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THE DISCRETE STUDENT’S ¢ DISTRIBUTION

By J. K. Orp
University of Bristol

0. Summary. The discrete Student’s ¢ distribution is discussed. In particular,
we find that all finite odd order moments are zero, although the distribution need
not be symmetric. A numerical comparison with the symmetric binomial shows
the higher kurtosis of the Student form.

1. Introduction. In Ord (1967a), (1967b), we discussed the discrete system of
distributions defined for the density f, = Prob (R = r), R a random variable
taking integer values in an interval [c, d] say, by the difference equation,

(1) Afra = (a — 1)fra(bo + by + br(r — 1)) 7,
a and b; being parameters. These parameters are unrestricted, except that they
must be real and satisfy

(2) b’ + r(by — b+ 1) +bp—a =0

for all integer 7 ¢ [c, d].

This is the discrete analogue of Pearson’s differential equation and has been
discussed by Carver (1924 ) and Katz (1948), (1965) among others.

‘When the roots of the denominator of (1) are imaginary, we find

fe/fr—1x = [ratio of quadratic forms with imaginary roots]

yielding a discrete Type IV distribution (following the usual notation for Pearson
curves). A special case of this distribution is the Type VII (discrete Student’s ¢)
with

(3) f(r;k,a,0) = f = e/ ILomo {(r + p + @)’ + 7}
where k is a non-negative integerand 0 £ a@ £ 1,0 < b* < o, which we write as
(4) fr = ar/Q(r).

We now proceed to develop various properties of this distribution.

2. Moments. From (1), we may readily derive iterative relations for the
factorial moments; u; (=p;(k) for parameter k) are

wm = —(k/2 + a),
(5) (2k — V)w = K'/4 + 1,
ps = 0,
(2k — 1)(2k — 3)ms = K*(k — 4)/16 + (3k — 2)kb*/2 + 3b*,
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and the ratio 8; has limits 2(2 — k)/k(2k — 3) asb—0,6/(2k — 3) asb — oo,
having a minimum of 274 for k¥ = 3 as b — 0; the latter limit corresponds to the
continuous Student form.

3. Evaluation of probabilities. To evaluate the individual terms of (3) we
require a closed form for o . We may then evaluate f, directly, or, for large &, use
an approximation due to Cohen (1940).

If we define the digamma function

(6) Y(2) = dInT(2)/dz

(7 = —(1/z24+1/(1+2)+1/(2+2)+--)
which has imaginary part

(8) IY(2)] = 1(2).

We find, on using the relation

(9) ar/ars = m(k) + K/4 + b,

which may be derived from (5), that

(10) ar = b T5= (7 + 4%/ (F)w(a, b),
where

w(a,b) = I(1 +a+ b)) + I1(2 — a4+ b7)
+0l(a® + )7+ {(1 — @) + 07} 7).

Results (9) and (10) are derived in Ord (1967a), Chapter 3.
In Table 1, we give values of w for various a, b. For b = 2, taking
w = m = 3.14159 - - - , is accurate to within 1 unit in the fourth decimal place.

(11)

4. Values of the odd order moments. Let usy1,x denote the (27 + 1)th odd
order central moment of the distribution with parameter k. For every &, moments
of order up to 2k exist.

Assume

(12) pojnp =0 for k=1,2,--- ,m+2; j=0,1,---,s8 s<m-+ 2.

TABLE 1

a (or 1—a) b=1 b=2

0.0 3.15334 3.14162

0.1 3.1511 3.1416

0.2 3.1452 3.1415

0.3 3.1379 3.1415

0.4 3.1321 3.1416

P 0.5 3.12988 3.14158
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Then the expression
(13) M2s+43 ,m+2/am+2 — M2s—1 ,m/am - {%(m + 2)2 - 2b2} I-"28+1,m+2/am+2

can be rearranged as

1w 2o flrym + 2)(r + a + m/2)
He+a+m+ 1"+ +a—1)"+0") — (r+a+m/2)"/ans

which is simply constant X pas—1,mie -
Assumption (12) thus implies that pssis mte 1S zero.
Since w1 , us are zero for all k from (5), we have shown, for all k, that

pos1 = 0 for s=0,1,2,:-- provided it exists.

Further it is readily shown from (3) that the distribution is only symmetric
fora = 0, 1 or 1, so we have shown the existence of a family of distributions for
which measures of skewness based on the odd order moments are of no value.

For any finite number N, we may choose k& > N/2 so that the first N moments
exist. Since a symmetric characteristic function implies that the distribution is
symmetric and the moment generating function, if it exists, determines the
characteristic function, our result is nearly optimal. That is for any finite M we
may construct a distribution with its first 2}/ moments finite and all M odd order
amounts about the mean zero, although the distribution is itself asymmetric.

We observe that this asymmetry is of a very special form. If f, is the modal fre-
quency, fi second largest, then

(15) fo>Sh>Ffa>h>f2> .
5. Estimation. Sichel (1949) showed that the second frequency moment
(16) w = [fdz (w=1)
TABLE 2
Value of r. v. Binomial (n=20) S (2,0, 14) S (10, 0, 70)
0 .176,196 .215,064 .182,503
=+1 .160,179 .179,596 .162,363
+2 .120,134 .109,319 .119,044
+3 .073,929 .054, 660 .070,257
+4 .036,964 .024,000 .033,431
=+5 ‘ .014,786 .011,040 .014,380
+6 .004,621 .005,257 .005,561
+7 .001,087 .002,763 .001,892
=+8 .000,183 .001,454 .000,586
=+9 .000,019 .000,804 .000,100
+10 .000,001 .000,479 .000,051

>10 or <-—10 — .003,091 .000,101
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was asymptotically efficient for estimating the scale parameter of the Cauchy
curve. For the discrete Cauchy (k¥ = 0in (3)), we find

(17) w, = % + (coth b — xb)/2xb coth® b
while the estimate b* from (17) has variance
(18) nH{4b* — (x cosech 2xb)/b + «” sech® #b}

asymptotically equal to the variance of the ML estimator.
Generally, it may be shown that if the density function obeys the differential

equation
(19) df/db = fr(g — f)

where h, g are functions of b, then the second frequency moment is an asymp-

totically efficient estimator of b.
Equation (19) is a Bernoulli equation and thus has the general solution

(20) f=w/(f uhdb + C(z))
where u = exp (f hg db), C is some function of x only. A particular solution is
(21) £z, b) « {1+ (x/b)}7, J>1

6. Numerical comparison. Denote the distribution of form (3) with param-
eters, k, a, b> by S(k, a, b*). We compare S(2, 0, 14), S(10, 0, 70) with the sym-
metric binomial having n = 20, taking origins at the mean, and all the dis-
tributions have variance 5. The 3, values are 8.6, 3.2 and 2.9 respectively.
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