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NOTE ON THE CHARACTERIZATION OF CERTAIN
ASSOCIATION SCHEMES

By MARTIN AIGNER

University of North Carolina

1. Introduction. Much attention has been paid in recent years to characterizing
association schemes by means of their parameters (see e.g. [2]). There have been
essentially two different approaches, one using the concept of a claw, e.g. [2, 3], the
other considering the eigenvalues of the corresponding strongly regular graph,
e.g. [4]. In this note we suggest another method, namely, to study the structure of
the set of treatments which are first associates of a given treatment, using all the
information contained in the parameters n,,p},, p?,. It appears convenient to
discuss the problems in terms of the strongly regular graph obtained from the
association scheme by joining two treatments iff they are first associates. Hence-
forth we shall adopt the graphtheoretic language. To give a concrete example let
us assume the graphs satisfy p?; < 2. This now implies the subgraph A4(x) generated
by all points adjacent to a given point x does not contain a cycle of length four
unless it is embedded in a complete graph on four points. This requirement con-
siderably restricts the class of possible graphs A(x), and in certain cases readily
yields the solution of the characterization problem. To give an application we shall
exhibit the characterization of the line graph of the complete bipartite graph
[5], [6], [7]. The advantage of the present approach is that it lends itself to generali-
zation to several associate classes (see [1]), admits variable pi,,p?, and also
produces all the exceptions.

2. A class of graphs. It is our goal to characterize the line graph of the complete
bipartite graph on sets with m and n vertices, denoted by L(B,, ,), by the following
properties:

Form=znz=2

(P1) L(B,,,) has m-n vertices.

(P2) It is regular of degree m+n—2.

(P3) Exactly n- (%) pairs of adjacent points are mutually adjacent to m— 2 points,
the remaining m - (3) pairs of adjacent points are mutually adjacent to #—2 points.

(P4) Any two nonadjacent points are mutually adjacent to two points.

We now define for m = n = 2 the following class 4(m, n) of graphs G:

(Q1) G contains m+n—2 points.*

(Q2) The degree of a point in G is either m—2 or n—2, but there are at least
m—1 points of degree m—2.

(Q3) There is no cycle of length 4 in G unless it is embedded in a complete
graph on 4 points.

Received February 10, 1969.
! It may be noted that (Q1)~(Q3) and thus the following theorem are also applicable to the line
graph of a BIB design with m replications and block size #.
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" We shall denote the complete graph on i points by K;; G = AUB shall mean that
the point set of G is the union of the two disjoint point sets of A and B. (There may
be edges between 4 and B, however.) Using this terminology, it is clear that the
graph K,,_;UK,_, belongs to %(m, n) for all m > n = 2. We shall refer to this
graph as the normal graph N(m, n) of the class %(m, n).

THEOREM 1. %(m, n) = {N(m, n)}, except for m=4, n=3;, m=5, n=4;
m=n=4.

%(4,3) = {N(4,3),G,,simple 5-cycle},
%(5,4) = {N(5,4),G,,G;},
%9(4,4) = {N(4,4), simple 6-cycle}.
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Proor. First we note that the theorem is trivially true for m = n =2, m = 3 and
n =2 or 3. Hence we assume m = 4. Let G be an arbitrary member of 4(m, n), we
shall refer to points in G of degree m—2 as m-points, to the others as n-points.
A(x) shall denote the set of all points adjacent to x. Let i > 2 be maximal such that
there exists a K; containing an m-point. The following three facts are all implied

by (Q3).
) A(x) = K;,u*UK;, no lines between K; and K;, j#J,
2 . y¢ A(x) implies |A(x)mA(y)f <1,
(3) y,y'¢K; and y,y" adjacent to distinct points of K; imply yp is
not adjacent to )"
Let x be an arbitrary m-point and suppose x is contained in k K;’s, then
0] k(i—1) < m-2.

Suppose there are a m-points in the k K;_,’s of A(x), b m-points in the other K’s
(j < i—1), then counting the edges from A(x) into the set of the remaining n—1
points other than x we obtain, using (2),

am—i—1)+(k(i—1)—a) - (n—i—1)+b(m—i)
+(m—-2—k(i—1)—b)-(n—i) < n—1.

Making use of (4) this is easily rearranged to
n—l—(a+b)~(m—n)+

p— 1.

5 n—i <

As the right-hand side of (5) is less than 3 for m > 3, we are faced with three possi-
bilities as to whether n—i <0, =1, or = 2.

CAsE A. n—i<0.
Here m = i+1, and K; entirely consists of m-points. Let G = K;UR, |R| =
m+n—2—i. Counting the number of edges from K; into R, we get by (2)

(6) im—i—1)=m+n-2—1i, or
(m—i)-(i—1) < i+n—2 < 2(i—1),
and thus | Sm—i<2,|R|<n

(a) i = m—1. Here |R| = n—1, and N(m, n) results.

(b) i = m—2. In this case, (6) yieldsi = n = |R|, and every point of K; is adjacent
to exactly one point of R. Recalling (2) and (3), this means R is completely dis-
connected but since there must be at least one m-point in R (by (Q2)), we would
obtain m—2 = n = 1, a contradiction.

