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ASYMPTOTIC EXPANSIONS ASSOCIATED
WITH POSTERIOR DISTRIBUTIONS!

By RICHARD A. JOHNSON
University of Wisconsin

1. Introduction and summary. In this paper, an extension of the investigation of
Johnson (1967b) is made by giving a larger class of posterior distributions which
possess asymptotic expansions having a normal distribution as a leading term.
Asymptotic expansions for the related normalizing transformation and percentiles
are also presented.

Before asymptotic expansions were treated rigorously, LaPlace (1847) gave an
expansion for certain posterior distributions. The method used in this paper is a
variation of his technique. Bernstein (1934), page 406, and von Mises (1964),
chapter VIII, Section C, also treat special cases of these expansions.

The conditions imposed are sufficient to make the maximum likelihood estimate
strongly consistent and asymptotically normal. They also include higher order
derivative assumptions on the log of the likelihood. As shown by Schwartz (1966),
the posterior distribution may behave well even when the maximum likelihood
estimate does not. However, we have not attempted to find the weakest assumptions
under which the posterior distribution has an expansion. For general conditions
under which the posterior distribution converges in variation to a normal distribu-
tion with probability one see LeCam (1953) and (1958) for the independent case
and Kallianpur and Borwanker (1968) for Markov processes.

In Section 2, we show that with probability one, the centered and scaled posterior
distribution possesses an asymptotic expansion in powers of »n~* having the

" standard normal as a leading term. The number of terms in the expansion obtained
is two less than the number of continuous derivatives of the log likelihood. All
terms beyond the first consist of a polynomial multiplied by the standard normal
density. The coefficients of the polynomial depend on the prior density p and the
likelihood. The moments of the posterior distribution are shown to possess an
expansion in Section 3. The following two sections present the normalizing trans-
formation and percentile expansions. These last three expansions also apply for the
case considered by Johnson (1967b) as does the information on the form of the
terms in the expansion of the posterior distribution. To simplify the already heavy
notation, these results are first proved for independent identically distributed
random variables. The extension of all these results to the case of certain stationary
ergodic Markov processes is immediate; Section 6 presents the necessary
modifications.

Throughout this paper, ® and ¢ will denote the standard normal cdf and pdf
respectively. Also, n will be assumed to range over the positive integers; thus in
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some cases, the order of the error term in the expansion may be kept for smaller »
if the bounding constant is modified.

2. Expansion of the posterior distribution. Let X, X,, - -+ be a sequence of real-
valued random variables independently distributed as f(x, 6,) where f(x, 6) is a
family of densities with respect to a dominating measure p. It is assumed that 6,
was chosen according to a law p(-) which has a density with respect to Lebesgue

measure.
We shall require certain assumptions to hold throughout Sections 2-5.

AsSUMPTION 1. © is an open interval of the real line. Let ® denote a closed
interval containing ®.

AssuUMPTION 2. For any 0€® and t€®, provided ¢ # 6,
(211G, 0)=1(x, 1) [ dpa > 0.
ASSUMPTION 3. f(x, 0) is jointly measurable in (x, 6).

AssUMPTION 4. For each x, f(x, #) admits partial derivatives of the first and
second order with respect to 0 and these are continuous in 0 for € ®.

AssUMPTION 5. The measures [[/=,f(x;, 6) are mutually absolutely continuous
for each n =1, 2, - --. Therefore, a null set will have probability zero for all 6.
Assumption 4 and Assumption 5 assure that log f(x, 0) is well defined and con-
tinous in 6.

AssuMPTION 6. If lim;., , |6;| = oo, then lim,., , f(x, 6;) = O for all x except for
perhaps a null set not depending on the sequence {6;}.

AssUMPTION 7. For all 0e®,
Eg|logf(X, )| < o

2

0
0<I(0) = ——E,,l:a—eilogf(X, 6)].
AssuMPTION 8. For each 0,€®, there exist functions G,(x) and G,(x) satisfying

2

0 0 .
\6—6 FTH log f(x, 0)

for 6 in a neighborhood of 6, and also E, [G,(X)] < o and E, [G,(X)] < co. The
functions G, and G, may depend on 6.

