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DESIGN AND ANALYSIS OF EXPERIMENTS WITH MIXTURES'

By J. 8. Murty? anD M. N. Das
Institute of Agricultural Research Statistics, New Delhi

1. Introduction. A new direction to the study of response surfaces is the
investigation of multi-component systems as a function of their composition
when the fundamental mechanism of the system is constrained. The first attempt
in this direction was made by Claringbold [1] in his study on the joint action of
hormones. Important contributions have, however, come from Scheffé [7], [8] and
Draper and Lawrence [2], [3] in their studies on experiments with mixtures.

1.1. A resume. In an experiment with mixtures the property studied, namely
the response, depends on the proportions of the compenents present but not on
the amount of the mixture. Under this criterion the fractions of the components
making up any mixture must add to unity. Therefore in an n component mixture
if z;(x; = 0) be the proportion of the 7th component (¢ = 1,2, --- , n) then

(1.1.1) untat+ -+, =1

By virtue of the above restriction, the totality of the unrestricted factor space of
n dimensions has been reduced to an (n — 1) dimensional simplex. The n compo-
nents of this system are called ‘mixture variables.” If in addition to the mixture
variables certain other variables which are not bounded by the restriction (1.1.1)
are present in the system, they are called ‘process variables’ [8].

Examples of experiments with mixtures can be found in various fields. In
agriculture, the mixed crop trials may come under this case because the total
yield in a unit area depends on the proportions of the different crop-seeds applied
at least in cases where the total amount of seed of the different crops together is
same per unit area. Again, the fertilizer trials can be studied as mixture experi-
ments under the assumption that the cost of the total amount of fertilizer mixture
applied is constant. Then the proportional costs of the different fertilizers in a
combination will be mixture variables so that the effects of the fertilizers are
studied by relating their costs with response. In animal husbandry, we have the
feeding trials to study the response on milk yield. The total amount of feed an
animal takes or its cost might be kept constant but the components of feed or
feed cost may differ. In industrial and engineering experiments numerous ex-
amples can be found in [4] and [7].

Scheffé [7], [8] evolved the simplex-lattice and the simplex-centroid designs to
explore the ‘factor-response’ relationship within the simplex.

A simplex-lattice (n, m) design for n components consists of the (

m+n—1
m

) points

Received 26 June 1967; revised 10 April 1968.

1 This work was first presented at the 17th Annual Conference of the Indian Society of
Agricultural Statistics held at Trivandrum in January 1965. It was later included in [5].

2 Now at Osmania University Hyderabad.

1517

33

; J&;

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Mathematical Statistics. IIEGIE ®

WWWw.jstor.org



1518 J. S. MURTY AND M. N. DAS

of the simplex representing all possible mixtures in which the proportion of each
component has the m + 1 equally spaced values z; = 0, 1/m, 2/m, --- , L.

A simplex-centroid design with 2" — 1 points involves observations on mixtures
consisting of all those subsets (combinations) of the components where the
proportion of each component present is equal.

Assuming that the response can be adequately represented by a real valued
function, Scheffé [7], [8] associated certain unique polynomial regression functions
which have exactly the same number of parameters as the number of design
points.

The general polynomial

(1.1.2) 7 = Bo+ Dicizn Biti + D2acizizn Bt + -+

D icirgingee Simzn Birig, e sim Lirliiy * * * Ty 5
with (™) coefficients can be associated to a simplex-lattice (n, m) design by the
substitution
(1.1.3) To=1— D 1cicn1i

by virtue of (1.1.1). But since the resulting form with the absence of z, will not
be appealing, alternate substitutions were suggested through which unique
canonical forms of the model could be obtained.
For example, using the substitutions
2

(1.1.4) Bo = Bo Drzizn Ti, €l = i — D igisn BT
in the polynomial (1.1.2) for m = 2, we have the model associated with the
simplex-lattice (n, 2) design given by
(1.1.5) N = DagiznBilti + Digicizn Bi®;.
The model for the simplex-lattice (n, 3) is obtained [7] as
(1.1.6) n = Zléign Bx: + Z1gi<j§n6iﬂﬁixj
+ Zl§i<j<k§n BijrTixiTr + Zlgi<j§n vixai(T: — j).
For the model for the simplex-lattice (n, 4) see [4].
For the simplex-centroid design the associated model is obtained [8] as
(1.17) 1= D 1cizaBit+ Digicien Bii®@i+ + + Bracnrlp -+ Tn

Utilising the fact that the number of parameters in the associated models is
exactly the same as the number of points in the designs Scheffé obtained unique
solutions for the parameters. For instance, for a simplex-centroid design

(1.1.8) B, = 70, (—1) "4V, (s,)

where s, denotes any subset {717, - - - %,} of r elements of {1,2, --- ,n} and Y,(s,)
denotes the sum of the responses of all (;) of ¢{-ary mixtures with equal propor-
tions formed from the r components in s,. These coefficients g’s are called
synergisms by him.
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1.2. A discussion. The main considerations connected with the exploration of
a response surface are (i) the choice of a proper model that could approximate
the response in the region of interest, (ii) the testing of the adequacy of the
model in representing the response surface in that region and (iii) a suitable de-
sign for collecting observations, for fitting the model and testing the adequacy of
fit. Scheffé’s approach in this regard is “to consider an intuitively appealing de-
sign and ask what form of regression function would be convenient with this.”
Accordingly, he considered two designs and associated them with polynomials
which are unique in that there is a one-to-one correspondence between the
parameters and the points of the design such that the design fixes the model. A
more or less obvious limitation with these designs is that they do not explore the
interior of the simplex but restrict themselves to the outer surface. This is clear
from Plackett’s remarks in [8]; also see [3]. It can, therefore, be inferred that the
designs and hence the models proposed by Scheffé may not explore the region
adequately. In fact, Scheffé [7] himself doubts the ‘fit’ these models are capable
of, as brought out by Quenoulle’s remarks in [8]. One can, however, see that the
unsatisfactory state of affairs in regard to judging the adequacy of the fit is a
consequence of the absence of any degrees of freedom for the ‘lack of fit’ of the
model.

Moreover, if a certain number of points from the interior of the simplex, i.e.
points in which all the components are present are included in the design then
not only the model loses much of its significance connected as it is with the design
but the estimation is no longer simple and one has to fit such high ordered poly-
nomials by least squares only, which, indeed, would be difficult.

