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LIMIT PROCESSES FOR CO-SPECTRAL AND QUADRATURE
SPECTRAL DISTRIBUTION FUNCTIONS!

By IaAN B. MACNEILL

University of Toronto

1. Introduction and summary. Limit processes for the sequences of stochastic
processes defined by co-spectral and quadrature spectral distribution functions are
found -using the theory of weak convergence. The limit processes are shown to be
Gaussian with independent increments and with covariance functions defined in
terms of hypothesized spectral densities.

Section 3 contains a discussion of the moments of the processes. The first and
second asymptotic moments, which characterize the limit processes, are computed
giving results analogous to those of Grenander and Rosenblatt [6] and Ibragimov
[8] for autospectra. We also evaluate the higher asymptotic moments and put bounds
on the higher moments. The latter are required in demonstrating tightness of the
measures generated in C[0, n] by the co-spectral and quadrature spectral dis-
tribution functions. In Section 4, limit processes, under certain conditions listed in
Section 2, are obtained and described in Theorem 4.5. Finally, Section 5 contains a
discussion of asymptotic goodness-of-fit testing for spectral distribution functions.

2. Definitions and assumptions. We consider real, normal, discrete time parameter,
zero mean and jointly weakly stationary time series {X(r)};2_, = {X\(0), k =
1,2,-,my—o0 <t<oo} and we let R(v) = E[X(t)X'(t++v)] where R(v)=
{Ru(),j, k=1,2,---,m}. We assume that the cross-spectral density matrix,
f(%), exists with f(1) = 2n)~' Y2 _ , exp(—ivA)R(v). Letting Si(A) be the j, kth
element of f(1) we define, for j, k =1, 2, -+, m, the co-spectral density functions
by cy(4) = Re[f;(A)], the quadrature spectral density functions by g¢;(4) =
—Im[f,(4)], the corresponding distribution functions by Cy(A) = [§¢;(D)dl,
0i(A) =[5q(Ddl and define the cross-spectral distribution functions by
F () = [ fu(D) dl. If zR;,(v) and oR;(v) are the odd and even parts of the cross-
covariance function then

ER]I((V) = .‘.15. n Ccos (VA)CJk().) di and ORjk(v) = I’i n Sin (V).)q!k(i) d).,
jtk=1,2,,m.

If {X(t),t=1,2,--+, N} represents N observations from a realization of the
series {X(¢)} then the sample cross-covariance matrix of lagv is denoted by Ry(v)
where the j, kth element is defined by Rjy(v)=N"1Y 7" X ()X, (t+v). The
sample cross-spectral density matrix is denoted by fy(4) and its j, kth element is
defined by fjn(4) = (2nN) "1 YN exp(isA) X ;(s) Y. ; exp (—itA)X,(?). The sample
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82 IAN B. MACNEILL

co-spectral and quadrature spectral densities are defined by: ¢;n(4) = Re [f;n(4)]
and ¢;n(4) = —Im[f;n(4)]. Sample distribution functions are defined by

F jkN('l) = j 3fjkN(l) dl, CjkN('l) = Re[F jkN('l)] and Q jkN(j') = —Im[F jkN()»)l
The following notation is used extensively below:
o jkN(j') =F jkN()')_F jk(j')s (D;kN()*) =C jkN(j')_C jk(l),
‘ngzv(l) =Q jkN(j')—Q jk(i), 0 jkN(l) =F jkN()')_E[F jkN(A')]’
Oszv(l) =C jkN(j')'—E[C jkN(j')] and ogkN(i) =Q jkN(A)_E[Q jkN(l)]-

In addition we let

ij(ll) = 27‘55 Ifjk(l)|2 dl,
Hj{(ll) = 2nj5fjk(l)cjk(l) dl,
HY(1) = 2n [5 f;(Dg u(D dl,
H5(w) = 7 f§ 13D fuD+ ci(D—gi(D]dl,
HY (W = ”jg [fjj(l)fkk(l)+‘Ifk(l)_cfk(l)] dl and
H%(#) = ”fﬁ cjk(l)qjk(l) dl.
This last notation is used in specifying the covariance functions for the limiting
processes.
The conditions required on the time series to prove the theorems in the sequel

are now summarized. They will be referred to at the beginning of each theorem.
The first set of conditions is a summary of those given above.

ConprtioN 0. Time series are real, jointly normal, discrete time parameter, zero
mean, jointly weakly stationary and possess spectral density functions.

ConpiTioN 1. Condition 0 is assumed and further it is assumed that f;;(4)e
LY —n, 7).

ConbpITioN 2. Condition 1 is assumed and it is also assumed that for some
8>0,f;;(MeLl***[—n, n].

ConpiTioN 3. Condition 2 is assumed and in addition it is assumed that a pair of
time series, {X(#)} and {Y(¢)} have the following representation:

(2.1 X(1) = Y52 - o a(v)E(t—v),
Y(t) = Zlio;— © b(ﬂ)C(t—ﬂ)a

where Y2 _ . la(@)|* <o and Y= _,|b(w)|* < oo and the elementary series

V=

satisfy Condition A.

