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VARIANCES OF VARIANCE-COMPONENT ESTIMATORS FOR THE UN-
BALANCED 2-WAY CROSS CLASSIFICATION WITH APPLICATION
TO BALANCED INCOMPLETE BLOCK DESIGNS

By Davip A. HARVILLE

Aerospace Research Laboratories, Wright-Patterson AFB

1. Introduction and summary. “Best” estimators of variance components
for the unbalanced cases of random-effects models are not known. In fact, even
for the very simplest of the unbalanced “designs”, the balanced incomplete
block designs, the question of the existence of minimum variance unbiased
estimators remains open (Kapadia and Weeks [5]).

The traditional approach to the derivation of variance-component estimators
for unbalanced cases has been to pick several quadratic functions of the data,
set these functions equal to their expectations, and then solve the resulting system
of equations for the variance components. Two of the estimators derived in this
fashion for the variance components associated with the unbalanced two-way
cross classification are those referred to as the Methods-1 and -3 estimators of
Henderson [4]. Method-1 utilizes quadratics analogous to the sums of squares
in a balanced analysis of variance. The quadratics employed in Method-3
represent differences between reductions in sums of squares due to fitting dif-
ferent models. Since in Method-3 more differences between reductions are
available than one has variance components to estimate, the method is not
uniquely defined. Here, the Method-3 estimators of the components associated
with the two-way classification are taken to be those in Harville [3], which are
the ones most commonly used.

Searle [9] obtained algebraic expressions for the sampling variances of the
Method-1 estimators of the “two-way’’ components. Low [6] gave similar ex-
pressions for the Method-3 estimators for the zero-interaction case. Their results
were obtained by applying well-known formulas for the variances and covariances
of quadratic functions of multivariate-normal random variables. These formulas
state that if y is a random vector having the multivariate normal distribution
with mean u and variance-covariance matrix V and if A and B are square sym-
metric matrices of appropriate dimension having fixed elements, then

(1) var [y'Ay] = 4u’AVAy + 2 tr (VA)®
and
(2) cov [y'Ay, y'By] = 4u’AVBy + 2 tr (VAVB).

Searle [8], [10] and Mahamunulu [7] have also used these formulas to obtain al-
gebraic expressions for the variances of commonly-used estimators of the com-
ponents of variance associated with other unbalanced classifications.

In the present paper, results (supplementary to those of Searle) are given
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which lead to expressions for the sampling variances of Method-3 estimators of
the variance components associated with the unbalanced two-way cross classi-
fication with interaction. By using these results in combination with those of
Searle, the variances of Method-1 and Method-3 estimators can be directly
compared for a given set of subclass numbers.

The results are shown to simplify when the ‘“unbalancedness” is of the type
agsociated with a balanced incomplete block design. Neither estimator of any
component is uniformly better than the other for any such design. (Except for
the estimators of the residual component which are identically equal.)

2. Preliminaries. n,; will denote the number of observations in the ¢jth sub-

class. The observations y;; are taken as having the linear model

Yijr = B+ ai + B + vij + €ir,
withe=1,---,a;7=1,---,b;andr = 1, --- , n;. pis a general mean, the
a; and the 8; are main effects, the v;; are interaction effects, and the e;, are
residual effects. u is regarded as fixed while the a;, 85, vij , and e, are taken to
be mutually-independent normal random variables with zero means and variances
ooy 08, 0y, and o

Letting ns. = DNy, n; = DiMiy, and n. = Y ;n. = .;n.; and using
ordinary notation for means, take Ro = 2 ijr Y5ir , Ry = Mo , R = D iMiifsony
Rg = X in.jj ,and Ry, = DX i;nifi; . W is taken to be a b X b matrix with
elements

wig = ny — 2 (ni/ni), J=1---,b,
and

Wijr = _zi (Msmir/ns.), 7#r=1---,b.
m is defined to be the rank of W. (For most n;-patterns, m = b — 1; however,
for certain designs that are not connected, m < b — 1.)

Take Wi to be the m X m matrix formed by deleting from W the last b — m
rows and columns. It can be assumed (without loss of generality) that this matrix
is of full rank. Then, take

B=W"g;
where qisab X 1 vector with jth element
QG = Mg — i Mislins
and, using 0 to represent any null matrix, the b X b matrix
Wi 0 M

w* = .
0 o

Now, take Res = Ra + §' q.
The common value of the Method-1 and Method-3 estimators of ¢.” is given

by
6. = (Ro — R,)/(n.. —¢)
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where ¢ denotes the total number of filled subclasses (subclasses such that
ng = 1). It is well known that

var [¢7] = 20/ (n.. — ¢).

