ON THE NULL DISTRIBUTION OF THE SUM OF THE ROOTS OF A MULTIVARIATE BETA DISTRIBUTION¹

By A. W. Davis

C.S.I.R.O., Adelaide and University of North Carolina at Chapel Hill

- 1. Introduction. The distribution of Pillai's V statistic [8] is shown to satisfy a homogeneous linear differential equation (d.e.) of Fuchsian type, which is related by a simple transformation to the author's d.e. for Hotelling's generalized T_0^2 [3]. This transformation implies certain relationships between the moments and asymptotic expansions of the two distributions. The adequacy of some approximations to V is checked by using the d.e. to tabulate some accurate percentage points.
- **2.** Systems of differential equations. Let S_1 , S_2 denote $m \times m$ matrices with independent null Wishart distributions on n_1 , n_2 degrees of freedom respectively $(n_1, n_2 \ge m)$, estimating the same covariance matrix. The joint distribution of the latent roots $\theta_1, \dots, \theta_m$ of $S_1(S_1 + S_2)^{-1}$ is well known to be

(2.1)
$$\phi_{n_1, n_2}(\theta_1, \dots, \theta_m) = C(m; n_1, n_2) \left(\prod_{i=1}^m \theta_i \right)^{\frac{1}{2}(n_1 - m - 1)} \left(\prod_{i=1}^m (1 - \theta_i) \right)^{\frac{1}{2}(n_2 - m - 1)} \cdot \prod_{i < j} (\theta_i - \theta_j), \qquad (0 < \theta_m < \dots < \theta_1 < 1),$$

where

(2.2)
$$C(m; n_1, n_2) = \pi^{\frac{1}{2}m^2} \Gamma_m(\frac{1}{2}(n_1 + n_2)) / \Gamma_m(\frac{1}{2}m) \Gamma_m(\frac{1}{2}n_1) \Gamma_m(\frac{1}{2}n_2).$$

Pillai's V statistic is defined by

$$(2.3) V = \sum_{i=1}^{m} \theta_i$$

and Hotelling's generalized T_0^2 statistic by

$$(2.4) T = \sum_{i=1}^{m} \theta_i / (1 - \theta_i) = T_0^2 / n_2.$$

Following the method of [3], Section 2, we introduce the Laplace transforms (Lt's)

(2.5)
$$L_r(s) = \int_{R_m} \exp\left(-s\sum_i \theta_i\right) \phi_{n_1, n_2}(\theta_1, \dots, \theta_m) \sum_{k_1 < \dots < k_r} [(1 - \theta_{k_1}) \cdots (1 - \theta_{k_r})]^{-1}$$
$$d\theta_1 \cdots d\theta_m, \qquad (r = 0, 1, \dots, m),$$

where R_m is the region defined in (2.1), and the summation is extended over the $\binom{m}{r}$ selections of r distinct integers k_1, \dots, k_r from the set $1, 2, \dots, m$. Thus, $L_0(s)$ is the Lt of $f_{n_1, n_2}(V)$, the density function of V. For $r \ge 1$, the integrands in (2.5) are dominated by ϕ_{n_1, n_2-2} , and so the $L_r(s)$ exist only for $n_2 \ge m+2$. This restriction will be preserved for the present. In general, we see that

(2.6)
$$\int_{R_m} \exp(-s \sum \theta_i) \psi(\theta_1, \dots, \theta_m) d\theta_1 \dots d\theta_m$$

Received September 3, 1969; revised January 5, 1970.

¹ This research was partially supported by the National Institutes of Health Grant No. GM-12868.

is the ordinary Lt of

(2.7)
$$\Psi(V) = \int_{R_{m-1}(V)} \Psi(V - \theta_2 - \dots - \theta_m, \theta_2, \dots, \theta_m) d\theta_2 \dots d\theta_m,$$

where

$$R_{m-1}(V) = R_{m-1} \cap \{\theta_2 + \dots + \theta_m > V - 1\} \cap \{2\theta_2 + \theta_3 + \dots + \theta_m < V\}$$

$$= \{ \max [\theta_{s+1}, V - (s-1) - \theta_{s+1} - \dots - \theta_m] < \theta_s < s^{-1}$$

$$\cdot (V - \theta_{s+1} - \dots - \theta_m); s = 2, \dots, m \}, \qquad (\theta_{m+1} \equiv 0).$$

