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A NOTE ON TESTS FOR MONOTONE FAILURE RATE
BASED ON INCOMPLETE DATA

By R. E. Barrow! AnD F. PROSCHAN
Unaversity of California, Berkeley and Boeing Scientific Research Laboratories

0. Abstract. Certain tests of constant failure rate versus failure rate increasing
on the average are unbiased when complete samples of observations are available,
as pointed out by Bickel and Doksum in the Annals of Mathematical Statistics
(1968). In the present note, unbiasedness is proved when incomplete samples of
failure data are available. A similar result is obtained for monotone tests of con-
stant versus increasing failure rate. Finally, a table of percentiles is given to
facilitate application of the total time on test statistic for testing constant failure
rate versus failure rate increasing on the average.

1. Introduction and summary. Let 0 = Xy = Xy £ X9 £ -+ £ X be
the order statistics of a (complete) random sample from a population with
distribution F and density f such that F(0) = 0. Bickel and Doksum (1968 )
consider the problem of testing

Hy:F(t)=1—¢™ t20, x>0
Versus
H, : FIFR (i.e.,, —log[1 — F(t)] convex on [0, « )).

TetDi= (n — 14+ 1) Xw —Xewp), ¢ = 1,2, .-+, n. They consider tests
based on statistics of the form

(2-ta aiDi/ D7 Dy)

wherea; = a; = -+ = @, . The test, ¢, , rejects Hy when SraaiDi/ Yt D 2
Cayan - They compute the asymptotic relative efficiency of various such tests
relative to selected parametric alternatives. Such tests were shown to be un-
biased against IFRA (for increasing failure rate average) alternatives by Barlow
and Proschan (1966) and hence a fortior: for IFR alternatives. [See also Birn-
baum, Esary and Marshall (1965) for justification of the IFRA assumption.]

The purpose of this note is to show that analogous tests designed to treat in-
complete samples of failure data are also unbiased against IFRA alternatives.
Let X: be the time to failure of the 7th item in a sample of size n. Let L; be a
given truncation time for the sth item and let

Z¢=min(X¢,Li), i=1,2,~-,n.
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Let 0= Zygy = Zgy £ -+ = Zg be the first k observed failure times. Note

that “withdrawals” may occur between Z;, and Z .1, and that k is, in general,

a random variable. Let n(u) be the (random) number of items on test at time u.
We define a test, ¢,*, (a modification of ¢,) which rejects H, in favor of

Hy: FIFRA (ie., —{log [l — F(¢)]}/t nondecreasing on [0, o))
when
Wa = (2hmrai [50 n(u) du/[E% n(u) du) = caon-
Note that [7¢ . n(u) du represents the total time on test between the (¢ — 1)st

Z(i-1)
and 7th observed failures. The distribution of W, can be computed under H,
using the fact that Vi = [Z2), n(u)du (¢ = 1,2, ---, k) are distributed as
independent exponential random variables under H, conditioned on the value of
k. We show that ¢," is an unbiased test for IFRA alternatives for weights a =

(a1, @, -+ ,a,) for whicha; = as = -+ = a,.

2. Distribution of W, under H,. Let 7(t) = f()/[1 — F(¢)] be the failure rate
function for F. We will need the following lemma, stated without proof in Bray,
Crawford, and Proschan (1967).

LEmMA 1. For any distribution F(F(0) = 0) with failure rate r(t), Y =

29 r(un(u)du, ¢ = 1,2, -+, k are independently distributed with den-
sity e v

Proor. Let Vi = [§@ r(u)n(u) du and So(t) = [¢r(u)n(u) du. Note that
So(t) is well defined up to the time of the first observed failure since n(u) de-
pends only on the specified truncation times L; (¢ = 1, 2, ---, n) up until

Z(l) . Then
PIY1 > yil = P[So(Zw) > yi] = PlZwy > S (y)] = exp [—8e(So~ (1)),
i.e., the probability of no failure in [0, Sy " (y1)]. Hence
P[Yl > y1] = 6_”1.

Thus Y; has density ¢ .