The Method-1 estimators of s, og, and 072, which will be denoted by b, 5’52,
and ¢,’, respectively, are linear functions of T, =Ro — R,, Ts = Rg — Ry,
T, =R, — R, — Rg+R,, and é; and the Method-3 estimators, which will be
denoted by .., 35, and &, are linear functions of So = Ras — Rs , Sg = Rog — Re,
S, = R, — Ras, and é¢2, as in Harville [3]. Furthermore, by using the matrix
notations introduced below and by applying Theorem 4.21 in Graybill 2], it can
be readily shown that ¢ is distributed independently of Ta, Ts, Ty, Sa, Ss
and 8, . The variances and covariances of Ry , Ra, Rs, and R, can be obtained
from Searle’s 1958 paper. [Actually, since Searle ignored the first term in the right
hand sides of formulas (1) and (2), the expressions given by him represent
the differences between these variances and covariances and the constant
;.¢2(cr¢,[2 Z,nf + o5 > n’; + 072 Siing + aon..). Nevertheless, the variances
and covariances of T , Ts , and T do not contain this term and consequently it
can be disregarded in obtaining them from Searle’s expressions.] Thus, to get ex-
pressions for the variances and covariances of the Method-3 estimators and for
the covariances between Method-1 and -3 estimators, it suffices to derive the
variance of Sp and its covariances with By, Ra , Rs, and R, .

3. Variances and covariances. The procedure to be followed in obtaining ex-
pressions for the necessary variances and covariances will be to express B, , Ra,
R, R, , and Sp as quadratic functions of the y:j,’s using matrix notation; to then
apply formulas (1) and (2); and finally to evaluate the right hand sides of these
formulas.

Take y’ to be the row vector of the n.. yu;’s arrayed in r-order within j-classes
within each ¢-class; i.e.,

Y = (Y1, o0 Yingy s Yios 00 5 Yizegg s 00y Yabty T  Yabnas) -
Then,
(3) R, =yQy; Ra=750Qu;
Rs = yQuy; R, =¥Qy,

where Q. , Q«, Qs , and Q, are n.. X n.. symmetric matrices which can be ob-

tained from Searle’s paper [9].
It is straightforward to show that

Sp = Diie Dotep Bit,isYiiYten »
where, taking wh, to be the jsth element of the matrix W™ defined earlier,
Gitge = briwi = Whe — Dor (ur/Me)W5r — > (Man/mi YWl
4 D (/) (Raw/ 1 )07
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Thus,
(4) S5 = ¥ Qusy,

where, taking U; . to be an n; X n; matrix with all elements equal to one,
Qus is an n.. X n.. symmetric matrix with n;; X n. submatrices ¢uz,;5Uij,¢5 -

The vector y has mean u and variance-covariance matrix V, where u is an
n.. X 1 vector with all elements equal to u and V is as given by Searle [9]. Thus,
by using the matrix formulations (3) and (4) and applying formulas (1) and (2),
matrix expressions for the variance of Sg and its covariances with R, , R, , Rs,
and R, can be readily obtained.

The necesary techniques for evaluating the resulting matrix expressions have
been well illustrated by Searle. The first step is to carry out the matrix multipli-
cations VQ, , VQ., VQs, VQ, , and VQ.s . Searle has performed the multipli-
cations for the first four of the products. Carrying out the multiplication for
VQ,s gives an n.. X n.. matrix with n;; X n: submatrices 6;,;U.;,6 , where

Outio = 08 D0 Muidutio + 0y Mjbin e + 0 bi s -
It is straightforward to show that
¥'QesVQusy = ¥'QVQusu = v'QuVQusy = ¥'QsVQast = ¥'Q;VQusu =0.
Then,
var [Sg] = 2tr (VQup)® = 2 D it Dsp MisMeghis,igBei s 5
cov [R,, Sgl = 2 tr (VQasVQ,)
(2/n..) D2it 2oip Nighbin,ip(Me.a’ + Mpg + Nupoy” +0) ;3
cov [Ra, Sg] = 2 tr (VQasVQa)
= 2{20: X ip Mimighiisploa’ + (Mip/ni)oy’ + (1/n:)0l]
+ 08" 2 i Dip Mg (Mup/ M) B )
(5) cov[Rs, Se] = 2tr (VQusVQs)
21D st 2,ps MiMap(Mai/M5) 0t
+ 2a Soini(ne/n.)0u o
+ [Tw 2 mimebieilog + [2ou 225 i (nus/n.)0i si)oy’
4 [0 25 nas(nas/n.)0i 00’} 5

Il

]

and

cov [R,, Sg] = 2 tr (VQusVQ,)
2[4 Do Minibiciploa + [Dse 205 Mighusbis,islog”
4+ 2 2 niisi(naoy” + o)}

I
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4. Balanced incomplete block designs. Now take the pattern of filled sub-
classes to be one associated with some balanced incomplete block design and
take the number of observations per filled subclass to be a constant, say n.