Hence $L_r(s)$ is the Lt of $H_r(V)$, say, $(r=0,1,\cdots,m)$, which may be obtained in integral form from (2.5) and (2.7). Clearly, if $V=j, (j=1,2,\cdots,m-1)$, the left-hand sides of the inequalities in (2.8) reduce to θ_{s+1} for $s=j+1,\cdots,m$. The boundary of $R_{m-1}(V)$ therefore alters its character as V passes through the integer values $1,2,\cdots,m-1$, corresponding to the passage of the hyperplane $\sum \theta_i = V$ through the vertices $(1,0,\cdots,0), (1,1,0,\cdots,0),\cdots,(1,1,\cdots,1,0)$ of R_m . This results in $f_{n_1,n_2}(V)$ having a piecewise analytic nature which is reflected in the d.e.'s derived below.

A first-order system of d.e.'s relating the $L_r(s)$ may be obtained along the lines of [3], Section 2; in fact, the integrands at any stage of the argument may be derived formally from those given in this reference by making the transformation $w_i \to -\theta_i$, $n_2 \to m - n_1 - n_2 + 1$, $s \to -s$.

This leads to the following system of d.e.'s:

(2.9)
$$-(m-r+1)sL_{r-1} + [s((d/ds)+r)+a_r+1]L_r - b_rL_{r+1} = 0,$$

$$(r = 0, 1, \dots, m-1; L_{-1} \equiv 0),$$

$$((d/ds)+m)L_m - L_{m-1} = 0,$$

where

$$(2.10) a_r = \frac{1}{2}(m-r)(n_1+n_2-m+r-1)-1, b_r = \frac{1}{2}(r+1)(n_2-m+r-1).$$

Equation (2.9) may be obtained from [3] equations (2.19) and (2.20) by the transformations

(2.11)
$$s \to -s$$
, $n_2 \to m - n_1 - n_2 + 1$.

Inverting the Lt's, the following system of first order d.e.'s is found for the $H_r(V)$, $(n_2 \ge m+2)$:

$$(m-r+1) dH_{r-1}/dV + [(V-r) d/dV - a_r]H_r + b_r H_{r+1} = 0,$$

$$(r = 0, 1, \dots, m-1; H_{-1} \equiv 0),$$

$$H_{m-1} + (V-m)H_m = 0.$$

This system is related to [3] equations (2.21) and (2.22) by the transformations

(2.13)
$$T \rightarrow -V$$
, $n_2 \rightarrow m - n_1 - n_2 + 1$.

Since $b_r > 0$ for $n_2 \ge m+2$, elimination of H_1, \dots, H_m from equation (2.12) will result in a linear homogeneous d.e. of order m for $H_0 = f$, having regular singularities at $V = 0, 1, \dots, m$ and infinity.

3. Nature of the solution. The solution of (2.12) in the unit circle about V=0 follows from [3] Section 3, using (2.13). Again the characteristic roots of the d.e. are $\frac{1}{2}mn_1-1$ and zero (with multiplicity m), the relevant solution following from the non-zero root. Recurrence relations for the coefficients in the power series for $f_{n_1, n_2}(V)$, 0 < V < 1, are obtainable from [3] equation (3.11), and the multiplicative constant is the same as that for T, namely,

(3.1)
$$k(m; n_1, n_2) = \Gamma_m(\frac{1}{2}(n_1 + n_2)) / \Gamma(\frac{1}{2}mn_1)\Gamma_m(\frac{1}{2}n_2).$$

(Constantine [2]). This solution also serves to define the distribution in the interval m-1 < V < m, since from the definition of V,

$$(3.2) f_{n_1, n_2}(V) = f_{n_2, n_1}(m - V), (0 < V < m).$$

Unfortunately, however, in the intervals between the singularities $1, 2, \dots, m-1$, $f_{n_1, n_2}(V)$ will be specified by certain linear combinations of the full set of m linearly independent solutions. The calculation of the numerical coefficients in these linear combinations presents a formidable unsolved problem.