ConpITION A. {&(1)} and {{(¢)} are jointly normal time series satisfying: (i) for
every t, &(t) and {(¢t) are normal with mean O and variance 1; (ii) there exists a
positive integer M such that for |m| > M, Cov [£(r), &(t+m)] = Cov [Cov{(1),
{(t+m)] = Cov [£(2), {(1+m)] = 0.



LIMIT PROCESSES FOR SPECTRAL DISTRIBUTIONS 83

Nortk. To understand the role of Condition A, it should be understood that the
following results fall into three main categories: (1) theorems (proved in Section 4)
asserting that the sequence of stochastic processes {N*®,,(1), 0 < 1 < n} con-
verges weakly to a Gaussian process, (2) theorems (proved in Section 3) determining
the covariance kernel of the limit process, and (3) theorems (proved in Section 5)
which evaluate the asymptotic distributions of various functionals of such
stochastic processes as {N?®$,(4), 0 < A < n}. The theorems of category (1) are
proved for any pair of processes {X(#)} and {¥(z)} which can be represented in the
form (2.1) in terms of series {£(¢)} and {{(¢)} satisfying Condition A. The theorems
of category (2) are proved for normal processes. One could state analogous
theorems for processes {X(¢)} and {Y(¢)} which are not normal, but then the
covariance kernel of the limit normal process would not be of the simple form for
which we give results of category (3).

ConDITION 4. Condition 2 is assumed and it is further assumed that the spectral
distribution functions have no intervals of constancy.

C6ND1TION 5. Condition 3 and Condition 4 are assumed and, in addition, the
coefficients in the linear scheme defined in Condition 3 are assumed to have the
properties: a(v) = O(v®?), b(v) = O(v®) where B < —3.

Grenander and Rosenblatt [6] obtained the limit processes for autospectra essen-
tially under Condition 5 but with the normality assumption dropped. Ibragimov
[8] obtained limit processes for autospectra essentially under Condition 4, i.e.,
assuming normal time series. Malevich [10] relaxed the condition on the spectral
density to that of square integrability. Brillinger [3], under a different set of
assumptions involving the near independence of widely separated values of strictly
stationary time series, obtained limit processes for the matrix of cross-spectral
distribution functions. Goodness-of-fit testing for autospectra is discussed by
Grenander and Rosenblatt [6].

3. Moments for spectral distribution functions. In computing the moments of the
processes under consideration certain kernels arise. We now define and state
several properties of these kernels, omitting proofs which are available in [9]. The
kernels and theorems are extensions of those in [8].

Let A be an interval in [0, #] and define the following functions of two variables,
I, Le[-=n 7]

N =
O5(h, 2) = 27;\!* :A Szﬁﬁ 1-|--i-cxo)%2 Sis?nl\gjz-l-+a§%2 da,
o= S e
@il L) = 2”;]% ,NA Slsrllnj\gll 1"'-:‘o)t/) f 515?11]\3 iz:og; 42 da.
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These functions can be used to define a number of kernels. For intervals A4,
B < [0, ], define

YRR, 1) = O34, )RR (1, 1) Lj=1,--,4
The first property of interest to us establishes certain bounds for the kernels.

THEOREM A. If (a, b) (¢, d) = (—m, n) there exists C such that, for I, €(—m, m)
and N =2 1,

[ I‘/’Eﬁ"ﬁb)’(c’d)](l1, lz)l dl, < C.
The next result yields the most useful property of the kernels.

THEOREM B. Assume h(l)e L*[—n, ] and 0 £ A < p < n. Then, for almost all
lie[—m, 7], as N— ©

[ 1,e(0,4),i=1
2nh(l,) for {lle(—/l,O), i=2
1,e(0,4),i=3
lye(—4,0),i=4

1,¢[0,4],i=1,3
| 0 for {

(i)J h(lz)lﬁgfzg’“’(o’m(lvlz)dlz—’JZnh(—ll) for {

l,¢[—4,0],i=2,4;
(il) j’in h(IZ)‘pE}(I:"A)’(O’)‘)](ll’ 12) dlZ -0 i’j = 1’ 29 3’ 4, i #J;
(iif) J% o U WER P 9X(y, 1) dl, - 0 i,j=12,3,4

Theorem A and Theorem B can be extended to kernels involving more variables.
Letyy(ly, 15, 13, 1s) = <I>§,"z3(l,-,, ljz)q)z(ﬁ\;(ljg, lj4)q)1(;413(lj5a ljs)q)gfl\)l(lh’ l;,) where iy, ji € {1
2, 3,4} and j, # jy, j3 # Jjas Js # Je» J7 # js and two of the subscripts are 1, two are
2, etc. A kernel such as

(31) le(lh 12’ l39 l4) = (I)(l?‘v')(lb lZ)q)(l“IiV?(lla 12)(1)(1,;4)(139 14)(1)(1"11\)(13, l4)
has properties similar to Y{7%’(I;, ;). A kernel such as
(32) ‘le(lla 129 13’ l4) = (1)(3‘:4)(11, lZ)q)(Z,IiV)(lh l3)(l)(2“li¥')(12’ l4)q)5{11\l)(l3a l4)

has properties similar to ¥{%’(I;, 1,). Such kernels arise in the computation of the
fourth moments. Further extensions of these kernels are useful in computing the
2nth moments. ‘

We now consider a pair of time series, {X,(#)} and {X,(#)}, and discuss the first
moments in the following theorem.