< G,(x) < Gy(x)

log f(x, 6)

ASSUMPTION 9. Let
f(x, 0> P) = Sup|9—0’|§pf(x’ 0,) p> 0’ and
Q(x’ r) = SUp|9|>,f(x, 0) r>0.
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For every 80 and p, r> 0, f(x, 0, p) and Q(x, r) are measurable functions of x.
Moreover, for sufficiently small p and sufficiently large r,

Ey [logf(x, 0, p]* <
Eg,[logQ(x, ]* < o for each 0,€0.

These conditions are just one set of the many variations that imply that the maximum
likelihood estimate 8 is strongly consistent and that n*(8—6,) is asymptotically
normal with variance 1/I(6,). The consistency conditions are essentially those of
Wald while the other conditions are similar to those employed by Wolfowitz (1965)
and Weiss—Wolfowitz (1966).

Denoting the maximum likelihood estimate of 6 by 8, we study the behavior of
the posterior distribution of the centered and scaled variable ¢ where

2.1) ¢ = (0—0)b(0) and
. 12 o2 +
(2.2) b(0) = ["Z izZl 262 logf(x;, 0) | a=éj|

when the prior distribution has pdf p(6) with respect to Lebesgue measure.

The notation b(0) suppresses the fact thatb is the sum of # terms which depend on
the observed sequence x = (x, X5, ***, X, **°)-

Denote the posterior cdf of n* ¢ by F,. The observations x;, x,, - -, x, enter F,
both from the posterior distribution of § and the centering and scaling constants.
The following theorem establishes the existence of an asymptotic expansion
for F,.

THEOREM 2.1. Let 0,€ © be fixed. In addition to Assumptions 1 through 9, let K
be an integer and assume that, for each x, log f(x, 0) had K+ 3 continuous partial
derivatives with respect to 0. Let there exist functions G\ (x) with Ey [G(X)] < o0
and |(8*/86%)log f(x, 0)| < G,(x) for 0 in a neighborhood of 0y k =3, 4, -+, K+3.

If p(8y) > 0 and p(-) has K+ 1 continuous derivatives in a neighborhood of 8, there
exist functions {y /&, X)} and constants D and N, such that

[F(&)—®(&) =Y Koy v)(& x)n ™| < Dy p~ KD forall n> N,

on an almost sure set (nf(x, 0,)). Here D, depends on K and N, depends on K and the
observed sequence X.

If p(+) is positive and sufficiently smooth and the derivatives of log f are domi-
nated, an expansion will exist for every ,€ ©.

Information is available on the form of the y;.

PROPOSITION 2.1. Under the Assumptions of Theorem 2.1, each vy (&, X) is a poly-
nomial in & having coefficients bounded in x multiplied by the standard normal
density.

REMARK 1. The proof below is also valid for the expansion appearing in
Theorem 1.1 of Johnson (1967b). It extends Johnson’s results since only the first
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few terms were shown to be polynomials multiplied by ¢(£). Also p need only have
K+ 1 derivatives for an expansion of K+ 1 terms.

REMARK 2. Specializing these results to the exponential family C(¢) exp (¢ R(x)),
we see that Theorem 2.1 allows us to work with the usual parameter, for instance
p in the binomial instead of log [p/(1—p)], as was necessary under the formulation
in Johnson (1967b).

REMARK 3. Since the expansion is uniform in &, it may be used to find the rate
at which the posterior distribution of 8 —# approaches the degenerate distribution.
In particular, P[—e < 0—0 < &] = F(en b~ ') —F,(—en~%b71).

A proof will be constructed using the lemmas below and will be patterned after
the development in Johnson (1967a, 1967b).