In the bivariate case m=2, the differential equation for f_{n_1,n_2} is found to be

(3.3)
$$V(1-V)(2-V)f'' - \left[\frac{1}{2}(3n_1+3n_2-14)V^2 - 2(2n_1+n_2-7)V + 2(n_1-2)\right]f' + \frac{1}{2}(n_1+n_2-4)\left[(n_1+n_2-4)V - 2(n_1-2)\right]f = 0,$$

and the density function may be expressed in terms of the Gaussian hypergeometric function:

(3.4)
$$f_{n_1, n_2}(V) = [2B(n_1, n_2 - 1)]^{-1} (\frac{1}{2}V)^{n_1 - 1} (1 = \frac{1}{2}V)^{n_2 - 3}.$$

$${}_{2}F_{1}(1, \frac{1}{2}(3 - n_2); \frac{1}{2}(n_1 + 1); r^2), \qquad (0 < V < 1);$$

$$f_{n_1, n_2}(V) = [2B(n_2, n_1 - 1)]^{-1} (\frac{1}{2}V)^{n_1 - 3} (1 = \frac{1}{2}V)^{n_2 - 1}.$$

$${}_{2}F_{1}(1, \frac{1}{2}(3 - n_1); \frac{1}{2}(n_2 + 1); r^{-2}), \qquad (1 < V < 2);$$

where r = V/(2-V). These functions reduce to polynomials in V for odd $n_2 \ge 3$ and odd $n_1 \ge 3$, respectively.

So far, it has been assumed that $n_2 \ge m+2$. In the cases $n_2 = m$, m+1 we note that f_{n_1, n_2} is a numerical multiple of the H_m function corresponding to f_{n_1, n_2+2} . Elimination of H_0, \dots, H_{m-1} from (2.12) with n_2 replaced by n_2+2 would show that f_{n_1, n_2} satisfies the general mth order d.e. in these cases. However, when $n_2 = m$, m+1, we have $b_1 = 0$, $b_0 = 0$ respectively, and the system (2.12), regarded as a d.e. for $H_0 = f_{n_1, n_2}$, degenerates into a second or first order d.e.:

(3.5)
$$V(1-V)H_0^{"} + \left[V(mn_1 - \frac{1}{2}m - \frac{1}{2}n_1 - 3) - (\frac{1}{2}mn_1 - 2)\right]H_0^{"} - (\frac{1}{2}mn_1 - \frac{1}{2}m - 1)(\frac{1}{2}mn_1 - \frac{1}{2}n_1 - 1)H_0 = 0, \qquad (n_2 = m),$$
(3.6)
$$VH_0^{"} - (\frac{1}{2}mn_1 - 1)H_0 = 0, \qquad (n_2 = m+1).$$

1560 A. W. DAVIS

It may be shown that these d.e.'s validly specify the distribution in (0, 1), the solutions being

(3.7)
$$f_{n_1, m}(V) = k(m; n_1, m) V^{\frac{1}{2}mn_1 - 1} {}_{2}F_{1}(\frac{1}{2}m, \frac{1}{2}n_1; \frac{1}{2}mn_1; V),$$
 (0 < V < 1),
$$f_{n_1, m+1}(V) = k(m; n_1, m+1) V^{\frac{1}{2}mn_1 - 1},$$
 (0 < V < 1).

In virtue of (3.2), these results also define $f_{m,n}$ and $f_{m+1,n}$ in the interval (m-1,m), V being replaced by (m-V). It must be emphasized, however, that the degenerate d.e.'s (3.5)(3.6) do not hold throughout the entire range of V (with the exception of (3.5) when m=2), although the general mth order d.e. does. The situation may be illustrated in the case m=3, when

(3.8)
$$f_{4,3}(V) = (6/7)(3-V)^{7/2}, \qquad (2 < V < 3),$$
$$f_{4,4}(V) = (3/8)(3-V)^5, \qquad (2 < V < 3).$$

These functions are not solutions of the d.e.'s (3.5), (3.6) respectively, but by taking each in turn as H_3 in (2.12) with $n_2 = 5$, 6, they may be shown to satisfy the general 3rd order d.e. for m = 3. That f_{n_1, n_2} may be cusped, with discontinuous first derivative, may be seen by taking $n_1 = n_2 = 3$ in (3.4).