THEOREM 3.1. (a) Under Condition 0, limy.,E[Ci;n(A)] = C12(4) and
limy., o, E[Q128(A)] = Q1,(A). (b) Under Condition 1 there exists a constant K such that
SUPo<agx N* IE [CiranV]— C12(}~)| < Kandsupogi<x N* IE[QIZN(A)] - le()v)l =K.

The proof of this theorem is obtained by applying Theorem 1.1 [8].



LIMIT PROCESSES FOR SPECTRAL DISTRIBUTIONS 85
The next theorem uses Theorem A and Theorem B to find the asymptotic second
moments for the processes.
THEOREM 3.2. For 2, u€|0, n] and under Condition 1,
() limy_, o NE[Cy25(4) = E(C1an(A)I[C12n(W) — E(C12n(W))] = HS2(min (2, ),
(i) limy. o, NE[Q;2n(2) — E(Q12n(AN][Q12n(1) — E(Q12x(1))] = HY5(min (4, ),
(iii) Limy.,, NE[C1,5(2) — E(C1n(A)][Q125(0) — E(Q128(1))] = H%(min (4, ).
Proor. Considering part (i) we first note that
(3.3) Cov[Cy2x(4), Cian(w)]
= jé Iﬁ {E[csanUp)esan(l2)] — E[eran(1)IELe12n(12)]} dl, dl;.

Using Isserlis’ formula for products of normal random variables it can be shown
that

E[cian(l)eran(l2)]
=(4aN) "2} jainia XD (i1 Li—Ja by +is L —ja 1) }H{S1 + S, + S5}
where:

Sy = Ry1(j1—J3)R22(j2—Ja)
+R11(j1 —Ja)R22(j2—J3) + Ry 1(j2—j3)R22(j 1 —Ja)
+Ry1(j2—ja)R22(j1 —J3)

=81;+81,+S13+S14,

Sy = [Ry2(j1—J3) +Ry2(j3=jDI[R12(ja=j2) + Ri5(j2 —ja)]
+[R120j1 =ja) + Ry2(ja=i)I[R12(j3—=j2) + R12(j2 —J3)]
—[R12(j1—j3)R12(j2—ja) + R12(i3=j DR 12(ja—j2)
+R2(1 —ja)R12(J2=J3) + R12(ja—iDR12(j3—J2)]

=851+852—[S23+S24+S25+S36],

83 =[R13(1 —j2) +R12(j2 =i D][R12(j3—Ja) + R12(is —J3)].

Considering the first term of S, and using the spectral representation for the
covariance function we obtain:

B4 gyl = (47TN)_2 Zj1j2j3j4 exp[i(j;y Iy —j2 Iy +j3la—ja12)1S14
_ 2| [T sinN(l; +a)/2 sin N(l, —B)/2
= (4zN) zf_nf_n sin(l;+%)/2 sin(l,—B)/2

sinN(l,—a)/2 sin N(I,+ p)/2

sin(l,—a)2  sin(l,+p))2

S11(@) f22(B) dadp.
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If we assume that A < u, use some simple manipulations and integrate with respect
to the other two variables, then

@3.5) jéjggllN(lla L)dl,dl, = (4N)_1I5njﬁnf1 1(l1)fz2(12){¢5(§)&2)’(0’1)](l1’ 1)
+YEP A, 1) dly dl )

We let gn(1y) = f11(11) j’inf22(12)!/’4[3(%;')(0’1)](11, 1,)dl, and consider I’in gn(ly)dly.
Theorem B and the integrability of f;,(-) enable us to assert that limy_, ., gy(/;) =0
a.e. Using Theorem A and the fact that f;,(-) € L[ — n, ©] one can verify the condition
of Theorem 6 [4] page 122 which enables us to assert that limy_, , [~ . gn(l;) dl; = 0.
This, plus a similar argument applied to the expression containing Y455 *»(1,, 1,)
shows that

limy_, Nﬁ) 09181, 1) dldl, = 0.

A different result is obtained by the same methods by applying Theorem B to an
expression like (3.5) obtained using S;,. In this case

limyo, o, % 7% o f11 () fo2(WEN Py, 1) dl, dl,
=1/2[sf1:1() fr2(= 1) dl; .