Thus, one realises the need to have designs which allow a uniform exploration
of the whole simplex and some models suitable for all types of designs. Evidently,
the designs should have ‘total mixtures’ (mixtures with all the components) as
points and must provide a sufficient number of observations so that the model
fitted to approximate the response can be tested for adequacy by obtaining a
component of sum of squares due to lack of fit of the model.

An experimenter, normally, would not like to go in for a very high ordered
polynomial to approximate the response surface and thereby go through the
difficulties of estimation. He would rather be satisfied with a lower order poly-
nomial in view of its simpler method of estimation. A quadratic model in the
variables may thus serve his purpose in approximating the response in the region
of interest. In fact, in most of the practical situations this is true. If, however, the
quadratic regression function turns out to be inadequate, a cubic model can be
utilised with suitable designs so as to arrive at a satisfactory representation of the
response surface. The method of fitting in such cases will be by least squares so
that the well known test producers may be applied for testing the adequacy of
fit.

The attempt of Draper and Lawrence [3], [4] realises some of these objectives
in as much as adopting the study of quadratic response surface and obtaining
designs which explore the interior of the simplex also. But their study is limited
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in scope as it provides designs for only three and four component mixture ex-
periments.

Assuming the adequacy of a quadratic surface in representing the response in
the region of interest, this work deals with simple methods of estimating the
parameters by least squares and obtaining general designs covering a wide range
of possibilities of representing the simplex. The case of the presence of process
variables is also considered. The studies have been illustrated by an example in-
volving a real set of data

When the quadratic surface turns out to be inadequate to represent the re-
sponse a cubic model should be employed for the purpose. Results regarding
the methods of fitting such models will be reported in a separate paper. The
methods of fractionation of the designs for mixture experiments and suitable
analysis will also be presented subsequently.

2. The quadratic model and the estimation of its pafameters by least squares.
2.1. The model and the problem of least squares. Let n. represent the true re-

sponse at an experimental point (#1u, Tau, * * * , Tau) Where Ty, Tau, * * * , Tou are
the proportions of the components 1, 2, - - - , n respectively at the point % such
that

(2.1.1) Zlgignxiu = 1.

If there are N such responses on N points so that . = 1,2, --- | N, the array of
these N points defines a design matrix of order N X n. Let us assume that a

quadratic model
M = B0 + BT + BT + -+ Bu'Tnu
(2.1.2) + Buztu + Biafu + -+ + Bundhu
+ Brotum + Bl + ++ + Brtindntulny

represents the response surface. By virtue of the restriction (2.1.1) the equation
of the surface on the simplex can be written as

(2~13) NMu = .lelu + B2x2u + M + lgnxnu + Blﬂlux?u + e + 6n—1nxn—1uxnu
which is evident from the substitutions (1.1.4) in (2.1.2).

Let y, denote the observed response at the point (%14, %2u, - , Tnu). The
method of least squares for fitting the regression function (2.1.3) requires that
(2.14) Zu (Yu — Zl§i§n B — Zlgkién .Bijxiuxju)z

be minimised with respect to the parameters 8’s. The normal equations for the
estimation of the parameters are then obtained by differentiating (2.1.4) with
respect to B’s and equating the differentials to zero. It is well known that the
estimates of the parameters are given by

(2.1.5) b= (X'X)'X'Y
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where b’ is the 1 X {n -+ ()} vector of the estimates of the parameters,
X = [Tru, Touy " * 5 Touy T1alau, *** 5 Tn1ubnu), the N X {n + (3)}
matrix, and
Y = [y, 4, - ,ys], the 1 X N vector of the observed responses.

The main problem with the least squares method of estimation is to obtain the
inverse of the matrix (X'X). Inversion of such matrices, however, proves very
difficult particularly when the number of components is large and proper de-
signing is not adopted. An alternative method of solving the normal equations
for certain types of designs instead of inverting the matrix as such was therefore
attempted as described below.

2.2. The method of estimation. Differentiating (2.1.4)-with respect to the param-
eters, say, G and By, and equating the differentials to zero we obtain the follow-
ing two typical normal equations.

D urale = b1 D uliadng 4+ o D w T oo+ by D Pralna
(2.2.1) + b1z 2w Tnzare + 0 bin Dou T
+ oo o Dactn 2w Bru—tuTnu
D DnaZunfu = b1 D u Ttaaa@un + +++ + bs Du By
F o b D u i o A Da D u By
(2.2.2) + o b D Tl o D D Tl
4 oo+ D 2o 2Rl
+ oo A bactn 2w Dr@pulntulon -

Let us now suppose that the design matrix satisfies the following symmetry
conditions.

D i, = constant = A,

Zu Tl = constant = B,

D u i = constant = C,

(2.2.3) D Tkl = constant = D,

2 2
D u i, = constant = E,
2
‘ Zu Tiuljulre = constant = F,
D u Tl jnkaiy, = constant = G,

for all 4,7, k and I (7 % j % k 5 [) ranging over the n columns of the design
matrix corresponding to the » components, the summation on u being over all the
N design points (or rows).
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Using the constants (2.2.3), the two normal equations (2.2.1) and (2.2.2) can
be written as

(2.2.4) Dty = Aby + B D iciznim bi + C Di<izn,im bri
+ D Digicizn.iim bis;
(2.2.5) 2 wtrudiu = C(by + by) + D D icicn,impnbi + Eby
+ F(Xinbri + Doimubus) + G D icicizn. i biie
Next, summing the normal equations (2.2.4) overall\ = 1,2, - -+ , n, we obtain
(2.26) risizn (2w Tapn)
= (4 + (n — 1)B) Zizizabi + (2C + (n — 2)D) Digiciznbis.
Summing the equations (2.2.5) over all \, u = 1,2, - -+ , n, we obtain
(227) Dicicien (2uzatign) = {(n — 1)C + (*7")D} 21<izn b
+H{E + 2(n — 2)F + (")G) Disiciznbis.

From the two equations (2.2.6) and (2.2.7) we can determine the two unknowns
> bsand Y bi; which are given by

(2.2.8) Db = {Pi i (Xu i) — P Doici (D uTaitu)}/P,
(2.2.9)  Dobii= {P1 D ici (Dou Taisths) — Ps Di (D u Tiuyu) } /Py
where
Pi=A+4+ (n —1)B, P, =2C + (n — 2)D,
Py= (n — 1)C + (%D, Pi=E+2(n — 2)F + ()G,
P = PP, — P,P;.
Next we rewrite the normal equation (2.2.1) as
(22.10) Xuzrayu = (A — B)or+ B 2ibi+ (C — D) i bri + D Dic;bis .

