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A SELECTION PROBLEM

By M. MAHAMUNULU Dgsu!

State University of New York at Buffalo
1. Introduction and formulation of the problem. In many fields of research, one is
faced with the problem of selecting the better ones from a given collection. We
consider such a selection problem. We assume that there are k£ populations (k = 2)
populations ITy, IT,, - -+, IT, at our disposal from which we want to select a subset.
These may be varieties of a grain or some treatments or some production methods.
The quality of the ith population is characterized by a real-valued parameter 6;.
The population with the largest f-value is called the best population. A population
is considered as a superior one if its quality measure does not fall too much below
that of the best population. If d(0,, 0;) is a suitable distance measure between 0,

and 0; and if 0,,, = max(0,, 0,, - - -, 6,), population II; is
superior (or good)  if d(0. 0) S A,
inferior (or bad) if d(Omay 6) > A,

where A is a given positive constant. It must be emphasized that this definition is
different from the usual one considered in the literature [6], where 0, is compared
with 8,, the quality measure of the standard or control population. Our definition
is appropriate to situations where comparisons with a standard or control popula-
tion are not possible. As pointed out by Lehmann [6], such a situation arises whena
new product is being developed and one is interested in selecting the most promising
of a number of production methods. In such cases each method must be compared
with the totality of the remaining methods. A population is then considered
superior if it does not fall too much below the best. In such cases our definition is a
natural (or appropriate) one.

In some cases, it is reasonable to assume that whenever d(0,,,,, 6;) = A one is
indifferent towards branding I, as superior or inferior. In view of such cases, we
may assume that there exist two positive constants A, A, (both, presumably, small
compared with A) such that considering IT; as inferior when d(f,,.., ;) S A—A,
and considering IT; as superior when d(0,,,,,, 6;) = A+A,.

Further it is of no serious consequence in whatever way one classifies IT; when
A=A, <d(,, 0;) < A+A,. In view of these remarks, we modify our previous
definition as follows: A population IT; is said to be

(1) superior (or good)  if d(Opa 0;) < 6,7,
inferior (or bad) if d(B, 0) = 8,%,

where 6, %, 8,* are specified constants such that 0 < §,* < J,*.
With this modified definition of superior and inferior populations, we are
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interested in devising a procedure which selects a random size subset, that does not
contain all the inferior populations with a probability not less than P*, a specified
constant. In the selection problems considered in the literature even though the
subset is random (not fixed in advance), like our problem, the interest is on includ-
ing the best one or all those better than a standard or control population [4], [5].
Once again, it should be emphasized that the problem considered here is different
from those considered earlier in the literature, but the solution has some similarities
with the problems considered by Gupta [4].

We propose a procedure, which determines the selection or nonselection of the
ith population on the basis of a real-valued statistic Y; based on a random sample
size n. After stating the procedure, we determine a constant whose specification
completes the definition of the procedure. This constant will be chosen to meet the
above mentioned probability requirement. Following this determination two
operating characteristics of the procedure will be studied. The entire discussion has
been carried out in relation to two cases—(i) Y; has the density of the form f(y—0,)
and (ii) Y, has the density of the form f(»/0,)0;"" for 0 <y < o0 and 0 for y < 0.

In definition (1) we take d as d; or d, whenever 0, is a location or 0; is a scale
parameter for the density of Y. d; and d; are defined as

2) d;(a, b)=a-—>b, d, = (a, b) = a/b.
Proposed Procedure R. Select T1; whenever d(Y,,,, Y;) < d(3,*, c) where c is
some specified constant, such that 0 < ¢ < 8,* and Y, = max(Yy, ¥, ***, Y)).

Here the distance measure d is to be taken as d; or d; according as 0; is a location
or a scale parameter for the density of Y.

Once we specify the constant c, the above procedure is completely defined. This
constant will be chosen to meet the probability requirement mentioned before.
This type of procedure has been considered by Paulson [8] and Gupta [5] for
different objectives.

2. The results for location parameter case. In this section, on the assumption
that 0, is a location parameter for Y;, we first determine the constant c. Later
subsections give results on the expected number of inferior populations that are
included in the selected subset and the expected number of superior populations
that enter the selected subset.

2.1. Determination of c. Let us denote the ordered 0-values by 011 < 0=+ =
Opq and Y, be the unknown statistic associated with 0, (1 < i < k). Let Q be the
parameter space which is the collection of all possible parameter vectors
0 =0, -, 0,). Let t, and ¢, denote, respectively, the unknown number of inferior
and superior populations in the given collection of k populations. Clearly we have
t; 20,1, =1and t,+1¢, < k. For specified 6, * and d,*, let
(3) Q(tl, tl) = {0:0[1] é ce é 0[“] é 0[,‘]—52* < 0[,l+1]

SO0 S S 0oy < Opg—81" = Ope—re 1y
<

<t = Opa)
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Then
) Q= Ut,.tz{Q(tla tz)}-

Let CD stand for correct decision which is defined to be the selection of the
subset which excludes all the inferior populations. Now we have to determine the
constant ¢ such that

P(CD|R)z P* forall 0eQ.

