for the m-dependent process. Now, by his definition, G, (n, , ) (see (5) and (13)
of Bahadur) is equal 0 [Fy(£, + rntlogn) — Fu(£)] — [Fmy (& + ™ tlogn)
— Fay(£,)], where r( = [n¥]) is a positive integer. The above can also be expressed
as (1/n) X1 (Z; — ps), where the Z /s are m- dependent binomial variables and

pi = Fi(kn +rntlogn) — Fi(ka),s=1,2,--+ ;7 < [nY]. It therefore follows
from (2.5b) and its 1mp11cat10ns that forn suﬁiclently large, 0 < 7, < C *logn
for all 7 < [n]. Since, Hn = ,_1 lfp, n,Where l; ~ 1/(m + 1)VYj ], this along

with (2.5a) implies that max; pin < O(n*logn) for all r < [n%]. Hence, it
follows from (2.15) that we can select v, = Cen”* log n, with Cy’/2C, sufficiently
large, and this along with (2.16), will extend Bahadur s (1966) expression (13)
to the m-dependent case. This completes the proof of (2.12). Again, by virtue of
(2.12), Lemma 2.3 and Lemma 2.4, it follows that

(2.30) e53(77}}[Fv(n)(Yn("-’)) — P)/vam) ~ £(n%[Fn(£n , @) = pl/vam) = N(O, 1).
Since (2.5b) holds and inf, va,m > 0, it follows by standard techniques that as

n-— o
(2.31) n%[ﬁ(n)(yn(w)) — pl/vam ~rp ni}[Yn(w) - En]f(»)(gn)/”n.m .

Therefore, (2.13) follows from (2.30) and (2.31). Finally, (2.14) follows directly
from (2.12) and the condition (b), as Lemma 3 of Bahadur (1966) extends
directly to an m-dependent process under our condition (b). This completes the
proof when Y,(w) is defined by a single order statistic. If Y,(w) is defined as an
average of two successive order statistics, say, the kath and the (k. + 1)th ones,
(where k, < np < (k. 4+ 1)), upon noting that the difference of the empirical
cdf’s at these two points is equal to 1/n, it follows from (2.12) and Lemma 2.4
that the difference between the values of Fmy(z) at these two points is also
O(n % log n), with probability one, as n — «. Consequently, both (2.13) and
(2.14) hold for the general case when Y,(w) is any inner point of two successive
order statistics. Hence the theorem.

REMARK For an independent process (i.e., when m = 0), in Lemma 2.1,
Pf.,7=1,---,m + 1 are all redundant. As such, in the proof of (2.12), we
only require (2 5b), which is a single condition on the cdf Fny . Also, for a station-
ary process (evenifm = 1), as remarked earher, £, = £, Fy = F,and hence, the
usual condition viz. (f(x) is continuous in some neighbourhood of & with
f(g) > 0, is sufficient.

3. Applications.

(1) Multisample situation. In the context of nonparametric tests(univariate
as well as multivariate cases), the asymptotic distribution of pooled sample
quantiles have been studied by Mood (1954) and Chatterjee and Sen (1964),
(1966). These relate to the situation where all the different samples are of large
s1z)es and the corresponding cdf’s differ only in sequences of locations all converg-
ing to zero as the combined sample size tends to . Chen Pei-de (1966) has con-
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sidered the case wherein (X3, - -+ , X,), each X; can have one of 7(>1) different
cdf’s Fy, ---, F; (i.e., finite mixture). The derivation are quite cumbrous and
lengthy too. On the other hand, Theorem 2.1 provides the desired normality for a
much more general case, where both independence and identity of marginal edf’s
are relaxed to some extent. We remark that for independent process (i.e., m = 0),
the conditions of Lemma, 2.1 simplify, and hence, we require only the continuity
of fy () along with inf, f,)(£,) > 0. As an illustration, consider the sequence of
symmetric distributions Fi(z) = F([x — u]/0:),0 < 00 < 0: < ¢ < », ¥V 3. For
this sequence, F,, has the unique median x and condition (a) is satisfied if
f(0) = F’(0) > 0. Thus, the asymptotic normality follows directly from Theorem
2.1, where as the other techniques may involve some difficulties.

(II) Robust-efficiency of sample median. Suppose X;, Xz, - - - are independent
random variables with (common) median (= mean) x and variances oL, a8, e
Let Y.(w) and X, be respectively the median and mean of the sample
(X1, -+, X,). Then, we obtain that

(3.1) L(n[X. — ul/dn) > N(0,1) and LR Ya(w) — ul/8.) = N(O,1),

where &> = (1/n) 2t od and 8, = 3n ™" D in fi(u)]2. Thus, the asymptotic
relative efficiency (ARE) of Y,.(w) with respect to X, is the limit (asn — ) of

(3.2) ey = (6a2/0.2) = 4o, 2(n ™ Dt fi(w))?

where the limit is assumed to exist.
The ARE for the parent cdf F;is equal to e; = 4¢.f*(1), and hence, (3.2) may be
written as

(3.3) e = . (nt Dot el /i),

If Fy, F,, - -- differ only by scales, viz., Fi(z) = F([lx — pl/e:),2=1,2,---,
it easily follows that e; = ey = 4f(0), V %, and hence, by elementary inequalities
we obtain that

(34) vz = edn (n " 2 im1/0:)" Z e,
where the equality sign holds iff o1 = oo = - - - . This clearly indicates the robust-

efficiency of Y, (w) for heteroscedastic cdf’s.
(II1) Estimation of a density function. As an estimate of the density function
at the population p-quantile, often we consider

(3.5) f = ('rn — 8p — 1)/n(Y7‘n - st);

where Y,, and Y., are the r,th and s,th smallest observations in a sample
(X1, -+, Xa) [cf. Siddiqui (1960), Sen (1966)], and where 7, = np + o(n}),
Sy = np — o(n*). It follows from Theorem 2.1 that such an estimate will con-
sistently estimate fuy(£.), even for m-dependent processes.
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