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ON THE NULL DISTRIBUTION OF THE SUM OF THE ROOTS
OF A MULTIVARIATE BETA DISTRIBUTION!

By A. W. Davis

C.S.I.R.O., Adelaide and University of North Carolina at Chapel Hill
1. Introduction. The distribution of Pillai’s ¥ statistic [8] is shown to satisfy a
homogeneous linear differential equation (d.e.) of Fuchsian type, which is related
by a simple transformation to the author’s d.e. for Hotelling’s generalized T,? [3].
This transformation implies certain relationships between the moments and
asymptotic expansions of the two distributions. The adequacy of some approxima-
tions to V'is checked by using the d.e. to tabulate some accurate percentage points.

2. Systems of differential equations. Let S;, S, denote m x m matrices with
independent null Wishart distributions on n,, n, degrees of freedom respectively
(ny, n, Z m), estimating the same covariance matrix. The joint distribution of the
latent roots 0y, * -, 0,, of S;(S; +S,) "' is well known to be

@1) Guy, 035+ ) = Clms my, mo)([ T 1004 == D[ (1 —6;) yie2=m=0

TTi<i(0:—6), 0<0,<--<0, <),
where
(22) C(m; ny, np) = 7™ T (3(ny +12) ) TGm)T(3n,)T(3n3).
Pillai’s V statistic is defined by
23) 5y )
and Hotelling’s generalized T, statistic by
(2.4 T= Z;”=19i/(1 —0) = To*/n,.

Following the method of [3], Section 2, we introduce the Laplace transforms
(Lt’s)

2.5 L(s)= ,"Rm €Xp (—3291) Oy, (0157, em)Zkl << (1=6) (1 _ek..)]-l
-do, ---do,, r=0,1,-+,m,

where R, is the region defined in (2.1), and the summation is extended over the (™)
selections of r distinct integers &, ‘- -, k, from the set 1,2, --+, m. Thus, Ly(s) is
the Lt of f,, ,.,(V), the density function of V. For r 2 1, the integrands in (2.5) are
dominated by ¢,,,,,-2, and so the L,(s) exist only for n, = m+2. This restriction
will be preserved for the present. In general, we see that

2.6) _me exp(—sZBi),p(ol, “++,0,)d0, --do,
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is the ordinary Lt of
()] ¥Y(V) = gy, ¥(V=0,—++=0,,0,,--, 0,)d0, -~ db,,
where
Ry 1(V)=R,_1n{0+ +6,>V—-1}n{20,+05+-+0,, < V}
(2.8) = {max [0, V—(s—1)—0,4 ,— - —0,] <0, <s™?
(V=0gp1——0,);5=2,,m}, b,+1=0).

Hence L,(s) is the Lt of H(V), say, (r =0, 1, - -+, m), which may be obtained in
integral form from (2.5) and (2.7). Clearly, if V=j,(j=1,2, -+, m—1), the left-
hand sides of the inequalities in (2.8) reduce to 6,., for s=j+1,---, m. The
boundary of R,,_ (V) therefore alters its character as V passes through the integer
values 1,2, -+, m—1, corresponding to the passage of the hyperplane Y0, =V
through the vertices (1,0, ---,0), (1,1,0,:--,0),---,(1,1,--+,1,0) of R,,. This
results in f,, ,.(¥) having a piecewise analytic nature which is reflected in the d.e.’s
derived below.

A first-order system of d.e.’s relating the L,(s) may be obtained along the lines
of [3], Section 2; in fact, the integrands at any stage of the argument may be derived
formally from those given in this reference by making the transformation w; - —6,,
n,—>m—n;—n,+1,5s > —s.

This leads to the following system of d.e.’s:

2.9 —(m—r+1DsL,_,+[s((d/ds)+r)+a,+1]L,—b,L,,., =0,
(r=0’ 1’”.’m—1;L—1 50)9

((d/ds)+m)L,,— L,,_, =0,
where

2.10) a. =3m—-r)(n+ny,—m+r—1)—1, b, =31+ 1)n,—m+r-1).

Equation (2.9) may be obtained from [3] equations (2.19) and (2.20) by the
transformations

(2.11) s =S, ny,—>m—n;—n,+1.

Inverting the Lt’s, the following system of first order d.e.’s is found for the
Hr(V)’ (nz g m+2)

m—-r+1)dH,_,|dV+[(V-r)dldV—a])H,+bH,,, =0,
(2.12) (r=0,1,--,m—-1; H., =0),
H,_,+(V—-m)H, =0.
This system is related to [3] equations (2.21) and (2.22) by the transformations
(2.13) T—-V, n,—>m—n;—n,+1.
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Since b, > 0 for n, = m+2, elimination of Hy, - -+, H, from equation (2.12) will
result in a linear homogeneous d.e. of order m for H, = f, having regular singu-
laritiesat ¥V =0, 1, - - -, m and infinity.