The required constant c is chosen such that the infimum of P(CD | R) is not less
than P*. Now we determine the infimum of P(CD|R). If 0eQ(zy, 1,)

) P(CD|R) = P{max, <, <,, Yoy < MaX, g5, ¥5—0," +¢}
=31 P [The s F(x+ 06— 0y — 2% +¢)
X [Th=tr+ 1.8%: F(X+ 00y — 0157 f (%) dx
where F(-) is cdf of the distribution defined by f(-).

Lemma 1. P{CD | R} is a non-increasing function of O5( =1, -+, t,) and a non-
decreasing function of O;g(B = t;+1, -, k).

ProoF. Let ¥(x,, -+ -, x;) be the function
(6) y=1 if max(xy, *, x,) <max(xX, 5, %) —02%+¢;
=0 otherwise.

It is easily seen that, for each « (x =1, -, ¢;), ¥ is a non-increasing function of
x,whenallx; (j=1,---, k; j# o) are held fixed and for each B (B =¢#,+1, -, k),
it is a non-decreasing function of x; when all x; (j = 1, - - -, k; j# p) are held fixed.
Now, by Lemma 4.2 of [7], it follows that P{CD | R} = EY(Yy), """, Y,) has the
required monotone properties.

In view of the above lemma, it follows that P(CD | R) can be made smaller by
increasing 0, _ 13, ***, 01 in turn to 6, ; and by decreasing Op_,3, ***, Op, 427 in
turn to 6, ;; and by decreasing 6;_ 1y, ***, Opx—, 427 in turn to Ope—y, 413

Thus it is sufficient to restrict our attention to those points 6 in Q(¢,, ¢,) for
which

Opy="""=0by,;=m say
@) O +11="""=0Op-r,y=m' say
Ok-1,417="""=0y_1;=m" say,and 0Opy;=0 say,

and minimize P(CD | R) at such points, which will be denoted by P’. For fixed 6
it is easy to see that (in view of Lemma 1) P’ can be minimized by letting m, m’, and
m'’ approach 6—38,*, §—38,* and 0 —§, * respectively. Thus the infimum of P’ over
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possible values of m, m’ and m’’ is the same as the infimum of P(CDIR) over
Q(t,, t,). Hence

infy c ey, P(CD | R)
®) = (k—t,=1,) |2 [F(x=8," + )] [F(x)]* 7" 77!
[F(x+6,*—6,%)]*"'F(x—6,*)f(x)dx
=(t,—1) [P, [F(x+6;*+c)]'[F(x+8,* =8, )]+ "
[FG)T*72F(x—8,")f(x) dx
+ [P [F(x+ )T [F(x+8,™)]F " "2[F(x+6, )]~ 'f(x) dx.

Replacing the middle integral by an equivalent expi‘ession obtained through
integration by parts, we obtain

)] infy ¢ oty 1,y P(CD l R)=1-G(t, t,)

where

® (F(xy+6,*—¢)
F(x+52*_c)

} [FG+6,% — )

“F(x—c)[F(x)]"*~*f(x) dx.

(10) G(#y, 1) = t1J‘

—

Hence

(11) infy. o P(CD|R) = 1 —sup,, ,, G(ty, t,).

The supremum of G(¢,, t,) can be obtained in two steps. For fixed ¢,, the supremum

of G(¢,, t,) over possible values of ¢, (all integral values between 1 and k—¢,) is

seen to be G(¢;, 1), since ,*—0,* < 0. Hence, if 1—H(¢,) = G(¢;, 1), we have

(12) sup,, ., G(t, t,) = sup,, {G(¢, 1)} = sup,, {1—H(t,)}
=1-Hk-1)(=Gk-1,1));

and this implies that

(13) nfy o P(CD|R) = |2, F*"'(x+¢) f(x) dx.

Thus the required ¢ value is the largest real number ¢ (less than §,*) such that

(14) [0 FE Y (x+ ) f(x)dx = P*.