2.1 Preliminaries. The posterior pdf of ¢, when viewed as a function of ¢, is
proportional to '

(23) pO+ b~ ) TTi=1 [f (i, 0+ db™ 1)/ f (i, 0)]

where b = b(0) is given by (2.2). Since 6, must be an interior point, in the remainder
of this section, it will be assumed that selected 6 intervals about 6, lie entirely
within ©. Further, without loss of generality, the intervals will be taken small
enough so that |(8*/06%)log f(x, 6)| £ Gi(x) holds for k = 1,2, -, K+3. Before
establishing certain properties of the function (2.3), we state a version of the
uniform strong law which will be employed repeatedly. See LeCam (1953) or
Rubin (1956) for the proof.

THEOREM 2.2. Let C be a compact set and let u(x, t) be a real-valued function
measurable in x for each te C and continuous in t for each x. Let H(x) satisfy

lu(x, )| £ H(x)  [H(x)dF(x) < .
If the X; are independent F,
Pllim,_, o, sup, ¢ |Y 1=y u(X;, O)n~* = fu(x, £)dF(x)| = 0] = 1.
Let

2.4 a,,(0) = %n‘lig é%izlogf(x, 0).
The next result is well known, but the proof is included for completeness.
LeMMA 2.1. There exist a null set S,°, 6, > 0 and for each x€ Sy an Ny, such that
{I(00)+2a2,,(0)] S I(0y))2 all ]G—BOi <0, when n>Ny,.

PRrOOF. Since © is open, Assumption 8 assures the existence of a §; > 0 such that
| Eo, [0%/06%) log (X, 0)]+1(0,)| < I(6,)/3 for |0—6,| <6,. An application of
Theorem 2.2 to a,,(0) gives the desired result.
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Noting that 5(0) = [—2a,,(9)]?, the last result together with the strong consis-
tency of 0 provides an N, (> N,,) for each xe S, such that |0—0o| < 49,

(2.5) 0 < [1(80)/2]* < b(0) < [31(8,)/2]* < for n> N,,
where S,° is a null set containing {0+ 0,}.
2.2. Basic lemmas. We now turn our attention to the product term in (2.3).
LEMMA 2.2. There exists a §,(0 < 0, < 1) with
n~'log {l—_[?=1 [f(xi, §+¢b_1)/f(xia 0]} < —¢*/6 for l¢| =4,
when n > N,, each xe S, S,.

Proor. For each xe€S,,S, choose 6, so that |f+¢b™'—0,| <8, when
|¢| < 6, and n > N,,. Here 8, appears in the statement of Lemma 2.1. An applica-
tion of the extended mean value theorem together with the bound (2.5) yields the

desired result.
The next approximation shows that the posterior mass outside of a ¢-interval

may be neglected. A similar argument is given in LeCam (1953), Theorem 5b.

LEMMA 2.3. There exists an & > 0, anull set S;° with Sy < S, .S, and foreachx € S5,
an N, such that

log {T[i=1 [f(xi, 0+ 9671/ f(x;, 01} < —ne for |¢| 26,
whenever n > Ns,. This 8, appears in the statement of Lemma 2.2.

Proor. Let xeS, be fixed. According to (2.5), |pb~*| = 6,[31(6,)/2]"* for
|¢| 2 6, whenever n > N,,. Let 2¢; = 6,[31(6,)/2]"* and make n larger if necessary
so that |§—6,| < ;. Then

[T=1 {f(xi, 8+ 051 f(x:, 0)}
2.6 n
26) < Suplo—oolgal[l—[?=l.f(xi’ 0)]/[Hi=1f(xi5 00)]-
According to the argument given by Wald (1949), page 599-600, the right-hand
side of (2.6) is bounded by an expression of the form
2.7 { [Z},= 1 H:‘: 1f(x;, 0 js Pa, j) +H?= 1 9(x;, Vo)]/ H?= S 90)}

where max; Eg log [f(X, 0, py ;)[f(X, 0,)] and Ey, log [Q(X, ro)/f(X, 0,)] are nega-
tive. By Assumption 9, an application of the strong law of large numbers to the
log of each term in (2.7) establishes the existence of an £ > 0 and a set S; included
in S, S, such that

n~! log [SuP|o—oo|ge1{H?=1f(xi, 9)}/{n?=1f(xi, 00)}] = —e nz Nj,

for some N;, depending on xe S;.
Let us introduce some further notation useful in the derivation. Set