Equation (2.2.10) has only two unknowns by and > by in view of solutions
(2.2.8) and (2.2.9). Fixing A now and summing the equation (2.2.5) over all the
(n — 1) w's (u % N\) we obtain

Do (Du i) = (n — 1)Cby + (C + (n — 2)D) 2 sabs
+ (B4 (n — 2)F) Ziabri + (2F + (n — 3)G) D icim b
which can be rewritten as
Soa (O tnaiayu) = (0 — 2)(C — D)br + (C + (n — 2)D) D :b;
(2.2.11) + (E+ (n — 4)F — (n — 3)@) 2sabui
+ (2F + (n — 3)&) Xicibys -
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From equations (2.2.10) and (2.2.11) substituting (2.2.8) and (2.2.9) we obtain
by and D by, as
(2.2.12) b= (PQs 2w tnitu — PQo D (D u tnaiuty)
— 81 2 (i) + Ae D (Luzadiayn) }/PQ,
(2.213) by = (PQ 2 (Zuaniys) — PQs (X truyr)
A 20 (2 uiatp) — Aa 2y (X TaZiyu) }/PQ,
where
@ = A — B, Q:=C—-D, Q= (n—2)(C—D),
Q=E+ (n—4F — (n — 3)G, Q = Qs — QQs;
Ay = PifBQs — Q:(C + (n — 2)D)} — Py{DQs — (2F + (n — 3)G)Q.},
By = Po{BQs — Q:(C + (n — 2)D)} — Pi{DQs — (2F + (n — 3)@)Q,},
Ay = P{BQs — Qu(C + (n — 2)D)} — P3{DQs — (2F + (n — 3)3)Q4},
Ay = Po{BQs — Qi(C + (n — 2)D)} — Pi{DQ; — (2F + (n — 3))Qy}.

By symmetry of the designs, the solutions for any by and Y by can be written
down from (2.2.12) and (2.2.13).
Finally, the normal equation (2.2.5) can be rewritten as

Zux)\uxuuyu = (C - D)(b)\ "I_ bp) + D Zl_s_iénbi
(2.2.14) + (E — 2F 4+ G)b,
+ (F — @) (Xoabri + 2imbus) + G Dicicizn by .

Substituting the values of by , b, , Z bri Z by s Z b;and D b;; obtained from
(2.2.8), (2.2.9), (2.2.12) and (2.2.13), we get the solution for by, as

PQ(E — 2F + (by, = PQ 2 uonaui — P{Qi(C — D)
— Q:(F — O} (2w 0l + D Tty
(2.2.15) + P{Q:(C — D) — Qu(F — O} i (X utnaiatju)
+ 20 (X Bua))
— {(DPy — GP3)Q — 2(C — D)Ay + 2(F — G)As} D2i (Dwzauttu)
+ {(DPy — GP1)Q — 2(C — D)y + 2(F — G)As} 2 ici( S o).

The solution for any by, can be written directly from (2.2.15) due to symmetry of
the design.

Thus, it has been possible to obtain the estimates of the parameters of a
quadratic model fitted through these designs with symmetry conditions (2.2.3)
by a simple procedure of first solving a set of two equations, then another set of
two equations and finally a single equation.
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2.3. Variances and covariances of the estimated parameters. The variance-
covariance matrix of the estimates is equal to
(2.3.1) El(b —8)(d —B)] = (X'X)7'o?

where it is supposed that the responses are distributed independently with equal
variance o”. A comparison of (2.3.1) with (2.1.5) shows that

V(b;) = (coefficient of D, Zwy. in the estimate b;)o’,
V(bi;) = (coefficient of >, Zw&uyu in the estimate by)o’,

and similar coefficients for the covariances. Therefore, by collecting the appropri-
ate coefficients from the estimates b’s obtained above, we have the following
variances and covariances.

(232)  V(b) = (PQ)PiQu(A + (n — 2)B) — Pi@:(2C + (n — 3)D)
4+ PiQx(C + (n — 2)D) + Ps@(2F + (n — 3)@)]o*,
(2.33) V(by) = (PQE — 2F + @))7'[PQ — 2P{Q:\(F — @) — Qx(C — D)}
+ Q(DP, — GPy) — 2(C — D)A; + 2(F — QA"
Cov (bib;) = (—A/PQ)d?,
Cov (bibij) = (—PQ, + Ay)d*/PQ,
Cov (biba) = (A/PQ)d,
Cov (bipa) = (PQ(E — 2F + )7 [—P{Q(F — @) — Q.(C — D)}
+ Q(DP; — GPy) — 2(C — D)A, + 2(F — G)AJd,
Cov (bijbr) = (PQ(E — 2F + G))'[(DPy — GP)Q — 2(C — D)A,
+ 2(F — G)AJ".

Then the variance of the estimated response 9o at the point (zi0, 20, * * * , Zno)
comes out as

V(??o)a_z = V(bi) Zix?o + V(bij) szfoﬂv?o + 2 Cov (bibj) Zi<j X402 jo
(2.3.4) + 2Cov (bibij) D iciTiotjo + 2 Cov (bibin) D icick Taokiolad

+ 2Cov (i) D icick<t TaoTioTroTio -

2.4. Interpretation of the parameters. A question that arises after fitting by least
squares a quadratic or a suitable general model to the observations on mixtures
is what interpretation one could give to the estimates of the parameters. It is
obvious that Scheffé’s terminology of ‘response to pure components’ or ‘syn-
ergism’ is not applicable since the estimate, say, b; of our model is not just based
on,the response to the ith component, nor does the term bz, give the excess
of response over linear blending of the components ¢ and j. Moreover, the
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customary terminology of the factorial designs, namely, ‘main effects’ and ‘inter-
actions’ does not apply because the estimates of 8’s are not actually given by the
same contrasts as for the usual main effects or interactions. Further, the ‘gencral
mean’ is confounded with the estimates b; due to the restriction ) z; = 1.