Now let ¥, = §§f§ r(u)n(u) du and S;,(t) = ffcl r(u)n(u) du. Note that
conditionally on Zyy = 1, S,, is well defined for z; < ¢ < Z(y . Hence
PlY; > ys|Zay = @] = P[Se;(Z») > 92| Zoy = @]

= PlZa > 8o (1) | Zoy = @] = exp [—8e, (5, (12))] = 7™

Thus Y, is independent of ¥; and also exponentially distributed with mean 1. If
we continue in this manner, conditioning on previous events, we establish the

lemma. []
Under Hy, r(t) = X and we see from the lemma that, given k observed failures,

Wao =g ( Z]t";l az'Yi/ Z.I;nl YJ'))

where =, denotes stochastic equality and ¥, Y., -+, Y} are independent,
exponentially distributed random variables with unit mean.
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3. Unbiasedness under IFRA alternatives. We need the following lemma to
establish unbiasedness. Define R(¢) = [¢r(u)du and T(¢) = [on(u) du.

Lemma 2. If R(t)/t is nondecreasing in t = 0, n(t) = 0, and T(t)/t is non-
increasing in t =10, then

(1) r(t) 2 for(w)du/t = [or(u)dT(u)/T(t)

(ii) [or(u)dT(u)/T(t) is nondecreasing in ¢t = 0,
when the indicated integrals exist.

Proor. To show (i). The first inequality follows from differentiating R(¢)/t.
Since R(t)/t = 0 is nondecreasing in £ = 0 we can approximate R(¢) arbi-
trarily closely from below by a positive linear combination of functions of the
form

R(t) =0 0=t<u

=1,

[cf. Barlow, Marshall, and Proschan (1967)]. If we can establish the second in-
equality in (i) for functions R (%) of this type, then the second inequality in (i)

will hold in general, by the Lebesgue monotone convergence theorem. For ¢ < =,
both sides of the second inequality of (i) are zero. For ¢ = z,

fin(u) dR(w)/T(t) = [n(z)z + [in(u) dul/T(¢)
=1+ [an(z) — T(2)l/T(2).

Thus the left side of the second inequality of (i) equals one while the right side
is less than one since zn(z) — T(xz) < 0, a consequence of T'(z)/x being non-
increasing in z = 0.

To show (ii). Clearly

@/a)[fs r(w)n(u) du/fon(w) dul = 0

v

T,

if and only if
r(t)n(t) [en(u) du = n(t) [§r(u)n(u) du,

‘which follows from (i). []

Note that if »(¢) is nondecreasing in ¢ = 0, then (ii) follows for all n(¢) = 0;
i.e., the assumption that 7'(¢)/¢ is nondecreasing may be dropped.

Lemma 2 may be used in testing for IFRA in models other than the one de-
seribed in the introduction; see for example the model of Bray, Crawford, and
Proschan (1967).

TreoreM 1. If F is IFRA with failure rate r(t) and Zgy = Zy = -+ = Zy
are the observed failure times, n(t) = 0 for t = 0, and T()/t = 0 is nonincreasing
in t = 0, then (conditional on k),

W= D fmaai [58, n(u) du/[§% n(u) du Zu Diaals/ 2 50V,

whereay = aa = -+ = apand Yy, Yo, ---, Yy are independently distributed as
exponential random variables with unit mean.
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- Proor. Since n(u) = 0 and T(t)/t is nonincreasing, Lemma 2 applies, yield-
ing
Bifas = [EO r(u)n(u) du/[§P n(uw) du
nondecreasing ini = 1,2, - -+, k. By lemma 1 we need only show that
(1) Dia [5, n(u) du/[§® n(w) du
> Dk [ED r(u)n(u) du/[§P r(w)n(u) du
ie.,
S (s — i) Z D @i — Bia)Bi

where oy = By = 0. Note that ‘

Sk el — ai1) = (a1 — @)on + (a2 — @3)az + -+ + oy

= D a1 Aici

where A; = @; — @iy = Ofori = 1,2, .-+ ,k — 1and A, = a; . Hence 8i/a; =
B/ implies Sk A/ = > k1 ABi/Br , which proves (1).[]