(2.8) @(6) = n™' Y1, 8/86*1og f(x;, 0)/k! for k=34,
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where the dependence on x is suppressed. In this notation, the log of the likelihood
ratio under sufficient regularity conditions may be expressed as

(2.9) log[Ti=1 [fCxi 0)/f(xi, )] = n ko ai(0)(0—0)'+nay s, 1(0.4)O—0)

where 0, is an intermediate value. Denote the first k+1 terms of the Taylor
expansion of p(-) about 8 by p,(#). That is

(2.10) pu8) = p(O)+p V(OO —0)+ - -+ +pP(O)O—B)" k!

where p denotes the jth derivative of p.
In terms of the transformed parameter ¢, we establish the following lemma.

LEMMA 2.4. Let the integer K be given. For each x, let log f(x, 0) have K+3
continuous partial derivatives in 6. Let 0,€ © be fixed and assume that there exist
functions G(x) satisfying |0*/06*log f(x, 0)| £ G\(x), for 0 in a neighborhood of
0o, and E,[G(X)] < o0 each k=2,3, -+, K+3. Also assume that p**D(-) is
continuous in a neighborhood of 0. Then there exists a constant M |, a null set Sy and
for each xe Sg, an N, ( > N;,) such that

§22, lexp [n Y23 a0 @/6)1px(B+¢b™ ")
(2.11) —[T= [F (i 04 6B~ 1)/ f(xir 0)]p(0+ ¢b™ )| dp < My n™3KFD)
' for n> Ny,

Here a,, is defined by (2.8) and pg by (2.10) and §, appears in the statement of
Lemma 2.2.

Proor. Together with the bound (2.5) for 5(6) on the interval | —6,| < 46>
an application of Theorem 2.2 toeach a,,, k = 2, - - -, K+ 3, establishes the existence
of a null set Sg*, a constant M, and for each x € S, an N, such that |a,,()| < M,,
k=2,--+,K+3, for n > N,, each xeSy.

Add and subtract pg(0+¢b™ Y[ Ti=y [f(xi 0+ b~/ f(x;, 0)] to the integrand
in (2.11). It follows from Lemma 2.2 and the inequality |log {] /=, [ f(x;, 0+ @b~ ")/
G O —n Y K23 a,(0)(@/b) | < n|p|**3M,’ for |¢p| < 6, some M, that the
integrand is bounded by

e {[p % (0, )(P/bY < (K + 1)) + | px(O+ ¢b ™ |n|p|** M}
where 0, is an intermediate value and M,"’ some constant. For each xSy, n is
selected greater than N,,. Then the continuity assumptions imply that the integrand

is bounded by M, exp (—n¢?/6) [|¢|*** +n|p|“*3] for |$| < 6,. The result follows
upon making the change of variable u = n*¢.

2.3. Proof of asymptotic nature of the expansion. Define a function ,(z) for
each K and n by

(2.12) Vn(2) = i3 b~ *a(0)2F 3
where the dependence on x is suppressed. Recalling that 5% = —2a,,(f), we write
(2.13) px(0+ b~ exp[n Y K23 a,,(0)(/b)] = e " *[px(D+ b~ ") € Yy, ]
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and note that for fixed » and sequence x, the second factor on the right-hand side is
a particular evaluation of the function

(2.14) Pi(W, z,X) = pg(0+zb~ 1) e™Vxn® w2, |z £20,.
For each xe S and n > N,,, we have '
(2.15) Pe(W, 2,%) = Y1, m Cin()W'2"

where the series converges absolutely and uniformly in the region {|w| < 3/2,
|z| < 36,/2} (see Markushevich 101-105). The coefficients c;,,(x) are given by

l+m

WPK(W’Z;X) oo I,Lm=0,1,---

(2.16) l'm! ¢, (x) =
and the usual approximation shows that

2.17) |c,m(x)| <M, <© ,m=0,1,---
where M, does not depend on n for n > N,,. These estimates enable us to find
constants 4, and A, such that

(2.18) |Px(W, 2, X) =Y ek Com(IW'Z"] S Ay [W[<F 1+ 4, |24

for |z| £ 6, and |w| < 1 when xe Sy and n > Ny,.
Denote the truncated series Y ;1 m<x Cm(X)W'z™ by Pg'(w, z, X). We are now ready
to prove the main theorem.