It may, therefore, be advisable to understand the parameters as the usual
‘regression coefficients’. One might, however, call b; as the effect of the th compo-
nent and b,; as the joint effect of the components 7 and 7 without attaching much
specific significance to the terminology. The interpretation of the results on test-
ing the regression coefficients might then be given accordingly, such as, the effect
of the 7th component is significant, the joint effect of the components 7 and j is
significant and so on. The main utility of the fit will, however, lie in its prediction.

2.5. Analysis of variance. Let the experiment with a design of N points be
replicated r times with a view to increasing the accuracy of the estimates. If the
quadratic model (2.1.3) in n components is fitted by least squares through the
observations, the sum of squares (s.s.) due to fitted regression withn + () — 1
degrees of freedom is given by

(2.4.1) SR = bl Z L1ulYu + cet + bn an“y“ + b12 lemuyu
+ o batn D Tnorulnuyu — C.F.

Since the general mean is confounded with the estimates b;’s and each individual
b; is not a contrast but the contrasts among the b;’s are contrasts free from by,
the s.s. due to the general mean (C.F.) with one degree of freedom has to be
separated to get an independent estimate of the s.s. due to the regressions.

Now, the r observations due to replication of a point give rise to a sum of
squares with (r — 1) degrees of freedom and the total of these sums of squares
from the N points belongs to the component of error in the analysis of variance
with N(r — 1) degrees of freedom. The error mean square obtained therefrom
will be an estimate of the experimental variance. The sum of squares due to lack
of fit is then obtained by subtraction in the analysis of variance table and the
mean square due to lack of fit tested against the error mean squares gives an idea
of the representational adequacy of the model.

The analysis of variance table can be written as follows.

Source of Variation d.f. 8.8. m.s.
Due to Regression nt () —1 Sk
Due to lack of fit N —n—(3) By subtraction
Error N@F —1) SE
Total ‘ Nr—1

3. Designs for the exploration of a quadratic response surface. A simple
method of estimation of the parameters of a quadratic model has been obtained in
Section 2 assuming the symmetry conditions (2.2.3). We now proceed to obtain
designs which satisfy these conditions.
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3.1. Symmetric stimplex design. Let the point (214, Zou, *++ , Znu) of a design
for a mixture experiment in n components where d of the z;.’s are non-zero
elements (fractions) be called a dth ordered mixture and be denoted by S;.
Further, let d; of the x:,’s of Sq be each equal to g1, ds of the z:’s equal to ¢, ,
go on and dy of the z4’s equal to gs so that di + d2 + --- + d» = d and
diqi + dogr + - -+ + drgr = 1. Let all the dth ordered mixtures S; that are ob-
tainable by permutation of the different fractions in the mixture over the n com-
ponents be written in the form of a group called the group Gs , each mixture Sa
forming a row of G4 and the 7th component being represented by the ¢th col-
umn of G;. Then it is easy to see that the number of rows in the group G is
given by

(3.1.1) Wa= (3) ("gh) ("TET) L. (e,

Further, it can be easily shown that the rows of G; considered as design points
satisfy all the conditions in (2.2.3) since the fractions occur in different columns
symmetrically. Thus we define a symmetric simplex design for experiments with
mixtures through which the quadratic model (2.1.3) can be fitted by the methods
of Section 2.2 as follows:

DEerFINITION. A symmetric simplex design for experiments with mixtures con-
sists of some or all the groups Gz, d = 1, 2, --+ , n, where every group Gs is
obtained by permuting the different fractions over the n components in a dth
ordered mixture with d; components taking a proportion ¢; , d» of them taking a
proportion ¢, , so on, dj, of them taking a proportion ¢, such that dy + ds + - -+ -+
dr = dand digy + dogy + -+ + dagn = 1.

It can be seen that given a point P of a group Gq, all such points on the simplex
which are symmetrically placed as P with respect to every one of the n vertices
are included in the group G; and hence in the design.

3.2.Particular cases. The simplex-lattice design and the simplex-centroid de-
sign are obviously particular cases of the symmetric simplex design. The simplex-
lattice (n, m) design has a different number of groups G for every

d =1,2, -+, m. For example, there are three groups G: in a (n, 6) simplex-
lattice design with points of the type (1500---0), (3%200---0) and
(310---0). The simplex-centroid has all the n groups Gz, each of the non-

zero fractions being equal to 1/d in every mixture Sa .

The radial-lattice and the radial-centroid designs proposed by Plackett in [8]
are also particular cases of the symmetric simplex design.

The symmetric simplex design offers much flexibility in the choice of the differ-
ent proportions ¢.’s and hence in the choice of the design points so that the
representation on the simplex is uniform. All such choices of the points for the
design such as the centroid alone or simplex-lattice alone or one of these designs
along with certain total mixtures are entertained by this flexibility of the design.
For instance, one might consider a symmetric simplex design in which a simplex-
lattice or simplex-centroid is augmented with a radial-lattice so that a uniformly
spaced distribution of points over the simplex is achieved. Any other choice of the
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design points as demanded by the occasion is open to the experimenters. In
other words, only a few of the groups G;,d = 1,2, ---, n, may be considered
for the design, the number of total mixtures and incomplete mixtures being
decided according to the situation. In this connection, it may be noted that
the number of points in a group Gs increases with increasing d and 4. They will
be maximumifdi = dy = - -+ = dpand ¢1 # g2 5 - - - 5 g1, . Therefore the number
of points in a group will be less if d and % are small and may be further reduced if
in every mixture the number of components taking different distinet propor-
tions is less. Thatis, di, dz, - - - , ds must take low integral values. It is, however,
obvious that the number will be minimum if each ¢; of Gy is equal to 1/d.

Another point that may be noted is about the values of the constants (2.2.3)
for a symmetric simplex design. Since the evaluation of them for a design with
groups Ggof all orders d = 1,2, - - - | n is difficult, the evaluation of the constants
for a single group Gs which may contain any proportions ¢.’s has been made in
[6]. We however, give here only two examples which may be helpful to experi-
menters.

ExamprE 1. Consider the symmetric simplex design in n components with
the three groups Gs; d = 1, 2, 3 where the components in each group G; take
the proportion 1/d. The design thus consists of the n points of the type
(100 - -- 0), the (3) points of the type (%, %, --- 0) and the (}) points of the

type (3330 --- 0).
When a quadratic model (2.1.3) is fitted through the above design to represent

the response surface, the values of the constants (2.2.3) are given as below:
A= (20" +3n +31)/36, D =1/217,

(3.2.1) B = (4n + 1)/9, E = (16n 4+ 49)/1296.
C = (8n + 11)/216, F =1/81,
G = 0.