2.2. Expected number of inferior populations included in the selected subset and its
supremum. For the procedure proposed the number # of inferior populations that
enter into the selected subset is a random variable. For fixed values of k£ and P*,
the expected value of 5 is a function of . The supremum of this expected value, in
analogy with the power function associated with the usual tests of hypotheses, can
be regarded as a measure of the efficiency of the procedure.
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For 0eQ(¢,, t,) it is easy to see that
(15) E(n) = Y5ty P[Y 405" —¢ > Y]
=Y [P (T The1, i F(x 40, —c— 07+ 0} f(x) dx.
If Q stands for the value of E(n|0;y =" = 6y = 6), where 1 < r < ,, then
(16) Q=12 F ' (x+8,*—){[[f=rs1 Fx+0,*—c— 0+ 0)} f(x)dx
i1 [P F(x+8,*—c+06,,,—6)
AT =+ 1,52 F(x+8,* — =01+ 0} f () dx.
As a step towards finding the supremum of E(n) we observe the following result.

THEOREM 1. For any integer r 1 =r=t,), Q is a non-decreasing function of 0
provided f(x— 0) has monotone likelihood ratio.

The proof is similar to that of Theorem 1 on page 231 of [4] and hence it is
omitted.

By Theorem 1, E(n7) can be increased by setting 0;;; =+ = 6,,; = 0 and letting
6 approach 0p,;—9,*. Thus, from (15) we have
(17) SHPOeQE(n) = maxtl,tz {Sup0[¢l+ 11,00 0k S(tl’ tz)} = maxtl,tz Sl(tl’ t2)9 Say;
where
(18) S(tl’ t2) = tl IO_OOO F"—l(x+52*—c){nl}=,l+l F(x—c+0[k]—0“]}f(x)dx.
It is easy to see that for fixed Oy, when 0,41y, ***» O,y approach 6, —J,* and
O—t,413 > O— 17 @approach O, —8,*, S(¢y, t,) is maximum. Now for fixed ¢,,
Sy(ty, t,) is maximum when ¢, is minimum since F(x+0,*—c) < F(x+6,*—c)
and this maximum is independent of ¢,. Hence
(19) supge o E(n) = (k—=1) [2, [F(x+8,* = )] *F(x—c) f(x) dx.
If ¢ were chosen to satisfy the basic probability requirement, from (14) we obtain

(k—1)f®, F*"%(x)F(x—c)f(x)dx = 1—P*,

so that for such a value of ¢, we have
(20) supg e o E(n) > 1—P*.

Another measure of the efficiency of the procedure R is the supremum of the
expected proportion of inferior populations that enter the selected subset. Assuming
that f(x—6) has monotone likelihood ratio, calculations similar to the above will
show that

(1) suPy, 4, {SUPaqe e E(/11)} = [2o F 72 (x 405" — F(x— ) f(x) dx.

It is also of some interest to examine how well R identifies the superior popula-
tions. As a measure of the efficiency of R with regards to this aspect we can consider
either the infimum of the expected number of superior ones that enter the selected
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subset or the infimum of the expected proportion of the superior populations
entering the selected subset.

2.3. Expected number of superior populations that enter the selected subset and
its infimum. Let { denote the random number of superior populations that enter
the selected subset. If @eQ(¢,, ¢,), then
(22)  ECQ|0) = Yick-r+1 P[Yi) > Youx— 02" +¢]

= Z{"=k—tz+ 1% [Hf= 1j#i FO+0,% —c =07+ 01 f(x) dx.
Let S stand for the value E({ | Op-17="""=0p-og=0py—0) where 1 Sa < 1,—1
and 6, = 6 = 0. Note that

S = i JZ AT T2 % FGe+ 05 * — e 07+ 011}

* Fa(x +52* —C— 6[,‘] + 5 + 9[,])F(x +52 *_ c— H[k] + 0[,])f(x) dx.
A monotone property of S as a function of  can be obtained by finding the sign of
ds|de.

THEOREM 2. For any integer o (1 £ o < t,—1), S is a non-increasing function of 9,
provided f(x — 0) has monotone likelihood ratio in x.
Proof of this Theorem is similar to that of Theorem 1 and hence omitted. In

(23)

view of Theorem 2, E({) can be decreased by setting O _ (="' =0Op_r,417=
0 — 6 and letting § approach é, *. We note that

E(Cle[k—ll == 0[k—t;+l] = e[k]_él*)
(24 =(t,— D2 {1522 F(x+0,* —c— 03+ 0py— 6, %)}