PrOOF OF THEOREM 2.1. Let K be an arbitrary but fixed integer, xeSg and
n > N,, where the latter quantities appear in the statement of Lemma 2.4. A simple
approximation together with the lemmas above show that

/20 p(0+ bV Ti=1 [f (xis O+ b7 1)/ f(x;, )] dop

—[®, e " 2P (nd>, ¢, x)dp| £ Byn KD and
[ p@+ ¢b ™D Tr=y [fxir 0+ b1 f(xi, )] d

— [ e P (ng?, b, X)dp| < BynTHET

for some B, and B,. The last expression is uniform in &.
Integrating the approximation and collecting terms, we obtain an N, such tha
the expansions (2.21) and (2.22) hold for all £ and all n > Ns,.

[0 p(0+ b~ D TTr= s [f(xis 0+ b~ f(xi, 0)] dp

(2.19)

(2.20)

(2.21) K -3G+1) - $(K+2)
=YK o Bxn V| < Byn~? and
.22) |1 p@+db~ O [Ti= s [fCxi, 0+ 90 Y/ f(x;, 0)] dop
' ~TK ol n D) S BnTHERDall &

A change of variables gives
(223) aj(§3 X) =Z.{:Ocs,j—sj':—ooyzs-l-je_yZ/z dy each j =O’ l’ ’K
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and f;(x) corresponds to a;(c0, X) and thus is zero when j is odd. Bound (2.17)
implies that each |a(¢, x)| is bounded for all ¢ and consequently |B,(x)| is also
bounded. Since f4(x) = (21)*p(f), which is bounded away from zero, the quotient
series corresponding to F,(£) has leading term ®(&). The remaining coefficients

{yj(¢, x)} satisfy

(2.24) (&%) = Bo(XIyAE X)+ Y221y, - (& X)BLX) + f(X)D(E)
for j=1,2,---,K.

An induction argument using the lower bound on f, and upper bounds on the
other f’s and o’s gives |y (€, x)| < My < oo all j £ K uniformly in ¢ for sufficiently
large n. Consideration of the quotient series establishes the existence of a D; and
an N, for each x belonging to an almost sure set where the inequality in the theorem
holds. This concludes the proof since the construction is valid for every integer K.

It should be noticed that the terms of the expansion may be obtained by formal

division.
PRrROOF OF PROPOSITION 2.1. In (2.25), it is shown that y, is of the form asserted.

From (2.24), it is sufficient to show that o; — f,® does not involve ®. If j is odd, this
result follows from (2.23). When j is even, it suffices to show

o0 y?Hie™ 2 dy — (&2 U DPT(r +jj2+3)
does not involve ®. Integration by parts establishes the desired resuit.

2.4. Calculation of terms. Again as in the previous papers (Johnson (1967a,
1967b) ), we have the same relationships between the y’s and ¢,,,’s except it must be
remembered that both are functions of the observed sequence x. Specifically, the
leading term is ® and
71(& %) = = @(Eego [e10(E2 +2) +¢o1]

726 X) = = @(&)ego [€20 &+ (5c20+¢11)E> +(15¢0+ 311 +¢02)¢]
where @(&) denotes the first derivative of ®. Another term is given in the first
reference above. The ¢, given by (2.16) may also be expressed directly in terms of
p and the likelihood together with their derivatives. In particular
Coo = P(é); Co1 = b—lp(l)(é); Co2 = b™2p(D)
(2.26)  ¢10 = b"%a3,(0)p(0); ¢y = b™*a4,(0)p(9)+ b~ *a5,(0)p (0
C20 =27"b"%a3,(0)p(B)
where b is defined by (2.2) and g, by (2.9) and 8 is the maximum likelihood

estimate.
The prior density enters the expansion in the term of order n™* as p(8)/p(0)

and the term of order n~ ! as p®@(@)/p(d) and if ¢,, # 0 as pV(0)/p(d).