By substituting these values in (2.2.12) and (2.2.15) we get the estimates as
b= [2(32n — 15) 2wt + 12(8n + 3) 2oi( 2w traantiu)]
(3.2.2) (0 + 59n — 24)71
— 4 — 2)(8n + 3) i (XLumiya) + 48(20° — n + 30)
i< (Dumidadl(n® 4 200 — 8)(n® + 590 — 24)]7
(16n + 17)(1296) by,
= 2 utr@ugu — [(16n + 17)(8n + 3)(u tnatu + Do Tuuiu)]
[108(n® + 59n — 24)]7
+ (320" + 64n — 471)[18(n° + 59n — 24)]7
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(3.2.3) A2 (D u tnaintin) + DD Tuaiutu)}
+ (16n + 17)(2n° — n + 30)
[27(n” 4+ 29n — 8)(n’ + 59 — 24)7 2 (Xuzadu)
+ (32n° 4 48n® + 508n — 8664)
J9(n? + 29n — 8)(n? + 591 — 207 Dis (Xu wiaiut)-
Also, we have the following variances:
V(b:) = [64n® + 1794n* — 1330n + 264]6°[(n® + 29n — 8)(n® + 59n — 24)1,
V(by) = 144(41n* + 1752n° + 161920° — 25191n + 14160)
<((16n + 17)(n® + 29n — 8)(n® + 59n — 24)) 76"

The other covariances can be easily gotten from (3.2.2) and (3.2.3) so that the
variance of the estimated response can be obtained from (2.3.4). The V(b.)
and V(b;;) above, as also the other covariances are descreasing functions of .
It may, however, be interesting to note the order of decrease in the functions
as n increases. It must be noted that the variance of b;’s and b;; given by Scheffé
[8] for the simplex-centroid design are invariant whatever be the number of
components. The variances in his case are V(b;) = o°, V(bs;) = 24¢°. We tabulate
below the variances of the estimates upto the case when n = 10.

n V(bi)/a? V(bij)/a?
2 1.0000 24.0000
3 .9924 20.9697
4 .9813 18.5557
5 .9689 16.6444
6 .9562 15.1225
7 .9432 13.8982
8 .9305 12.8898
9 .9179 12.0468

10 .9055 11.3312

Considerable decrease in the variance of bs; can be noted.

ExampLE 2. Consider the symmetric simplex design with the n groups Ga,
d=1,2, ---,n,such that any particular group G has design points with each
of the non-zero fractions equal to 1/d. Let the group G4 be replicated r4 times so
as to get sufficient degrees of freedom for the estimation of experimental variance.
Then the constants (2.2.3) take the values shown below:

A=r+ (n— /2 4+ ("FT)r/3 + - + /0,
B = 1r/2" + (n — 2)ry/3" + ")/ + - A+ 1o/
C = /2 + (n — 2)rs/3 + ("F)re/4> + -+ + 1o/,
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D = r/3" + (n — 3)r/&" + (")re/5° + -+ + ra/0,
E =r/2" + (n — 2)rs/3* + ("FD)ra/4 + -+ 4 ra/n
F =13+ (n — 3)r/t* + ("3°)re/5" + -+ + ra/n,
G = /4 4+ (n — /5 4+ ("T)re/6' + -+ + ra/n’.

When these values are known, further analysis and interpretation of the
results follow along familiar lines. (The corresponding values for the simplex-
centroid design can be obtained by putting each r; = 1. It should be noted that
when the simplex-centroid is replicated, the observed responses at a particular
design point enter only as an average in the estimates of Scheffé’s model while
this is not so in the present case.)

4. Experiments with mixtures with the presence of process variables.

4.1. Some examples of the presence of process variables. Suppose in an ex-
periment with crop mixtures we want to study the response (which may be the
total yield in money value) due to application of certain fertilizers to the crop
mixtures in addition to the study of proportions of the crops. We are thus ex-
tending the crop mixture experiment by trying it at different levels of some
fertilizer or combinations of two or more fertilizers. The new factors which do not
form any component of the mixtures, in the present case the fertilizers, are called
the ‘process variables’ of the experiment and the crops, as usual, are called the
‘mixture variables.” Other examples of mixture experiments with the presence
of process variables might be (i) the feeding trials in which factors like age,
breed, lactation, etc., can be varied in addition to the proportions of different
feeds, (ii) the gasoline blends in which if the response is road octane number of a
blend the make and the speed of the car can be varied as well as the proportions
of the blend [8].

4.2. The complete simplex-centroid X factorial experiment. Scheffé [8], while
introducing the process variables, defined a complete simplex-centroid ¥ Fac-
torial experiment as one in which at each of the 2" — 1 points of the simplex-
centroid design a complete s” factorial experiment is made with the p process
variables each at s levels. Then he proposed a method of analysis which can be
briefly described as follows:

Without loss of generaility, let us suppose that there are three process variables
A, B, C at I, J, K levels respectively. For a fixed combination (¢k) of the
process variables, we shall have 2" — 1 points from the simplex-centroid design.
The model (1.1.7) can be fitted to the 2" — 1 observations at each combination
of the process variables as was indicated. The previous coefficients denoted by
Bs, in the model (1.1.7) may now be written as S, ; 7jk. The estimates of these
B’s are then given by (1.1.8). Now fixing s, and varying <, j, k, we resolve the
Be, ; %k into main effects and interactions as in a general factorial model to get

BC,jk

“(4.2.1)  Boige = BS, + BEF + B 4 BIF - B o gACE L gPOE | gABCLE
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On replacmg the B,, in (1.1.8) by (4.2.1) we get a regression equation with co-
efficients 83, , Barf, - -+, BE2%**; the equation will represent an arbitrary set of
responses at the points of the snnplex centroid X IJK design, and these co-
efficients will be uniquely determined by those responses.

As regards the ability of the model (4.2.1) and the simplex-centroid design
to explore the surface with respect to the mixture variables, whatever is said
in the discussion (1.2) or subsequently holds good. But, coming to the process
variables, it is not clear how the full model with 89, , 82, - -+, B&2%“* can be
used as a prediction equation. No doubt the model can be used for prediction
at the points of the design, but, as with any general factorial model using main
effects and interactions, it cannot be used for prediction at points other than
the design points though they are within the range of the variables. That is, the
model cannot be used for interpolation purposes which is expected of any predic-
tion equation.