3. Nature of the solution. The solution of (2.12) in the unit circle about V' =0
follows from [3] Section 3, using (2.13). Again the characteristic roots of the d.e.
are {mn, —1 and zero (with multiplicity m), the relevant solution following from
the non-zero root. Recurrence relations for the coefficients in the power series for
Soi.ns(V), 0 < V < 1, are obtainable from [3] equation (3.11), and the multiplicative
constant is the same as that for T, namely,

3.1 k(m; ny, ny) = Tp(3(ny +n2) ) TGmn )T p(3n2)-

(Constantine [2]). This solution also serves to define the distribution in the interval
m—1 < V < m, since from the definition of ¥,

(3.2 JurondV) = fry, m(m=V), 0 < V<m).

Unfortunately, however, in the intervals between the singularities 1,2, -+, m—1,
S (V) will be specified by certain linear combinations of the full set of m linearly
independent solutions. The calculation of the numerical coefficients in these linear
combinations presents a formidable unsolved problem.

In the bivariate case m = 2, the differential equation for f,, ,, is found to be

(3.3) V(A=V)2-V)f"—[3Bn +3n,—14)V*=20Q2n, +n, =)V +2(n, —2) 1f’
+i(my+n,— [ (n +n,—HV=-2(n,—2)1f =0,

and the density function may be expressed in terms of the Gaussian hypergeometric
function:

34 JowlV) = 2B(ny, my =117 GV 1A = 47) 73
2F1(1, 43 =n5); 3(ny +1); %), O<¥V<l,

Jooo (V) = 2B(ny, =17 GV A = 4V
2F1(1, 33 —ny); 3, +1); 172, (1<¥V<2,

where r = V/(2— V). These functions reduce to polynomials in ¥ for odd n, = 3
and odd n, = 3, respectively.

So far, it has been assumed that n, = m+2. In the cases n, = m, m+1 we note
that f, . is a numerical multiple of the H,, function corresponding to f,, n,+2- -
Elimination of Hy, **, H,,_, from (2.12) with n, replaced by n,+2 would show
that f, ,, satisfies the general mth order d.e. in these cases. However, when n, = m,
m+1, we have b, =0, b, = 0 respectively, and the system (2.12), regarded as a
d.e.for H, = f,, ,,» degenerates into a second or first order d.e.:

(3.5) V(=V)Hy" +[V(mny—im—4n, —3)—(4mn, —2) 1Hy'
~@mny—tm—1)Gmn, —4n, —Ho =0, (np = m),

(3.6) VH, —(3mn,—1)H, =0, (n, =m+1).
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It may be shown that these d.e.’s validly specify the distribution in (0, 1), the
solutions being

(3'7) f;u,m(V) = k(m; ny, ’”)I/Jimm_1 ZFI(‘ZLms %nl; %mnl; V): (0 <¥V< 1)’
Soiyme1(V) = k(m; ny, m+ 1)V =1 O<V<l).

In virtue of (3.2), these results also define f,,, , and f,,+ ; , , in the interval (m—1, m),
V being replaced by (m— V). It must be emphasized, however, that the degenerate
d.e.’s (3.5)(3.6) do not hold throughout the entire range of V' (with the exception of
(3.5) when m = 2), although the general mth order d.e. does. The situation may be
illustrated in the case m = 3, when

(3.8) Jas(V)=(6/13B-V)?, . 2<V<3),
fodV)=(B8)3B-V)>, Q< V<3).

These functions are not solutions of the d.e.’s (3.5), (3.6) respectively, but by
taking each in turn as H; in (2.12) with n, = 5, 6, they may be shown to satisfy
the general 3rd order d.e. for m = 3. That f,  ,, may be cusped, with discontinuous
first derivative, may be seen by taking n, = n, = 3in (3.4).

4. Moments of V. From [3], Section 7, the system of d.e.’s (2.7) for the Lt.
L(s) of 1, »,(V) has characteristic roots —(a,+ 1) at the regular singularity s =0.
These are all negative with the exception of —(a,,+ 1) =0, and the system has an
analytic solution at the origin as we would expect, since ¥ has a finite range, and

all its moments exist.