Accordingly, > (ip/n), 2i (ip/n) (ni/n), and D_; (ny/n) are constants
when regarded as functions of p, r, and ¢, and their values will be denoted by
8, N\, and k, respectively. Also, for ¢ & 7, set

Sie = 2o (n/n) (ngy/n).

The following, well-known properties of balanced incomplete block designs will
be needed in the sequel: (i) ak = bs; (ii) b > k = 2; (ili) a > s = 2;
(iv) N = sk — 1)/(b — 1); (v) s > \; (vi) s = k or, equivalently, a = b;
(Vil) Db = k(s — 1), for all ¢; and (viil). Qe 05 = ks — 1 +
(k — 1)(A — 1)], for all 4. Properties (vi), (vii), and (viii) were noted by Fisher
[1].

Now, m = b — 1 and W11 has diagonal elements 2k/(\bn) and off-diagonal
elements &/ (A\bn). Using this result, we obtain, for ¢  z and p = j,

biiii = (k+1)/(\on), ni = 0,
= (k — 1)/(Nbn), Ny = M;
biiip = 1/(Nom), Ni; = Mgy = 0,
= —1/(\bn), Ny = Nyp = N,
=0, otherwise;
biri = (K" + 8:)/(\bkn), nij = My = 0,
= (K + 8; — 2k)/(\bkn), Ny = ny = M,
= (K + 8: — k)/(\bkn), otherwise;
bitip = 8it/ (NDkm), Nip = Ny = 0,
= (8; — 2k)/(\bkn), Nip = Ngj = N,
= (84 — k)/(Nbkn), otherwise.
Based on the above, we have (still taking ¢ 5 ¢ and p # j)
bii5i = o5 + [(k + 1)/(Mbn)]o, ni; = 0,
= [(k — 1)/klos” + [(k — 1)/(Nbn)](noy" 4 o), Ni; = M;
bisp = [1/(Nbn)]o, Ny = Nip = 0,
=0, Ny = 0, Ny = n,
= —(1/k)og’, Ny =N, MNip = 0,

—(1/k)es” — [1/(Wn)](nay’ + o), Nij = Nyp = N;

]
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Oiesi = o5 + [(K + 8:)/ (\bkn)]ol, Ny = Ny = 0,
= [(k — 1)/klog" + [(K* + b2 — k)/(Nbkn)]o ni =0, ny=mn,
= a5 + [(K* 4 8: — k)/(\bkn)](no,’ + o), Ny =m, myG =0,
= [(k — 1)/Klog’ + [(K + 8: — 2k)/(Nbkn)](nay” + o), miz = ny = n;

Oit,ip = 82/ (NDEm)]o i = Nip = Ny = 0,
= —(1/k)os" + [(8: — k)/(Nbkn)]ol, Ny = Nip = 0, Ny =M,
= [(8;4 — k)/(\bkn)]os, Ny =Ny =0, Ny =mn,
= —(1/k)os" + [(8: — 2k)/(Nbkn)]os, Ny =0, Nip =Ny =n,
= [8:/ (\bkn)](ne,’ + o), Ni; =M, MNip = Ny = 0,
= —(1/k)og" + [(5s — k)/(Nbkm)](na,” + ), niz = Ny =m, Ny =0,
= [(8s — lc)/(>\blc1z,)](17,cr.,2 + a¢d), Ny = Nyp =N, Ny = 0,
= —(1/k)og’ + [(3: — 2k)/(\bkn)](no,® + o), M = Nip = nyj = n.

Upon substituting these f-values into the general expressions (5) and after
some algebraic manipulation, we find

var [S5] = 2n°(b — D[(aM/s)og’ + (07" + o/n)],
cov [R,, Sg] = 0,
cov [Re , Ss] = 2n%a[(k — 1)/k)(s — N)ag',
cov [Rs, Sl = 2n°(a/s)(k — Dlsos” + (o + a/n)7,
and
cov [Ry, Sg] = var [Sg] + 2n*(a/s) (@ — s)\og'.

The general expressions for the variances and covariances of R, , R. , B, and
R, , which were given by Searle [9], also simplify for designs of the type described
above, but since the simplifications are very elementary and straightforward,
they will not be given here.