CAasEB.n—i=1.
We have G = K,,_UR, |R| =m—1, n 2 3. If all points of K, _, are n-points (this
includes the case m = n), we plainly arrive at N(m, n). So assume there are ¢ = 1
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m-points in K;, hence ¢ (m—n) edges from K; into R. Let R = R"UR’’, where R’
consists of the points in R adjacent to some point in K,,_,. Because of m > n, there
must be m-points in R. If there were two or more m-points in R, then applying
(1) we note that R would have to be a K,,_,, contradicting the maximality of i.
Hence the following two possibilities arise:

(a) There is exactly one m-point in R”, call it z.
(b) There is no m-point in R”.

(a) Since z is adjacent to every point in R, we invoke (2) to obtain m = n+1.
Further R’ is completely disconnected, and hence counting the number of edges
from R’ into R —{z} we have

@) c(n—4)<n—1-c¢ or
®) c=(n=-1jn-3)<4 for n>=4.

Since ¢ £ n—1, (8) holds for n = 3 as well.

¢ = 1. (Q2) implies the number of m-points in R’ must be at least m — 3, hence
m < 4, and the only possible case m = 4 readily yields the graph G,.

¢ = 2. If both points in R’ are m-points, then refining the count (7), we obtain
n = 3, and the simple 5-cycle results. If one is an m-point, the other an n-point, then
appealing once more to (7), we have n = 4 as the only case, and G, is easily seen to
be only possible graph. Finally the case that neither point of R’ is an m-point
would imply » = 4, but by (Q2) we also have m < 4, a contradiction.

¢ =3.(7) yields n = 4, all points of R’ clearly must be n-points, thus G, results.

(b) By employing the counting argument (7), it is easily seen that this case does
not produce any new graphs.

Case C.n—i=2.

Going back to (5), we infer that either m =n, or m =n+1 and a =5 = 0. The
second alternative is quickly disposed of by noting that the m — 2 points not adjacent
to x must all be m-points. By (2), they must form a K,,_,, which violates the
maximality of i. Let us then examine the possibility m = n. Here G = K,_,UR,
|R| = n, n 2 4, and every point of K,_, is adjacent to exactly one point of R. The
set of these n—2 points in R is completely disconnected, hence any such point has
degree at most 3, or n < 5. The case n =5 is readily shown to contradict (Q3),
whereas for n = 4 the simple 6-cycle results.

3. Characterization of L(B, ,). We may represent L(B,,,) as the graph having
as point set all ordered pairs (i,/), 1 £i<m, | £j < n, with two palrs adjacent
iff they have a coordinate in common.

LEMMA. Given a graph G satisfying (P1)~(P4),* and assume there exists a point x
with A(x) = N(m, n), then G = L(B,, ).

% In fact, we could relax (P3) to (P3’): any pair of adjacent points are mutually adjacent to
either m—2 or n—2 other points.
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PrOOF. Let us denote x by (1, 1), the pointscontained in K,,_, by (i, 1),2 < i < m,
those in K,_, by (1,/),2<j < n. Let

A((l’l))= UJ#!{(‘]’I)}UBH 2§ ié m,
then by (P3) the sets B; are mutually exclusive, and since
=2 |Bi} =(m—-1)n—1)=mn—m—n+1,

they exhaust the set of all points not adjacent to x. Now (i, 1) and an arbitrary
point of. B; are mutually adjacent to at least n— 2 points. As none of (j, 1), j # i,can
be such a point, we conclude B; generates a K, _,. Every (1, /), j # 1, is adjacent to
exactly one point of B; (by (P4)). Let us call this point (i, ) with C; = {(i,]),
2 < i < m}. The same argument as above then shows C; generates a K,,_,. Finally
C,nC; = ¢ for j# ', as the opposite would violate (P4) when applied to x and a
point common to C; and C;., and the proof is complete.

THEOREM 2. Let G be a graph satisfying (P1)-(P4), then G =~ L(B,, ), except for
m = n = 4, in which case there is exactly one other graph.

Proor. From (P3), we infer that the average number of m-points in A(x) equals
n-(3)/m-n=m—1. Hence we may apply Theorem 1 which, together wth the
preceding lemma, establishes our assertion except possibly form =4,n=3;m =5,
n=4; m=n=4. The five additional graphs of Theorem 1 have to be treated
separately. A straightforward argument shows the impossibility of G,, G,, G5 or
the simple 5-cycle as candidates for A(x). Let us just verify this claim for G,. Here
m=4,n=3, }G| = 12, and there are 6 points nonadjacent to x, call this set B(x).
Let u, v be the two endpoints of 4(x) = G, w the center point. Now there are
2 points in B(x) adjacent to w, and by (P4) neither one can be joined to u or v.
Since of the remaining 4 points of B(x), 3 are joined to u, 3 to v, at least 2 of them
must be adjacent to both, in violation of (P4). Finally, in the case m = n = 4 and
A(x) being the simple 6-cycle (using the fact that in view of the lemma A(y) must
be a simple 6-cycle for every y e G), it is easily shown that there is just one exception.
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