3. Expansion of the moments. We also study the moments of the posterior
distribution of ¢. The moments of n*¢ are obtained in the obvious manner. For

(2.25)
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simplicity, only integer moments are considered. Denote the rth moment of the
posterior distribution by E,(¢").

THEOREM 3.1. Under the assumptions of Theorem 2.1, if [|¢|"p(¢) dp < oo where
r < K, there exist functions {1, (X)}, a constant D, and for all X outside anull set,an
N, 2 such that

3.1 |E L& ]—Y 5o A j(x)n™7?| £ D n~ ¥K+D n> N,
The odd terms are zero.

Proor. The expansion is the quotient of two expansions of the form (2.21)
where the numerator has p replaced by ¢"p. The denominator has a non-zero
leading term and the first few terms of the numerator series are zero. Also both
series have odd terms equal to zero. Finding the reciprocal series for the denominator
and multiplying, we obtain the desired result.

The terms may be obtained by formal division. In particular, the first non-zero

term is

(3.2 A(X) = 22 TG(r+ DT '(3)

if  is even and

(33) Ap+1(0) =TT D22 D2+ DayOTE(r +4)) +T(E(r+2))p(0)/p(0)}

when r is odd.

The moments of 6 about a fixed point may be obtained from those of ¢ using
relation (2.1). Two special cases which hold for sufficiently large » depending on x
belonging to a set of probability one,

(3.4) |E,(0)—0—b~"(6a3(6)+p'(0)/p(®))n~'| £ D,/'n"? and
(3.5) |[E(0—0)—b"?n""!| <D,'n"?,

may be compared with Gnedenko (1962), page 413, equations (5’), who further
specializes to normal populations.

4. Normalizing transformation. Let 7,(¢) = ®~(F,(£)) be the normalizing trans-
formation. The notation does not reflect the dependence on x. For fixed x, » and
&, n is defined by

(4.1) O(n) = Fy(3).
The following theorem shows that #, has an asymptotic expansion.

THEOREM 4.1. Under the assumptions of Theorem 2.1, there exist functions
{wi(&) = w;(&, x)}, a constant Dy and for all x outside a null set, an N,> such that
(4.2) holds.

4.2) (&) —¢=Y i1 0,On™ | £ Dyn~ ¥ **Y for n> N>

Here Dy is independent of & for & in a finite interval. The w (&) are polynomials in ¢
having coefficients which are bounded for sufficiently large n.
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ProoF. Let xeSg where Sy is specified in Lemma 2.4. Denote by ®~!(u) the
branch of the analytic function which is the inverse of ® and is real valued for
0 < u < 1. For any finite &-interval, F,(£) is monotone and bounded away from
0 and 1 for all sufficiently large ». Substitution of the expansion for F, into the
series for ® ! establishes the existence of an asymptotic expansion satisfying (4.2)
with D, independent of ¢ over finite {-intervals. The w; may be obtained by formal
substitution. Alternatively, they may be obtained by inserting n =Y x_o,n™/?
into

O() ~ D)+ Y51 7,(E X012
and identifying like powers of n~%. Taking the limit as n — oo, we see that w, = &.
The other coefficients satisfy

(43) (D(l)(é)wj(é) = 'yj(é’ X)+L(600, Yy wj—b ¢)9 ] 2- 1

where L is a polynomial in the w’s without constant terms. Each coefficient of the
polynomial is a homogeneous of the first degree in the derivatives ® 1 <1 <.
Canceling @), each w ; is seen to be polynomial. The equations (4.3) show that the
¢, enter only in the numerator, except for ¢y, so that the coefficients of the poly-
nomial w; are bounded for sufficiently large n. Although the argument is Wasow’s,
his equation (3.8) seems incorrect and the last portion of his proof should be

modified as above.
The terms w (&) of the expansion are expressible directly in terms of the y,(¢, x)

and by (2.26), they may be written in terms of the ¢, (x). For the second and third
terms, we have
(4.4) @ =71/0 and @, = (72/0)+&(1,%/2¢°).