In order to overcome this limitation of representation and prediction we first
suggest below an alternative design and then propose a general quadratic model
in both the mixture and process variables.

4.3. The symmetric simplex X factorial design. Consider a symmetric simplex
design in n components with N points and a complete s” factorial design in p
factors and s levels. Associate these two designs such that at each combination
of one design all the combinations of the other design occur. The resulting design
in n 4 p factors and N X s” points is called the symmetric simplex X factorial
design.

4.4. The quadratic regression function and its fitting. Let [T1y, Xou, *** , Tnu,
Z1u, 224, * * * , 2pu] denote the uth point of a symmetric simplex X factorial design
where 24,7 = 1,2, ---, n, denote the proportions of the n mixture variables
such that Y ;zw = land 2,5 = 1,2, - - -, p, denote the levels of the p process
variables in the uth point.

A quadratic polynomial in the n 4 p variables is of the form

(44.1) f(z,2) = B + DiBimi+ 2i62 + 2ibiwi + Dibini
+ Dicr Biowawe + Dser Birery + DuiiBii.
Now, supposing that the response 7, at the uth point can be represented by a

quadratic polynomial in the n 4 p variables, it reduces to the form,

(44.2) M = D icizn B + D igicr Biitiu + Drgici’ gn BiiTalitu

-+ Zl§j<f' <p 2’y + Zl§i_s_n.1§j§p 2 uliu

because of the following substitutions, )z being equal to unity.

@) Bo Bo' 2 Tiu

(11) BJ z]u = BJ zmz Lo = B] mez;u
(111) waw = 611 ~ (T — Zz 1525 L il )

so that
(4.4.3) B: = By + B/ + Bis, B = Biv — Bii, Bij = Bij + B
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(For convenience we shall denote the mixture variables using the subscripts 4, ¢’
ete., and the process variables using the subscripts 7, ' ete.)
The estimates of the parameters 8’s of the model (4.4.1) are given by minimising

(4.4.4) D (yu — DBt — D Bii — D BiirTadiy
— 22 Biznie — 2 Bifuzi)”
with respect to @’s, where ¥, is the observed response at the uth point.
To facilitate writing the normal equations, we shall use the following con-

stants which are satisfied by the symmetric simplex X factorial design due to its
symmetry.

szu = A, inuzju = 0,
mem'u = B, foaﬁ]u = P1,

D thxiw = C, D Tilirziu = P

D Takiru@iw = D, D2 Tadiu = Q1,
2 hi = B, D Tatidin = Qa,

D Ty = F, > thih = Ry,
(4.4.5) D Toliruita i = G, > ThZiuzitu = Ra,
> = H, D Tiliniiu = Rs,
2 zizire = 1, D Tali2itite = Ra,
Zz?’u = J, Zm%umi'uzju = Sl,
ZZ?uzj'u = K, inux;'umi”wzju = Sz,

2 i = L, > zazh = T,
2 2zt = M, 2 Tatiin = Ta,

2 Zizirtmiit ' = N, 2 Tizpdirdin = T,

foralli = ¢ # ¢ # 4" andj # j # j”, the ¢’s ranging over mixture variables
and the j’s over process variables, where the summations range over 4 = 1, 2,
.-+, N, the design points.

Summing over the n normal equations obtained by differentiating (4.4.4)
wrt 8:, 1 < ¢ £ n, we get the equation

Z1§i§n (Zu Ziulfu)
(44.6) = (A4 + (n — 1)B) D icizabi + nQ1 D 1<i<pbis
+ (2C + (n — 2)D) Zléz’<i'§n bur + anZlgm' < by’
+ (P14 (n — 1)Py) Xigiznizizp bis

vs?here the b’s are the estimates of the parameters §’s.
Summing over the p normal equations obtained by differentiating (4.4.4)
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wrt B;;, 1 < 7 < p, we get the equation
2asizo (2ouziuba)
(4.4.7) = p@i 20+ (J + (p — 1)L) 2o bj; + pRs 2 bawr
+ 2K + (p — 2)M) X by + (Tr + (p — D)To) 2 by

Summing over the (z) normal equations obtained by differentiating (4.4.4)
wrt Bir, 1 < 7 < i’ £ n, we get the equation

2igici' sn (D uTaditalfu)
(44.8) ={(n—1)C+ ("D} 2 bi+ (3)Rs2 by
+{E + 2(n — 2)F + (") X bir + (3)Re 2 by
+ {(n — )8 + (7)) X ‘

Summing over the (§) normal equations obtained by differentiating (4.4.4)
wrt B, 1 £ j < j S p, we get

Da<ici'zp ( 2ou?ini uYu)
(449) = DQ2b: + {(p — DK + ()M} 2 b + ()R bar
+ {L + 2(p — 2)M + ("2")N} 2 byyr
+{(p— )Te+ (%3)Ts} 2 by

And lastly, summing over the np normal equations obtained by differentiating
(4.44) wrtBy,1 =212 n,1 =5 =< p, we get

Zi,j (Zu mejuyu)
(44.10) = {pP1 + (n — L)pP} 2 b; + {nT1 + (p — L)nTa} 2 by
+ {2pS1 4+ (n — 2)pSs} 2 bar + {(20Ts + (p — 2)nTs} D by
+ {Ri+ (p — DR2+ (n — DRs + (p — 1)(n — 1)Re} 2 by
These five equations on solving give us the solutions of > b, 2 bjs, > bir,
D> bj,and D by;.