Treating the remaining terms in S, S, and S similarly and collecting non-zero
limits we see that

(3.6) limy., , N Cov[Cy,n(4), Cian(u)]
= nf5fu()fra(= 1) dl +2r 25 ¢d,(1y) dly
—7r/2j'21 |f12(l1)| 2dll—77/2,‘.61“12(11)]zdll = H{,(4).
Conclusion (ii) and Conclusion (iii) are proved in the same way.
In goodness-of-fit testing one is more interested in deviations of sample distri-
bution functions from hypothesized distribution functions than from the expected
values of sample distribution functions. These deviations are treated in the

following corollary, the proof of which is an easy consequence of Theorem 3.1 and
Theorem 3.2.

COROLLARY 3.3. For A < ue|0, =] and under Condition 1

@ limy o, NE[®],5(A)P72n(1)] = Hi[(D],
(i) limy , , NE[®1,5(A)P]2n(W)] = Hi>(A),
(iii) limy, ., NE[®;5(A)P2n(W)] = Hi5(A).

Using kernels of the form (3.1) and (3.2) one can show, for u < A0, n] and
under Condition 1, that

limy., , NE[0,5(2) =0, 1n(w)]* = 3(H (A —H,,(1))?,
limy ., ,, NE[0],5(2) — 05 2n(1)]* = 3(H{ (1) — HS ()%,
limy, o, NE[0,5(1) — 01 :8(w)]* = 3(H{ (D) — H»(1))*.
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In a similar way it can be shown that,
limy , , ELN¥(0; 15(A) = 01,1n(W)]*" = M{22 [5f1,(D dl}"
where M =1-3- --- -(2n—1) and that the corresponding results hold for the
processes {05,5(4)} and {69,5(D)}.
These results also hold for the processes {®{,5(4)} and {®%,4(4)}. In addition

using the kernels introduced at the beginning of this section, one can obtain the
asymptotic covariance matrix found in Table 1.

TABLE 1

Covariances of spectral distribution functions (y < 1)

N n()  N3Dyn()  NRDDNA) N N(A)

Ni®y n(p) Hy(w) Hy,(w) Hfg(ﬂ) H%(#)
N, 8 (1) Ho(w) Hzc{(/l) Hf{(/t)
N*T,n() Hi,(w) H35 (1)
NS, (1) Hi(w)

To apply limit theorems to processes such as {0],5(4),A€[0,7]}¥-, one must
show that the sequences of probability measures generated in C[0, z] by these
processes are tight. For the space C[0, 7] this amounts to showing that the sequences
of measures are relatively compact or, equivalently, demonstrating the conditions
of the Arzeld—Ascoli characterization for relative compactness. To demonstrate
these conditions it is sufficient to obtain appropriate bounds on the moments of
the processes and these are obtained in the following theorem. For definitions of
tightness and relative compactness and for the statement of Prokhorov’s theorem
relating tightness and relative compactness one can refer to Billingsley [2].

THEOREM 3.4. For o < f€[0, n] and under Condition 2 there exist a, a, and a3,
0 < a; < oo, such that

(1 E |N*(05,8(B) — 05 :0(0))| " < K (B—0)**",
(ii) E |N*(0%,8(B) — 0% ,0(@)|* £ Kp(B—)' %2,
(iii) EIN‘lr(GnN(.B)—(%uv("‘))la3 < K5(B—a)tths,

where the constants K, and b; are positive and do not depend upon o,  and N.

PRroOF. We first prove (i). Just as (3.6) was obtained, one can obtain the following
expression for the second moment. We let YH&# @D 1) =y .

(3.7 E[N*(052n(B) — ¢ 2n(2))]?
= 3 a1 f22(1){Waan +Vaan} iy dl,
+ e T rca(l)e (W ooy dly dl,
_%j’iuj’inflz(ll)]—lz(-—lz){l»bl1N+l//22N} dl,dl,

+terms that go to zeroas N — co.
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We consider the term involving /55y and deal with it in detail as in [8]. Using the
Cauchy-Schwarz inequality and the following result (essentially given by Ibragimov

8D
f’inﬂnw&ﬂvl dlydl, £ 4n(f—a)
we can show that, for 6 > 0,
I = jtnj.tnfll(ll)fZZ(lZ)‘pB}MVdll dl,
< (4n(B—a))2H [ | fr (D[P F 0 dD) 20
'(I”—n{j—n|f22(12)|2+6|¢331vi dlz j1n|¢33|d12}d11)2/2+6'

Interchanging the order of integration and using the fact that there exists 4 >0
such that ™, |y;;y| dl, < 4 (Theorem A) we have

I, £ A@r(B— )Y (= L | fra (D> 2 dD) 2o (J2 | foa (D2 0)22 2.