By virtue of (2.11), a recurrence relation for £ 7" may be obtained from equation
(7.13) of [3] for £T" by replacing n, by m—n, —n, +1 and multiplying by (—1)",
(r=1,2, ). Pillai [9] has used the first four moments of ¥ to fit a Pearson curve
to the distribution. The following reduced form of Pearson’s coefficient f§, has been
derived using the above recurrence relation:

4.1) B, =3(N=1D(N+2)A/mnn,(N—m)(N—3)(N=2)N+1)(N+4)(N+6),
where

N = nl +n2,

A =nny[(Nm—m?)(N3+5N2+78N+72)—4N*(5N+6)]

+4N?[(m*—~Nm)(5N+6)+N(N*+N+2)].
5. Ité-type expansions for large n,. For completeness, we note that an It6-type

expansion [6] for the distribution of n,V for large n, may be obtained from [3]
Section 4. Noting that n,V is asymptotically distributed as x> on mn, degrees of

freedom, a convenient approach is to expand the cumulant generating function of
the statistic in a series of the type considered by Box [1]:

5.1) log Lo(s/ny) ~ —4mnylog (1+28)+> ;2 0, y[(1+25) ™" —1].
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Using the differential equations, the following set of recurrence relations may be
obtained for the w,  :
(5.2 2ro, y =2(r—1)w,-, y+mn6; ,—(1—(m+1)/n)¢, r=12,--+),
where the £; , are defined by

So.r=¢&0= 5o,r,
(5.3) J& =01, -1+ (Bi+2(r=1))E;, 1 -1/n2
+ [+ DI =931 41, p-1 = [ +2(r=2) 1, - 2/n,

+2n2_lzg;fsws,l’(€j,r—s—l =& rms—2)s
(=1, mir=12"),

o =(m—j+Dn—j+1),  B;=j@m+n,—2j+2), y;=(+Dm—j+1),
&’s with negative subscripts being zero. Thus, in particular,
5.4 wy y = mn(m+1)/2n,,
W,y = —dmn [ (m+n, +1)/ny = (m+1)(2m+n, +2)/n,].

The first six w’s to order n,”> have been derived by Muirhead [7] using an inde-
pendent approach, and the first eight to order n,”* by the present author. An
analogue of Itd’s expansion of T,2 percentiles in terms of xZ,, percentiles may be

derived from a general Cornish-Fisher inversion of Box-type series given by the

author [4]. To order n, 2,

nV ~ 2 +112n, [ (m—ny + 1) = y*(m+ny + 1)/(mny +2) ]
+1)24n,2 {32 [Tm? — 12m(n, — 1) +(Tn,2— 12n, +1)]
(5.5) —y*[11m? +24m—13n,% +17]/(mn, +2)
+2x°[2m3n, + m*(2n, +3n, +10)+m(2n,3 +3n,%> +17n; +18)
+2(5n,2+9n, +2) )/(mn, +2)*(mn, +4)
+6°(m—1)(m +2)(ny — 1)y +2)/(mn +2)*(mny +4)(mn, +6)}
+0(n,™),

and the n, 2 term has also been obtained.
An expansion of the type (5.1) also exists for T%. In view of (2.11), the following
relationship exists between the coefficients w, r in this series and the o,y :

(=npYw, v =mn(n,—m—1)[2r
+ Y a1 GEDn—n —ny +1) (n, —m—1y "y,

where, in the w;y, n, is to be replaced by m—n;—n,+1. T and V may also be
interchanged in this formula. The w, » obtained from (5.6) and (5.2) check with
those obtained to order n, ~3 by Muirhead (Joc. cit.).

(5.6)
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6. Examination of the approximations. In principle, the solution of (2.12) at the
regular singularity ¥ = 0 specifies the distribution of ¥ in (0, 1) (or in (m—1, m)
when n; and n, are interchanged). For sufficiently large n, (or n,, respectively),
the upper 5%, and 19, points of ¥ lie in these intervals, and some investigation may
be made of the accuracy of the available approximations. A corresponding study
has been made for T in [5], where the d.e. was used to compute accurate percentage
points by analytic continuation of the solution at 7= 0. The same computer
program, with the trivial modification (2.13), has been used to tabulate some
percentiles of ¥ in the range m < 5, n; and n, < 200. Except when »; and n, are
both small integers, Pillai’s Pearson curve approximation is accurate to four decimal
places. The Ito-type approximation (5.5) is considerably improved by adding the
n,”3 term, and is a useful direct formula for large n, and small n,, but its accuracy
falls off rapidly as n; increases. In virtue of (3.2), a similar statement holds with
n, and n, interchanged.
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