Let us consider the normal equation obtained by differentiating (4.4.4) wrt
Br, 1 =\ = n, which can be written as

Dutrlu = (A — B)by + BZl_s_i_s_nbi + Q1Z1§j§pbﬁ
(4.4.11) + (C — D)Yigiznim i + DD icici'<nbi
+ QX iz zpbiy + (Pr — P2) 2igizob
+ Py igisnasisobii-

This equation has only three unknowns, namely, by, 2 oo bri and D 1<j<pbrj
sinde D b, 2 by, bir , 2 bj and Y by; are already known from the
preceding steps.
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Now, summing over the (n — 1) normal equations obtained by differentiating
(4.44) wrt Bri, 2= 1,2, --- ,A—1,A 41, - -+, n, we get the equation,
Digigmion (D uTraiadu)
= (n—2)(C — D)b + (C + (n — 2)D) 2bi+ (n — 1)R: 2 b,
(4.4.12) + (B4 (n—4)F — (n—3)Q) X b+ (2F + (n — 3)G) 2_ buwr
+ (n — DR by + (n — 2)(S$1 — 82) 2- by
+ (8 + (0 — 2)8) 2 b
Again, summing over the p normal equations obtained by differentiating (4.4.4)
wrt all By;, 7= 1,2, -+, p, we get
Zl <igp (Zu Trni?ulfu)
= p(P1 — Po)by + pPa 2o bi + (Ty + (p — 1)T) 2 by
(4.4.13) + p(81 — 82) Dbni + pSe X bir + (2T2 + (p — 2)T3) 2 by
+ (R — Rs+ (p — 1)(Re — R)} 2D
+ (Rs + (p — 1)R4) 2 bys.
The equations (4.4.11), (4.4.12) and (4.4.13) therefore give us the solutions
of by, 2_ by and > by, . And, by symmetry of the design we can immediately
write down the solutions for any .

We shall now consider the estimation of any 8;;, say, Bu . The corresponding
normal equation can be written as

+ (K — M) X imubys + (Tr — T2) Digizabi + To2 by

It can be seen that (4.4.14) has only three unknowns b, > iu by; and
Zléién bi, . Summing the (p — 1) normal equations obtained by differentiating

(4.44) wrtall 85,7 = 1,2, -+, p — L+ 1, -, p, we have
Dorzizp.in (Don 2wk i)
= (p— D@ bi+ (p— 2)(K = M)bu + (K + (p — 2)M) 2 by
(4.4.15) +(p — DR b + (L + (p — HM — (p — 3N} L b
+ (M + (p — 3) N) by + (To — Ts) 2 ba
+ (T: + (p — 2)T5) 22 byj.
Again, summing the n normal equations obtained by differentiating (4.4.4)
wrt all By, 4 = 1,2, --+, n, we get
Zléi_s_n (Zu Talpuu)
= (P14 (n — 1)P;) 2 bi + n(T1 — To)bu + nTs D b
(4.4.16) + (28 + (n — 2)8,) > biir 4+ n(Ty — Ts) D b + nTs 2 by
-+ {Rl — R+ (n — 1)(Rs — R4)} Zbin

+ (Ry 4+ (n — )Ry) D byj.

K
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The three equations (4.4.14), (4.4.15) and (4.4.16) give us the solutions of

buu Z by; and Z biu
Let us consider the normal equation obtained by differentiating (4.4.4)
wrt any Ba, 1 £ A < ) £ n, which can be written as

Zux)\ux)\’uyu
(44.17) = (C = D)(bx + b') + D2 bi + Rs 2 by + (B — 2F + G)bw
+ (F = O (Xbi+ 2 bi) + G2 by + R by
+ (81— 8) (X b+ 2 bvy) + 82 by

It can be observed that (4.4.17) contains only one unknown by since all others
are known from the preceding steps, so that it can be solved easily.
Similarly the normal equation for by, , 1 < p < p’ < p, is given by

D Zuiu
(44.18) = Q2 bi + (K — M)(by + buw) + M by + T bir
+ (L —2M + N)bur 4+ (M — N) (X by 4 2 burs) + N 2 by
+ (T2 — Ts) (2 b + 2 b)) + T3 bis.

Finally, the normal equation for by,, 1 £ X < n,1 £ u £ p, is given by

D i v
= (Py — P)by + Py by + (Ty — To)bu + T2D by
(4.4.19) + (81— 8) D bai + 82D b + (To — Ts) 2 by + T3 2 by
+ (Ri — R: — Rs + R)ba + (Ro — Ry) D baj+ (Rs — Ry) D b
+ RyD by

Equation (4.4.19) gives us the estimates by, so that by symmetry the solution
for any A and u can be written down.

Thus it has been possible to estimate all the parameters of the model (4.4.2)
by first solving five equations, then two independent sets of three equations
each and finally three equations each with only one unknown.

After the parameters of the model are estimated the other procedures of
analysis including the finding of the variances and covariances of the estimates
follow as usual.

5. An illustrative example. We now illustrate the above methods by analysing
the data reported by Claringbold [1] relating to an experiment to study the
joint action of oestrogens on the vagina of the overiectomized mouse in which
the quantal response is cornification of the vaginal epithelium.

Three oestrogens, namely, oestrone (z;), oestradiol () and oestriol (zs)
areradministered either independently or as mixtures where 21, 2, , 3 are the
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TABLE 1

Percentage response of groups of 12 ovartectomized mice to joint intravaginal administration
of oestrone, oestradiol and oestriol

Response at the three levels of the process

QOestrogen mixtures variable

X1 X2 X3 2 % 2
1 0 0 17 42 83
3 1 0 0 33 75
3 2 0 33 33 75
0 1 0 58 58 100
0 3 3 17 33 67
0 5 3 33 33 58
0 0 1 25 50 42
1 0 Z 25 * 42 42
z 0 1 0 25 75
1 1 1 17 25 58
1 0 0 42 50 75
3 3 0 17 33 83
0 1 0 75 67 83
0 3 3 33 42 67
0 0 1 50 42 67
3 ] 3 17 42 58
H 3 % 33 33 58
% 3 % 50 50 58
H % 3 33 33 50
3 3 3 17 42 42

mixture variables denoting the proportions of the oestrogens in each mixture so
that the factor space is a 2-dimensional simplex. Further, the following three
doses of each mixture were tried 21 = 0.75 X 107 ug, 20 = 1.50 X 10~ ug and
21 = 3.00 X 107 ug. Thus there is a single process variable (z) at three levels
conveniently denoted by —1, 0 and 1. The design and the data as reported by
Claringbold [1] are presented in Table 1.
5.1. The analysis. The design is obviously a symmetric simplex X factorial
design with three groups having points of the types (100), (3 3 0), (3 2 0),
£+ 12)and (%% 4%). Since the observations are percentages, an angular trans-
formation of the data is made, the variable y now denoting the observed re-
sponse on the transformed scale.
For illustration we shall consider the fitting of the following two types of
models:
Case (i). Fitting quadratic models at each level of the process variable.
At the level z_; we have the following values of the constants in (2.2.3) from

the 20 points:
.|
B

4.3333, C = 0.5185, E = 0.2114, G =0.
1.1667, D = 0.1296, F = 0.0432,

B
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Further
Yoay = 163.7471, D mamy = 29.1448,
Doy = 2484985, D mxsy = 27.1965,
>y = 209.1600, 2 mawsy = 32.2463.