In the next section, this expansion is inverted so as to express # in terms of .

5. Expansion of the percentiles. Here we consider the solution of the equation
O(n) = F,(&m))-
THEOREM 5.1. Under the assumptions of Theorem 2.1, there exist functions

{t;(n) = t,(n, X)}, a constant D, independent of n for n in a finite interval, and for
each x outside a null set, an N.* such that

.1 Ifn(n)—n—2f=1‘rj(n)n"j/2| =D, n~HEFD n> Nx4

where the t,(n) are polynomials whose coefficients depend on the c,,(X) and are
bounded for sufficiently large n.

PrOOF. Let xe Sy where Sy is specified in Lemma 2.4. F, has a positive derivative
over any finite £-interval when # is sufficiently large. Therefore £,(n) is unique and
Euln) = 1.

Formally set,

5.2) E=YK ot mn 2 4af,  nHERD,
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Following Wasow, insert this expression into
(5-3) n=Yeo0 On I+, n7HED

and equate the coefficients of n77/%, j =1, - -+, K+1, to zero. The 7,(¢) turn out to
be polynomials with bounded coefficients since the same is true of the first term #
and the o;’s.

The condition that the ¢,,, are bounded implies that the equation for determining
7%+, has a solution which remains bounded as n — co. With this value, the right-
hand side of (5.2) is a solution of (5.3) and hence of (4.1). Since the right-hand side
of (5.2) is real, it must equal £,(n). This proves the theorem.

The coefficients may be obtained formally. We have

549 Ty = ¢oo(Cr0n” +2¢10+Co1) - and
75 = (5(¢20 €00 + €11 Co0 —Co1 €10 Coo N’

(5.5)
+(2¢}ocod — b1 cog/2+ 15¢50 €56 + 311 Coo +Co2 o0 M

where the ¢,,, depend on x and are given by (2.26).

As is usual for such expansions, 7+ 5=, 7(n)n"7/* is an approximate ath
percentile for F, when 7 is the ath percentile of ®. This follows directly if F, is
expanded about ,(n) since F,? is bounded in a fixed neighborhood of # for all
sufficiently large n.

THEOREM 5.2. Under the assumptions of Theorem 2.1, there exist a constant Dg
independent of 1 for n in a finite interval and for each x outside a null set, an N.°
such that

|F(n+Y 51 tjmn~/*)—a| < Dgn™*&+D n> N,

6. Extension of Markov processes. The results in the previous sections extend
immediately to include strictly stationary Markov processes. We shall only state
sufficient conditions for the existence of a K+ 1 term expansion. Kallianpur and
Borwanker (1968) prove convergence in variation and our conditions essentially
include theirs.

For each 0€®, let {X,,n = 0} be a strictly stationary ergodic Markov process
defined on (%, &) =[];=1(R, %) into (R, #) where (R, #) is the Borel real line
and the probability measure is P,. Each P, is induced by a stationary initial dis-
tribution p,(-) and the stationary transition probabilities py(- - ) defined on & and
2 x R respectively. Let P, o denote the restriction of P, to the o-field generated by
{Xo, -+, X,}. It will be assumed that the probability measures {P,,, 0c®} are
mutually absolutely continuous. In order to use the transition densities as deriva-
tives, we make the additional but unnecessary assumption that both py(-) and
Pe(y,*) are absolutely continuous with respect to a measure p having densities
f(z, 0) and f(y, z, 6) for 0 ®. The notation E,[ - ] denotes expectation with respect
to P;, The original assumptions together with the additional smoothness
conditions become
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ASSUMPTION 1’. © is an open interval of the real line.
AssuMPTION 2'. For any e ® and te®, provided ¢ # 0

120f2,0)=f(y, z, D] dpn >0 for all y.
ASSUMPTION 3'. f(y, z, 0) and f{(z, 0) are jointly measurable in their arguments.