[F(x+6,* ]2 2F(x+6,* —c—8,*)/(x) dx
[F(x+8,*+8,*—c]* " f(x)dx.
So the infimum of E({ | 0) over Q(ty,t,) is the same as the infimum of
EQ|Op-17="""=Op—1,41; = Oyg—96,*) over the same set. Thus
(25) infoqE((|0)
= min,, ,, {infy ¢ o, 0, E( | Op-11="""=0p-p,+11 = Oy —91)}-
Examining the expression for E({ | Op—17="""=0Op—r+17 = Opq—91%), it is seen
that this expression can be decreased by increasing the values of 0;y, -+, 0,,3. So
in our search for the infimum we need to confine our attention to points in that

part of Q for which ¢, is minimum for fixed ¢,. Clearly the minimum of ¢, is zero;
so we have

(26) infg . o E(¢
where
27 Q" = U126, {Q0, )}

0) = infaen*E(Cle[k—l] = =0p-r,en1= o[k]—él*)
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It may be recalled that
(28) Q(0,1,) = {0:0pq—0," <Oy <02 <+ = Oy < Opg— 9, ™
' S Oporyen =00 S Oy

The expression for E(C|Op—-17="""=0Op-r,+11= Opy—0,*) when 0eQ* is the
same as (24). So to obtain the infimum we need to push each 0, i=1, -+, k—1;)
to approach 6, —9d,*. Thus for fixed #,,

(29) infy ¢ 0(0,e,) E(C | O-11="""=bp-r,+11= O[k]—él*)
=(t,— 1) [ F¥ 2(x+8,* —)F(x+8,*— 8, *—¢) f(x) dx
+ 2 F¥ 1 (x+0,%+6,* —c) f(x) dx.
Clearly, the infimum of the above expression is attained when ¢, = 1. That is
(30) infy o E((|0) = |2, F*li(x+8,*+8,*—c)f(x) dx.

3. Results for the scale parameter case. Using the same arguments as in Section
2, we obtain

(31) infy .o P(CD | 0) = [§ F*~ (ex)f(x) dx,
so that we need to select a c-value such that 0 < ¢ < §,* and
32) [& F¥~Y(ex)f(x) dx = P*.

As before, on the assumption that 0~ 'f(x/0) has monotone likelihood ratio
property in x, we obtain

(33) SuPg.q E(n) = (k—1) [§ [F(x0,*[c)]*™ 2F(x/c) f (x) dx
and
(34 infyeq B(Q) = [§ [F(x6,*-8,%/c)]*~ '/ (x) dx.

4. Some examples. We shall discuss the above problem for the means of normal
populations and for the scale parameters of the gamma populations.

Let IT,, - - -, II, be k normal populations with means y,, ***, y, and a common
known variance ¢2; without loss of generality we can assume that ¢ is 1. Suppose
that u is the characterizing parameter. Let X; be the sample mean from IT; based
on a sample of size n. We know that X is distributed as a normal variable with
mean y; and variance n~ ', so that y; is a location parameter for the density of X .
In fact, the pdf of X, is n*¢ {(x— p;)n*} where ¢(-) is the density function of stan-
dard normal distribution. From (14) we need to find a c-value such that0 < ¢ < 8, *
and

(35) © D Y(x+cnt)p(x)dx = P*.
It is clear that the integral (35) tends to one as n tends to infinity. Thus, the required

c-value exists provided n is sufficiently large. The c-values can be obtained from
Table I of [1]. It is of some interest to get the expressions for sup E(n|0) and
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inf E({ | 0). Using (19) and (30) we obtain

(36)  supgcqE(n]0) = (k—1) [, @~ *{x+n*(,* — )} O(x — n¥c)p(x) dx,
and

37) infy o E((|0) = [2 @ {x+n*(6,*+9," — )} d(x) dx.

It may be noted that as n —» o

(38) supgoE(n|0) >0 and infy.qE((|0)— 1.

The integral (except for the factor k—1) in (36) has been tabulated by Deely and
Gupta [2]. _

Now let us consider the problem in relation to the scale parameters of the
populations. IT,, -+, IT, with gamma distributions. The distribution associated
with IT; has the density function g(x | a, 0;) where

(39) g(x|a, ) = [07/T(0)] 'x*"'e™*%  for x>0;
=0 otherwise.

We assume that the shape parameter « is the same for all populations and the
common value of this parameter is known. Let X; be the sample sum from II;
based on n observations. It has gamma distribution with scale parameter 0; and
shape parameter na. We base our procedure on X;. Now using (31), we obtain that
the required c-value is the value satisfying the equation

(40) ® » G*"1(cx | no, 1)dG(x | nat, 1) = P,

where G is the cdf corresponding to the density function g. Tables of Gupta [3]
can be used to find the required c-values. Here

(41) supy.qE(n|0) = (k—1) [ G*~2(x8,*/c| na, 1)G(x/c| na, 1) dG(x | na, 1),
and
42) infy. o E({|0) = [& G*~*(x5,*3,*/c| na, 1) dG(x | na, 1).
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