Substituting these values in (2.2.12) and (2.2.15) we get the estimates of the
parameters and finally the response surface:

(5.1.1) y = 2712 21 + 59.36 z2 + 43.99 x5 — 72.68 z12»

— 48.73 1123 — 93.25 x5 .
The sum of squares due to regression is 2635.25. The error sum of squares ob-
tained from observations on the four repeated points (10 0), (01 0), (00 1),
1 1 1) works out to 274.66. The s.s. due to lack of fit is then obtained by sub-
traction of these from the total s.s. 3938.97.
Similar analyses were made on data at levels 2z, and 2; also. The response
surfaces together with Analysis of Variance Table are shown.
Response surfaces:

(5.1.2) At zo:y = 4145 x; + 52.01 2, + 42.8 23 — 41.60 z12»
— 19.91 zx; — 39.78 25 — 49.
(5.1.3) At 2z :y = 64.66 21 + 76.63 2, + 47.85 x5 — 49.99 z;x»
— 35.45 wyxs — 49.74 mows .
ANALYSIS OF VARIANCE TABLE

Source df. M.S. at z F M.8. at z F M.S at 2 F
Regression 5 527.07 7.67* 119.28 5.33 323.17 2.80
Lack of fit 10 102.91 6.83 47.14
Error 4 68.66 22.39 115.38

* Significant at 5%, level.

The regression is significant only at z_; while it is barely significant (at 10%
level) at 2.

However, an overall empirical conclusion that can be drawn from the
three surfaces (5.1.1), (5.1.2) and (5.1.3) is that while the percentage cornifica-
tion generally reduces at mixtures near the centroid because of the negative
joint effects, the response surely increases as the dose of the mixture of the oester-
ogens increases.

Case (ii). Fitting of a quadratic model including the process variable.

The model corresponding to (4.4.2) is

(5.1.4) Y = Bitr + Bos + Baxs + Buz’ + Butis + Putixs + Baudats
+ 131,-’512 + ﬁzlxﬂ + 33,11032-
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The symmetric simplex X factorial design has in this case 60 points. The
values of the constants in (4.4.5) are

A = 13, B="17/2 C=14/9, D =17/18, E = 137/216,
F=1/54, H=40, J =40, Q =40/3, R = 26/3, Rs="7/3.

All other constants are zero. Substituting these values in equations (4.4.6),
(4.4.7), (4.4.8) and (4.4.10) we get,

(5.1.5) Sicizs (X my) = 202 bs + 40 by + 3.5 bas,
(5.16) D2y = 13.332_bi + 40 by + 2.33 > b,
(BT Digiciss (D xiwin) = 3.5 b + 7 by + 0.894 D bis
(5.1.8) Diciss (D zay) = 13.33 2,07

After obtaining as usual the values of Y zy, 2 2122y etc., from the transformed
observations and using them in the above equations, we get

> b = 144.89, by = 3.82,
D b = —152.60,  2.b = 36.34.
From equations (4.4.11) and (4.4.12) we have

Il

(5.1.9) > oy = 9.500 by + 3.500 X b; + 13.333 by + 1.667 3 by,
+ 0.389 > biir,

(5.1.10) 2. (X may) = 1.167 by + 1.944 D b; + 4.667 by, + 0.50 D bs
+ 0.259 > b .

Substituting the values of ) bi, b, O biw and D b, in these equations, we get

by = 41.99, D> b = —91.22,

by = 60.32, D by; = —118.05,

by = 4254, 2 by = —97.00.
Again, from the equation (4.4.17) we get
(5.1.11) > many = 1167 (by + b') + 0.389 2 bs + 2.333 by + 0.375 by

+ 0.129 (2 bai + 22 bwd)
from which we get
by = —55.93, bz = —34.90, by = —61.74
Again, from equation (4.4.19)
(5.1.12) 2omey = 6.33b) + 2.33 2D
Therefore
b’ = 2006, b’ =11.78, b5 = 4.50
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Thus we have the response surface,
(5.0.13) y = 41.99 21 + 60.32 2, + 42.54 x5 + 3.82 2" — 55.93 212 — 34.90 3,7
o — 61.74 2,25 + 20.06 2z + 11.78 292 + 4.50 a3z,

The analysis of variance is thus obtained as:

Source d.f. M.S. F
Regression 9 1183.41 17.20%*
Lack of fit 38 48.15
Error 12 68.81

** Significant at 19, level.

The regression in this case can be seen to be highly significant and the fit of
the quadratic model is also quite adequate.

Regarding the effects of oestrogens, while the earlier remarks hold, it can be
observed from (5.1.13) that the dose has an increasing effect on response.

Variances and Covariances of the esttmates. From equations (5.1.5), (5.1.6)
and (5.1.7) we can obtain the solution of by as

(5.1.14) bu = 007> 2%y — 0.05> (2 zy).
Similarly from (5.1.9) and (5.1.10)
(5.1.15) by = 0.15 2 my — 0.34 > (O mxagy) + 0.04 D (O zy)
—0.05 > 2% — 0022 (2 zaay).

Again from (5.1.11)

Do = 2.67 oy — 0.34 (X my + O ovy)
(5.1.16) + 010 { (X mag) + 2 (O mvay))

—0.02 20 (2 ) + 1.64 20 (2 wixry).

And from (5.1.12)
(5.1.17) b = 0.16 2 mey — 0.03 2 (D zazy).

Therefore from (5.1.14), (5.1.15), (5.1.16) and (5.1.17) we get the following
variances and :covariances of the estimates by collecting the appropriate co-
efficients:

V(bu) = 0.078°, Cov (bib;) = —0.024°,
V(bs) = 0.19¢, Cov (bibi) = 1.746,
V(bi) = 4.516%, Cov (bijbuj’) = 1.646",
V(b)) = 0.13¢%, Cov (bub:) = —0.0546%,
Cov (bd;) = 0.046%, Cov (b/b;) = —0.038,

Cov (bibs;) = —0.3667,
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where ¢* = 68.81 (from the analysis of variance table).
The variance of the estimated response go at a point (Zi%20%3020) from the
surface (5.1.13) is then obtained as in (2.3.4).
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