Since we assume that f;,(/)e L>*°[—n, n] we have I, < B,(f—a)’’**® where B,
depends upon 6, f; (1), f>,(I) but not on N. In the same way we can find bounds for
the remaining terms in (3.7) (including the terms that go to zero). As a consequence,

E[N*(()ﬁ 8B =01 2N(°‘))]2 < B(B—a)°?*?

where B is independent of N. Similar methods applied to terms involved in
computing the 2nth moment prove

(3:3) E[NH(020(8) — 012n(0)]*" S B,(B—oy?2*?

where B, is independent of N. Since § > 0 it is possible to choose n so that
nd/(2+6) > 1+b, for b, > 0. Letting @, = 2n in (3.8), part (i) is proved.

Obvious modifications of the proof given above establish (ii) and (iii). (iii) yields
an alternative method for proving Theorem 4.1 [8].

4. Limit processes for spectral functions. The derivation of the limit processes
for cross-spectral distribution functions for time series defined by (2.1) requires a
preliminary discussion of the elementary series {£(#)} and {{(¢)} satisfying Con-
dition A. Covariance sequences and spectral functions for these processes will be
subscripted by ¢ and {; i.e., the sample cross-covariance of lag v will be denoted by
Ren(v). In this section, we first find the asymptotic finite dimensional distributions
for sequences of processes such as {N *BECN(A)};}‘; 1 . Then we use Theorem 3.4 to put
probabilistic bounds on the moduli of continuity (see [2], page 54) of the processes.
These are then used, as in [8], to obtain limit processes for sequences such as
{N*®%x(2)}R=, . Using this result and a technique of Grenander and Rosenblatt
[6] adapted for our use, we obtain asymptotic finite-dimensional probability dis-
tributions for such processes as {N*®{,5(4)}%-. Theorem 3.4 is again used to
show tightness of sequences of the corresponding probability measures and hence
to prove the basic result, Theorem 4.5.
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To begin, we obtain approximations for certain bilinear forms defined by {&(7)}
and {£(1)}. Let S54(1) = 20) ™" Ty <i {Rign(¥) = E[Reen ()]} {exp (= id) = 1}/(~ ),
Si(A) = Re [Syi(A)] and S§(4) = —Im [Sy(4)]. In the above notation and in the
sequel, a prime on the summation sign indicates that when the index is zero the
coefficient is understood to be A. The following result demonstrates that S§,(4) and
S%k(4) are adequate approximations for the bilinear forms, 0%y(4) and 6%y(4) or,
more precisely:

THEOREM 4.1. Under Condition A, for M <k < N, N *[B&N(A)—S,@k(l)] and
NA[0%n(A) — S§u(A)] converge in probability to zero uniformly in A as N, k — .

PROOF.  N0.y(2) = N Sy(A)+ Ntyy(A) where, since M <k, yy(d)=
(1) 'Y k< <nRen(A){exp (—ivA)—1}/(—iv). The result is proved by showing
that, for large k and N, yy,(4) is small with high probability. This, in turn, is
proved by the methods of Theorem 1 [6], page 188, somewhat complicated by
the correlations permitted by Condition A and by the appearance of more than one
series. We omit the details of the proof.

These approximations enable us to establish the asymptotic finite dimensional
distributions of the processes {N*0gy(4)} and {N*6%y(4)} as given in the next
theorem.

THEOREM 4.2. For 0 £ Ay <1, < <A, =7 and under Condition A (i) any
p-vector N¥(0gn(4,), 05n(42), -+ -, O5n(4,)) has an asymptotic probability distribution
that is normal with zero mean and correlation matrix ”ch(min () j))”, (ii) any
p-vector N *(BE’CN(AI), o, 04n(4,)) has an asymptotic probability distribution that is
normal with zero mean and correlation matrix ”ch(min (A 4 j))H.

ProoF. To prove (i) it is sufficient to prove the asymptotic normality with zero
mean and variance () f-; )2H5(A)+ Y 5=, Qb= ;1)*(H5(A) —H5(4;- 1)) of all
random variables of the form N*)%_, #,05y(4;) where the f; are arbitrary real
numbers. This device reduces the problem from p-dimensions to a problem of one
dimension. The unidimensional case is dealt with below and the same methods
used apply to the more general case. Some random variables related to the bilinear
forms, Syx(4) and 0On(2), are defined as follows. For k < Nand v=1,2,---, N
let

2nZ,(v) = A[EO)L() = EEMIM]]
+ 2521 [EMCV+7) = E[EMCv+ )11 {exp (—ik) — 1}/(—=if)
+ =1 [E0+)G) = ELE +NEW {exp (—iz)) = 1} /(= ).
We note that, by Condition A, {Z,(v)} are k+ M +1 dependent identically distri-
buted random variables. Also let Uy(d) = N™*YN_, Z,(v), Uy“(4) = Re[Uy] and
Uyi(A) = —Im[Uy]. Using a limit theorem for dependent random variables due to
Hoeffding and Robbins [7] one can assert that Uy“(1) and Uy%(4) are asymptotically

normally distributed. It is evident that for all k£ > 0, Up(1) — pN*SNk(l) as N - oo
and similarly for the real and imaginary parts. Furthermore, Theorem 4.1 asserts
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that N*(0n(2)— Syu(A)) »,0 as N,k — oo which implies that N*@gy(1) and
N*O‘&N(X) are asymptotically normally distributed. The asymptotic variances are
given by Theorem 3.2. This constitutes the proof for the unidimensional case, and
some obvious modifications of the above argument together with the remarks
made above concerning the Cramér-Wold device, establish the result for the
p-dimensional case.