4. Moments of V. From [3], Section 7, the system of d.e.'s (2.7) for the Lt. $L_0(s)$ of $f_{n_1, n_2}(V)$ has characteristic roots $-(a_r+1)$ at the regular singularity s=0. These are all negative with the exception of $-(a_m+1)=0$, and the system has an analytic solution at the origin as we would expect, since V has a finite range, and all its moments exist.

By virtue of (2.11), a recurrence relation for $\mathscr{E}V^r$ may be obtained from equation (7.13) of [3] for $\mathscr{E}T^r$ by replacing n_2 by $m-n_1-n_2+1$ and multiplying by $(-1)^r$, $(r=1,2,\cdots)$. Pillai [9] has used the first four moments of V to fit a Pearson curve to the distribution. The following reduced form of Pearson's coefficient β_2 has been derived using the above recurrence relation:

(4.1)
$$\beta_2 = 3(N-1)(N+2)A/mn_1n_2(N-m)(N-3)(N-2)(N+1)(N+4)(N+6)$$
,

where

$$\begin{split} N &= n_1 + n_2, \\ A &= n_1 n_2 [(Nm - m^2)(N^3 + 5N^2 + 78N + 72) - 4N^2(5N + 6)] \\ &+ 4N^2 [(m^2 - Nm)(5N + 6) + N(N^2 + N + 2)]. \end{split}$$

5. Itô-type expansions for large n_2 . For completeness, we note that an Itô-type expansion [6] for the distribution of n_2V for large n_2 may be obtained from [3] Section 4. Noting that n_2V is asymptotically distributed as χ^2 on mn_1 degrees of freedom, a convenient approach is to expand the cumulant generating function of the statistic in a series of the type considered by Box [1]:

(5.1)
$$\log L_0(s/n_2) \sim -\frac{1}{2}mn_1\log(1+2s) + \sum_{r=1}^{\infty} \omega_{r,r}[(1+2s)^{-r} - 1].$$

Using the differential equations, the following set of recurrence relations may be obtained for the $\omega_{r,V}$:

(5.2)
$$2r\omega_{r,V} = 2(r+1)\omega_{r-1,V} + mn_1\delta_{1,r} - (1-(m+1)/n_2)\xi_{1,r}, \qquad (r=1, 2, \cdots),$$
 where the $\xi_{i,r}$ are defined by

$$\xi_{0,r} = \xi_{r,0} = \delta_{0,r},$$

(5.3)
$$j\xi_{j,r} = \alpha_{j}\xi_{j-1,r-1} + (\beta_{j} + 2(r-1))\xi_{j,r-1}/n_{2} + [(j+1)/n_{2} - \gamma_{j}/n_{2}^{2}]\xi_{j+1,r-1} - [mn_{1} + 2(r-2)]\xi_{j,r-2}/n_{2} + 2n_{2}^{-1}\sum_{s=1}^{r-2}s\omega_{s,v}(\xi_{j,r-s-1} - \xi_{j,r-s-2}),$$

$$(j=1, \dots, m; r=1, 2, \dots),$$

$$\alpha_j = (m-j+1)(n_1-j+1), \qquad \beta_j = j(2m+n_1-2j+2), \qquad \gamma_j = (j+1)(m-j+1),$$

 ξ 's with negative subscripts being zero. Thus, in particular,

(5.4)
$$\omega_{1,V} = mn_1(m+1)/2n_2,$$

$$\omega_{2,V} = -\frac{1}{4}mn_1[(m+n_1+1)/n_2 - (m+1)(2m+n_1+2)/n_2^2].$$

The first six ω 's to order n_2^{-3} have been derived by Muirhead [7] using an independent approach, and the first eight to order n_2^{-4} by the present author. An analogue of Itô's expansion of T_0^2 percentiles in terms of $\chi^2_{mn_1}$ percentiles may be derived from a general Cornish-Fisher inversion of Box-type series given by the author [4]. To order n_2^{-2} ,

$$n_{2}V \sim \chi^{2} + 1/2n_{2}[\chi^{2}(m - n_{1} + 1) - \chi^{4}(m + n_{1} + 1)/(mn_{1} + 2)]$$