AssuMPTION 4'. For each(y, z), both f(z, ) and f(y, z, f) admit partial derivatives
of the first and second order with respeci to 6 and these are continuous for all
0e®.

ASSUMPTION 5'. {P, 4, 0€ ®} for each n = 0 are mutually absolutely continuous.

ASSUMPTION 6'. If lim;_, ,|0;| = oo, thenlim,_, , f(, z, 8,) = 0 for all (y, z) except
perhaps for a P, 4 -null set which does not depend on the sequence {6,}.

AssuMpTION 7. For all 0e®, Ejlog f(X,, X;,0)| <o and 0<I(@)=
— E4[9°/06° log f(X,, X1, 0)].

AssuMPTION 8'. For each(y, z), there exist K+ 3 partial derivatives of log f(», z, 6)
and log f(z,0), continuous for all e ®. For each 0,€@, there exist functions
Gj,j=1,2,--+,K+3 satisfying |0°6/06/1ogf(y,z,0)| £ G(»,2), for 0 in a neigh-
borhood of 0, and Ey[G;] < oo forj=1,2,--+,K+3.

ASSUMPTION 9’. Let
f(y’ Z, 0’ P) = Squ—a'lgpf(y, z, 0’) p> 0, and
Q(xa r) = Sup|0|>rf(y9 z, 0) r>0.

For every 0e® and p,r > 0, f(1,z2,0, p) and Q(y, z,r) are measurable functions of
(,2). Moreover for sufficiently small p and sufficiently large r,

Eg,[log f(y, 2,0, p)]* < 0 and
Eo,[logQ(y, z, N]" < o for 6,€0.

AssuMPTION 10’. The prior density p(+) has K+ 1 continuous derivatives in a
neighborhood of 6, and p(6,) > 0. Here

(6.1) ¢ = (0-0)b(d) where

R 52 n 62 %+
(6.2) b(@) ={ —n"!| —log f(xo, )+ Y, = log f(x;,6) .
00 i=1 60 0=08
The a,, are now defined in terms of n~'log[f(xe, O)][i=1/(xi=1, Xi» O]/

Lf (%0, D[ Ti= 1 f(xi- 1, x;, B)] instead of (2.9).
Let F,(+) denote the posterior cdf of ¢.

THEOREM 6.1. The assumptions 1’ through 10’ imply the conclusion of Theorem 2.1
where the null set is taken w.r.t. f(xo,00) [ [T/ (x: Xi-1,00)-
Further, the results of Proposition 2.1, Theorem 3.1, Theorem 4.1, Theorem 5.1
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and Theorem 5.2 hold under Assumptions 1’ through 10’. The expressions for the
terms in the expansions remain the same.

The proofs of Theorem 4.1, Theorem 5.1 and Theorem 5.2 do not require any
changes. In the other cases, the initial distribution is handled separately with
Assumption 8'. The proof of Theorem 2.1 is modified by employing the uniform
strong law for stationary ergodic processes instead of Theorem 2.2. See Kallianpur
and Borwanker (1968), Lemma 2.1, for a statement of this result. However the
reasoning is the same as previously and there is no need to give new expressions for

the terms of any expansion.
This result may be compared with Kallianpur and Borwanker (1968) who show

that, almost surely Py, the posterior distribution converges in variation to a normal
distribution. This implies that the percentiles also converge. However they do not

consider expansions of these quantities.
Another interesting comparison may be made with the work of Welch and Peers

(1963). Dealing with the likelihood theory of Barnard, they consider weighted
likelihoods which are mathematically identical to posterior distributions. Our
results support their formal manipulations.

The author is presently investigating the multivariate extensions.

Acknowledgment. The author wishes to thank Professors J. Borwanker and
G. Roussas for helpful discussion relating to Section 6.
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