4. Application of total time on test. Assuming an exponential distribution, the
results of Bickel and Doksum (1968) may be used to establish the asymptotic
normality of W, in the incomplete data case for selected vectors a = (@1, ++,
). Perhaps the most useful test is the total time on test statistic. In the case of
a complete sample of size n, this is S;* in the Bickel-Doksum paper, obtained by
choosing a; = —1i/(n + 1), after algebraic manipulation. Epstein (1960) adapted
this test to the life testing problem and called it test 3. In the case of incomplete
data as described in the introduction, with & failures observed; the total time on
test statistic is

Weo = 244 (b — 1) [520, n(w) du/[§© n(u) du,

obtained by choosing = 0F—-1,k—2--+,1,0).

The exact distribution conditioned on the number of observed failures £ = 2
is easily computed in this case. Table 1 is a short table of percentage points. Note
that, under Ho

Wa° =st,U1+ U2+ R Uk—l

where U; (s = 1,2, -+- , k — 1) are independent uniform random variables on
[0, 1]. Since the distribution of Wao is symmetric about 3(k — 1) we tabulate
upper percentiles only.

5. Monotone tests under IFR alternatives. Bickel and Doksum (1968) define
a test ¢ to be monotone in the normalized spacings Dy, ---, D, if ¢(D,', N
D) £ ¢(Dy, -+ ,Du) forall (D1, -++, Da) and (D{, -+, D) such that for
i< j, D! = D, impliesD;: 2 D; . We show that if D;isreplaced by [5¢),, n(w) du
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TABLE 1
Percentiles x. of total time on test statistic, Wao

3

900 950 975 .990 995
2 1.553 1.684 1.776 1.859 1.900
3 2.157 2.331 2.469 2.609 2.689
4 2.753 2.953 3.120 3.300 3.411
5 3.339 3.565 3.754 3.963 4.097
6 3.917 4.166 4.376 4.610 4.762
7 4.489 4.759 4.988 5.244 5.413
8 5.056 5.346 5.592 5.869 6.053
9 5.619 5.927 6.189 . 6.487 6.683
10 6.178 6.504 6.781 7.097 7.307
11 6.735 7.077 7.369 7.702 7.924
12 7.289 7.647 7.953 8.302 8.535

k = number of failures observed in incomplete sample
P [Wao = Xa] =«

in the incomplete data case, then a monotone test is unbiased for testing Ho
versus H; when n(u) = 0 for u = 0. The test rejects H, for large values of .

We need
Lemma 3. Letr(u) T andn(u) = 0foru = 0. Thenfor0 < a <b = ¢ < d,

fon(u)r(u) du/[in(u) du < fan(u)r(uw) du/[2n(u) du.
Proor.
fon(u)r(u) du/ [ n(u) du < r(b) fan(u) du/ [on(uw) du
< r(e) [P n(u) du/[in(u) du < [3n(u)r(u) du/fen(u) du. [

From Lemma 3, we immediately obtain
TuEOREM 2. Let ¢ be a monotone test of Ho versus H based on a sample of incom-
plete data as described in the introduction. Then

Elp(fE® n(u) du, -+, [5¥,, n(u) du) | F IFR]
= Elp(f§ n(u) du, -+, J2% | n(w) du) | F exponential]
= E[‘b(Yl’ ttty Yk)],

where Y1, -+, Yy are independent exponentially distributed random variables.
Proor. Forz < 7,

J20,, n(w) du/[782,, n(u) du
= fgg)—l) r(u)n(u) du/jgg:)_l) r(u)n(u) du =g Yj/Y.' .

The inequality follows from Lemma 3; the stochastic equality follows from
Lemma 1.



600 R. E. BARLOW AND F. PROSCHAN

Thus ¢( Y1, -+, Vi) Sed(JEO n(u)du, -, [7%,, n(u) du). The conclu-
sion follows by taking expectations. []
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