Now we discuss the moduli of continuity of the sample paths of our processes.
We let @y, (8) = Sup|;,_ 1,1 <5 N* |0gn(42) — Ogn(4,)] be the modulus of continuity
of a realization of the process {N*0,,5(1)} and define W, (6) and wgg,  (0) similarly.
Since the series {£(#)} and {{(#)} certainly satisfy Condition 2, Theorem 3.4 applied
to {N*0gy(4)} and {N*6%y(4)} gives conditions sufficient to imply that weg(5) |0
and ®gy,,(6) |0 in probability as § |0 independent of N. More precisely, the

theorem implies that, for every & >0 there exists a function wgg (d,6) 0 as 50
not depending on N such that

(4'1) P[HECN( : ) | wo‘é;N(a) é woé;(é, 8)’ 0 > O] >1 —8/25

and similarly for the process defined by the quadrature spectral distribution
function, NOW, 0g,,,(0) S Wy, (8) + Do,y —6,,41(6) and since Cov [E(7;){(j2)] =0
if |j1 —f2| >M

w[°§;N”9§;N](5) = SUDP| 2, -4y <6 |1/27T Z|v|<M(eXP(— iAyv)—exp(—i, V))Rfc(")l

It can be seen that w,(5) | 0 as 6 | 0, at least for 0 < 6 < n/M, and is bounded by
1 /nZM <M {Rg(v)| otherwise. This, together with (4.1), implies that, for every ¢ > 0,
there exists a function weg,(6,€) | 0 as 6| 0 not depending on N such that

4.2) PLOGN(+) | 0p50(6) S Wos,(3,8),8 > 0] > 1 —/2

and similarly for the quadrature spectral distribution function.

If {Pgn}n-1 and {P%y}R-, are the sequences of probability measures generated
in C[0, =] by the real and imaginary parts of the processes {®,y(4)}¥-1 then, since
@, y(0) =0 for all N, Lemma 2.1 [11] implies that the sequences are tight. This,
together with (4.2) and Theorem 4.2, implies the following result.

THEOREM 4.3. Under Condition A, as N -0, the measures {Py} and {P¥y}
converge weakly to the measures Pg, and P}, generated in C[0, nt] by the Gaussian
processes {®g(1)} and {®%(2)} where

D5(0) = %(0) = E[Dg()] = E[PL(D)] =0 and
E[®5(A)Dg(1)] = Hg[min (4, w)],
E[®%()D%(w)] = Hy[min (4, )] and

E[Dg()®%(w)] = HY[min (4, p)].
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We now establish relationships between series such as those of (2.1) and those of
Condition A that permit the analogue of Theorem 4.3 to be proved for series of the
form (2.1) provided the conditions placed upon the coefficients {a(v)} and {b(v)}
are those of Condition 5.

First note that

4.3) fi2() = 27Tf1"2(l)f§;(l)

where flz(l) =Q2n) Y2 _ a(r)exp(ir) Y& o b(s)exp(—isl) and Ja(D) =
m)~1 Y _ o Rg(v)exp(—ilv). We now give a result that links the elementary
series to the linear series.

THEOREM 4.4. Under Condition 5

N? SUPo<izn Ué [fi2n(D) —(fgc(l))_ 1f12(l)f§;1v(l)] dll —,0.
Proor. We first note that

i
Lfma) dl
= (aN) ™! = — 0 a(1)b(s) Lol 1 E(n = 1){(m —5) exp(__if((n"__ n';))_l
and by (4.3)
§6 St D)™ 1D fern(D dl
=27 [3 i (D fan(D dl

=(2aN) 'Y 2o o a(b(s) [§ N~ 1 EM)(m)exp (il(r—s—n+m))dl
and hence
2eN2 [S [ fran) = SfeeD) ™ fr2(D fern(D]dl = N~y 2 _ o a(r)b(s)d(r, s)
where

d(r,s) = TN En—r)t(m—) R Am=m) =1

—i(n— —m)

exp(—il(n—m))—1
—i(n—m) '

N Yo E(n+r){(m+s)

Applying the method of Theorem 2, page 192 [6] to this statistic it can be shown
that it tends to zero in probability. Obviously the real and imaginary parts tend to
zero in probability also.