Also, the equations for the Method-1 and -3 estimators of the components now
have the simple forms

8¢ = [Ro — R,)/lak(n — 1)],
ba Ty — (a — 1)6
8’| = C Ty — (b — 1)’ ,
&y T, — (ak —a — b+ 1)é’
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and
Fo Se — (@ — 1)&
3| =D S — (b — 1)8 ;
&y S, — (ak —a — b+ 1)¢l
where
a(b — 1)(s— 1)k —1) —bla —s8)(s—1)
C=(l/p)| —aldb—Fk)(k—1) bla —1)(s = 1)(k — 1)
a(b — k)(k —1) bla — s)(s — 1)
—alb — (s — 1)
—bla—1)(k—1)
[ks(a — 1)(d — 1) — (b — k)(a — s)]
and
alk — 1)(ak —a —b+ 1) 0
D = (1/pa) 0 b(s —1)(ak —a —b + 1)

0 0
—alk — 1)(a — 1)
—bb—1(s—1)|,
ab(s — 1)(k — 1)

with p, = abn(k — 1)(s — 1)(ak — k — s+ 1) and pg = abn(k — 1)(s — 1)

(ak —a — b+ 1).
Setr =ak —k — s+ land x = ak — a — b + 1. Straightforward, though
(in some cases) lengthy and tedious, algebraic manipulations now give

var [6] = 20.'/[ak(n — 1)],

var [5,'] = 2(ey" + 0’/n)"/x + 20 /lakn’(n — 1)],

var [6,]] = 20,k (a — 1)(a — b) (b — k)¥/[b*7*(b — 1)(s — 1)7]
+ 40,05 k(a — 8)/7
+ 2(oy) + o/n)(kr — b + k)/[br(k — 1)(s — 1)]
+ 40’ (o)) + ol /n)k(a — 1)(a — s)/lar(s — 1)]
+ 405 (o)) + 0/n)s(b — 1)(b — k)/br*(k — 1)]
+ 20/ /[akn’(n — 1)],
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(6) var[as] = 205'/[a(k — 1)]
+ 2xog” + (b — 1)(oy" + o/n)/xI"/la(k — 1) (b — 1)],
var [65] = 202 (a — 1)(a — b)(b — k)*/Bb*(b — 1)(s — 1)7]
+ 204'/(b — 1)
+ 40255 a— 5)/7 + 2(0,) + o/n)’(a — 1)/lar(s — 1)]
+ 40‘,2(012 + ol/n)k(a — 1)(a — s)/lar’(s — 1)]
+ 405X(o’ + ol/n)lar — (ak — a — & + 1))/ (ar"),
var [5.] = {2/[b(s — Dl}{oa'To(s — 1)(b — 1)
— (k—1)(d = k))/I(s —1)(b — 1)]
+ (o + al/n)’(a — 1)/x + 20(ay + a/n)},
and
var [6]] = 207 kr(b — 1)* + k(b — k)(b — 1)
— (b — k)(k — 1))/br" (b — 1)]
+ 4005k(a — 8)/7 + 2(oy" + o’/n)’(b — 1)/lor(k — 1)]
+ doi(o + al/n)br — (bs — b — s + 1))/ (br")
+ 405’(a’ + o /M)k(b — 1)(a — 8)/[br"(k — 1)].

The differences between the variances of the Method-1 and -3 estimators are
given by

var [6,7] — var[5,]] = 20.°%*(a — 1)(a — b) (b — k)*/[b7" (b — 1) (s — 1)7
+ 4005 k(0 — )7
— 2(0y* 4 o2/n)’(a — (b —1)(s — 1)
+ (@ = 1)(k — 1))/larx(k — 1)(s — 1)]
(7) + 40.2(0 + o2/n)k(a — 1) (a — 8)/lor’(s — 1)]
+ 4oy’ + ol/n)s(b — 1)(b — k)/br'(k — 1)],
var [&f] — var [652] = var [6.,2] — var [&72]
— 805’(0y” + 0/n) (b — k)/br(k — 1)],
and
var[¢4] — var [6.]] = var [&72] — var [3,]]
— (4(b — k)/Br(s — D}{20a(ey" + o/n)
+ oo'ki(a — b) (b — k)/Ib(b — 1)(s — D]}
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It is clear from the above that the differences between the variances of the
estimators are quadratic functions of the variance components and that each
coefficient of each function has the same sign for every balanced incomplete
block design. It is then also clear that neither estimator of any of the three
components ¢,’, o5, and o, is uniformly better than the other for any such design.
One interesting property of the first difference function given above is that it
is an increasing function of both ¢’ and ¢4’. The second difference function is an
increasing function of o, .

The simplified expressions (6) for the variances of the estimators are also
valid for balanced data (data such that n,; = n for all 7 and 7) if we replace s
and X by a and replace k by b. For the balanced case, the Method-1 and -3
estimators are identically equal. Thus, one check on the corectness of the results
of this paper is to verify that the expressions (7) are identically equal to zero
when the above substitutions are made. It is easy to show that this condition
is indeed satisfied.
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