$$+ 1/24n_{2}^{2} \{\chi^{2}[7m^{2} - 12m(n_{1} - 1) + (7n_{1}^{2} - 12n_{1} + 1)]$$

$$- \chi^{4}[11m^{2} + 24m - 13n_{1}^{2} + 17]/(mn_{1} + 2)$$

$$+ 2\chi^{6}[2m^{3}n_{1} + m^{2}(2n_{1} + 3n_{1} + 10) + m(2n_{1}^{3} + 3n_{1}^{2} + 17n_{1} + 18)$$

$$+ 2(5n_{1}^{2} + 9n_{1} + 2)]/(mn_{1} + 2)^{2}(mn_{1} + 4)$$

$$+ 6\chi^{8}(m - 1)(m + 2)(n_{1} - 1)(n_{1} + 2)/(mn_{1} + 2)^{2}(mn_{1} + 4)(mn_{1} + 6)\}$$

$$+ O(n_{2}^{-3}),$$

and the n_2^{-3} term has also been obtained.

An expansion of the type (5.1) also exists for T_0^2 . In view of (2.11), the following relationship exists between the coefficients $\omega_{r,T}$ in this series and the $\omega_{r,V}$:

(5.6)
$$(-n_2)^r \omega_{r, T} = mn_1(n_1 - m - 1)^r / 2r$$

$$+ \sum_{s=1}^r \binom{r-1}{s-1} (m - n_1 - n_2 + 1)^s (n_1 - m - 1)^{r-s} \omega_{s, V},$$

where, in the $\omega_{s,V}$, n_2 is to be replaced by $m-n_1-n_2+1$. T and V may also be interchanged in this formula. The $\omega_{r,T}$ obtained from (5.6) and (5.2) check with those obtained to order n_2^{-3} by Muirhead (*loc. cit.*).

1562 A. W. DAVIS

6. Examination of the approximations. In principle, the solution of (2.12) at the regular singularity V=0 specifies the distribution of V in (0,1) (or in (m-1,m) when n_1 and n_2 are interchanged). For sufficiently large n_2 (or n_1 , respectively), the upper 5% and 1% points of V lie in these intervals, and some investigation may be made of the accuracy of the available approximations. A corresponding study has been made for T in [5], where the d.e. was used to compute accurate percentage points by analytic continuation of the solution at T=0. The same computer program, with the trivial modification (2.13), has been used to tabulate some percentiles of V in the range $m \le 5$, n_1 and $n_2 \le 200$. Except when n_1 and n_2 are both small integers, Pillai's Pearson curve approximation is accurate to four decimal places. The Itô-type approximation (5.5) is considerably improved by adding the n_2^{-3} term, and is a useful direct formula for large n_2 and small n_1 , but its accuracy falls off rapidly as n_1 increases. In virtue of (3.2), a similar statement holds with n_1 and n_2 interchanged.

REFERENCES

- [1] Box, G. E. P. (1958). A general distribution theory for a class of likelihood criteria. *Biometrika* 36 317-46.
- [2] Constantine, A. G. (1966). The distribution of Hotelling's generalized T_0^2 . Ann. Math. Statist. 37 215–225.
- [3] DAVIS, A. W. (1968). A system of linear differential equations for the distribution of Hotelling's generalized T₀². Ann. Math. Statist. 39 815-832.
- [4] DAVIS, A. W. (1970). Cornish-Fisher-type inversions of Box's asymptotic series. To be submitted.
- [5] DAVIS, A. W. (1970). Exact distributions of Hotelling's generalized T₀². Biometrika 57 187–191.
- [6] Irô, K. (1956). Asymptotic formulae for the distribution of Hotelling's generalized T_0^2 statistic. Ann. Math. Statist. 27 1091–1105.
- [7] Muirhead, R. J. (1970). Asymptotic distributions of some multivariate tests. *Ann. Math. Statist.* 41, 1002–1010.
- [8] PILLAI, K. C. S. (1955). Some new test criteria in multivariate analysis. *Ann. Math. Statist.* 27 117-121.
- [9] PILLAI, K. C. S. (1960). Statistical Tables for Tests of Multivariate Hypotheses. The Statistical Center Univ. of the Philippines