Integrating by parts we see that

N%[Z” jéfluz(l)fggzv(l) dl—F (O]
= N2z 5 115D fan(D —f(D]dl
=N 11r27Tf 1 2(1)(1)5;1\1(1) —N*¥2z ,‘. 0 12(1)(1)::;14(1) dl.
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Theorem 4.3 implies that the real and imaginary parts of N*[,f{5()®x(l)dl are
asymptotically normal variables. Combining this fact with the conclusion of
Theorem 4.4, it follows that N*®,,,(1) has real and imaginary parts that are
asymptotically normally distributed. The asymptotic variances of these variables
were obtained in Corollary 3.3. Using the Cramér-Wold device and the argument
used above we can show the following result.

THEOREM 4.5. For 0< A; <A, <--- <A, <m, the p-vectors N¥(®S,5(A)), -,
®7,8(4,) and N} @9,5(4)), - ,®1,8(4,)) have asymptotic probability distri-
butions that are normal with zero mean and covariance matrices respectively:
|| H$ 2(min (4, A)))|| and ||HY »(min (4, 4,))||.

We next examine the moduli of continuity of the processes {®$,y(4)} and
{®%,7(A)}. First of all, Theorem 3.4 applied to the processes {N*05,5(4)} and
{N *O&N(A)} implies that wyg,, () | 0 and weg, () | 0 in probability as 6 | 0 provided
the series satisfy Condition 2. Also, under the same conditions, it can be shown,
as in the proof of Theorem 5.1 [8] that

©a5,4(0) = 045, (8) +072(8)  and  woy,,(8) = wey,,(8) + @1 5(5)

where w{,(5) | 0 and w{,(d) | 0 as 6 } 0. These results, plus the fact that the sample
paths are zero when the parameter is zero imply, by Lemma 2.1 [11], the compact-
ness condition for the induced measures. Combining this with the results of
Theorem 4.5 proves the following main result.

THEOREM 4.6. Assume Condition 5. Then, as N —»co the measures {P{,y} and
{P%,x} generated in C[0, nt] by the processes {N*®5,5(1)} and {N*®1,5(1)} converge
weakly to the measures P, and P}, generated by the Gaussian processes ®5,(4) and
®1,(2) where @1,(0) = @{,(0) = E[®],(1)] = E[®],(4)] = 0and E[D],()P] ()] =

12[min (4, w)], E[@],(H)P1,(w)] = Hi,(min (4, p)).

5. Goodness-of-Fit testing. The goodness-of-fit tests discussed below involve
certain functionals on the paths of processes related to Wiener processes. If {®(1),
A€[0,b]} is a Gaussian process with ®(0) = E[®(1)] =0 and E[®A)D(n)] =
H(min (4, u)), then we establish the following notation for some common
functionals on such a process. Let

D*(®, b) = sup < 2s@(A),
D(®, b) = supy <, <5|P()],
R(®, b) = supg <, <p®(A) —infy < ; ., P(4),
W, 3(®, b) =[5 ®*(1) dH(1) and
W@, b) = [ [0(1)— 1/H(b) [ D(w) dH())* dH(2).

If we assume H(-) is a continuous, strictly increasing function such that
H(0) = 0 and H(m) < oo, and if we let {B(¢), te[0, 1]} be a Wiener process with
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parameter o2 = 1, then probability distributions for the functionals on ®(-) are
related to those on B(*) according to the following: for a > 0,

(i) PID*(@,m)<a]=P[D*(B,1) = o/H(n)),

()  P[D(®, 7)< a] = P[D(B, 1) < o/H(n)}],

(i)  P[R(®, 7) < a] = P[R(B, 1) So/H(n)*],

(iv) P[W,*(®,n) < a] = P[W,*(B, 1) < o/H(n)’],

() P[WX(®,n) <a] = P[W,*(B, 1) < o/H(r)*].
For the ‘Wiener process, the distributions for the Smirnov and Kolmogorov
statistics are given by:
(5.1 P[D*(B,1) = ] = A(B) = ®(B)—D(—p),
(52)  P[D(B,1) £ B) = A(B) = 3% - o (= 1)"[@(B(2n + 1)) — D(B(2n—1))],
where ®(-), in this context, is the normal probability distribution function. A(*)
is tabulated in [6]. The distribution for the range of a Wiener process, obtained by
Feller [5], is given by
(53)  P[R(B,1) < ] =E(p) = 1 - Y2 ,(—1)"* '8n[1-B(np)].
We include a partial tabulation for E( - ) in Table 2. The distribution for the Cramér—
Von Mises statistic is found by inverting the transform, ¢,(z) = (cosh (2z)*)%, of
the probability density for the statistic W,2(B, 1) to obtain
(54)  P[W,*(B,1) £ f] = Q(B) = 22 5 o CGHIL = x:((4n+1)*/4P)],
where x,2(+) is the probability distribution function of a y,? random variable. A

partial tabulation of Q(-) also appears in Table 2. The Watson-type statistic [12],
W,%(B, 1), can be shown to have a probability density with Laplace Transform

¢2(2) = [[e%1 [1+22(kn)~2]7* = [(=22)*/sin (- 22)*].
¢,(2) also arises in connection with the Cramér-Von Mises statistic for probability
distribution functions. Anderson and Darling [1], after inverting the transform,

TABLE 2
Tabulation of Z(-) and Q(+)

% Z(a) k1 Q)
0.7898 0.005 0.0294 0.005
0.8326 0.01 © 0.0345 0.01
0.9030 0.025 0.0444 0.025
0.9720 0.05 0.0565 0.05
1.0628 0.10 0.0765 0.10
2.2412 0.90 1.1958 0.90
2.4977 0.95 1.6557 0.95
2.7344 0.975 2.1347 0.975
3.0233 0.99 2.7875 0.99

3.2272 0.995 3.2918 0.995
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obtained and tabulated a probability distribution function which they denoted by
a,(z). Consequently

(5.5 P[W,*(B,1) < ] = a,(P).

Since each of the functionals under discussion is continuous in the uniform
topology on C[0, n], the weak convergence results of Theorem 4.5 imply the
convergence in distribution of functionals of sample spectral distribution functions
to those functionals on the limit processes. This, together with (i) to (v) above, and
(5.1) to (5.5) imply the following result

THEOREM 5.1. Assume Condition 5 and 0>0. Then
(@ limy ,,, P[D*(N*®5y , ) < o] = A(e/H5(n)?),
limy_, o PLD(N*®S,y , ) < ] = A(o/H5(m)?),
limy_, ,, PIR(N*®,y , ) < o] = E(o/H3(m)?),
limy_, , P[W,*(N* @5y, 7) < o] = Q(o/H5(m)?),
limy_, , P[W,2(N* @y, 1) < ] = a,(a/H5(7)?), j#k.

(b) Similar results hold for processes such as {N*®%,(1), A€[0,n]} and
{N*D ;in(A), A€[0, ]} with the covariance parameters modified to H} () and H;(r).
Note that if the cross-spectrum is hypothesized to be zero, then, by Corollary
3.3 (iii), the processes {®%,(4)} and {®%(4)} are independent and hence joint tests
based on the co-spectral and quadrature spectral distribution functions are
available from Theorem 5.1.

Besides the above tests for one or two series one might wish to consider multiple
series of order m > 2. If ¢’ = (¢, ¢,, ***, ¢,,) is a vector of constants and F'(1) =
(F11(A), -+, Fpy(A)) and Fy'(A) = (F 8(A), - +°, F,mn(4)) then, assuming N
observations have been taken on each series, one can consider the statistic Ly(4) =
N*c¢/(Fy(2)—F(4)). The sequence of processes {Ly(4), 1€[0, n]}%-, converges to
a Gaussian process {®.(1), A€[0, n]} with ®,(0) = E[®.(4)] =0 and Cov [®.(4),
O ()] = 2n A ™ cie | fn(D|?)dl = Hy(min(A, p)). If one assumes that
the autospectral densities do not vanish on any sets of positive measure, then
H,(4) is strictly monotone increasing. Hence one can obtain tests based on the
following:

(5.6) limy_, , P[R(Ly,7) £ a] = E(a/Hy(n)?), a>0

limy_, , P[W,*(Ly,7) £ o] = Q,(a/H(n)?), a>0.

Similar results can be obtained for the co-spectral and quadrature spectral
distribution functions using Table 1.

If the spectral distribution functions are not completely specified then the para-

meters defined by the variances are not available and so must be estimated from
the data. Under Condition 1 we have that

Hi(m) = 87 '[Ry(O)R ;7O +R;;(0)]+471 Y P [Ri(R;;(») + R, (R (— v,
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H ?,-(77:) =8" I[Rii(O)R j j(O) - szj(o)] +471 Z;o [Ri(v)R i —R; ;(MR; j( -]
and
Hij(n) = 4_ 1 ZO_OOO R,zj(v).
Assuming Ty, N -0 in such a way that Ty/N — 0 and letting
ire(m) = 87 '[Riin(0)R;5(0) + R, n(0)]
+47 1Y I [Run(VR 3N+ Rin(R (= V)],
Hjr(m) =8~ ! [Rin(O)R in(0)— Risz(O)]
+47 Y I¥[R;n(V)R 7iv®) = Riin(MR;;n(— )] and
Hyr (@) =471 Y <1y REN(O)
then, under Condition 1, Hf;r(n), H Yiry(n) and H;;r (7) may be shown to be

consistent estimators for Hy;(n), H{{(m) and H;;(r). This result and Theorem 5.1
yield the following result.

THEOREM 5.2. Assume Condition 5. Then, for o >0,
limTN,N-»oo;TN/N—»o P[D(N %(I)ij ,m) = a(H CTN(“)*)]
=limp, y ;75 n—0 PLD(N %(D:‘le »m) S a(HE ()] = Aw).

The next theorem is a two-sample Kolmogorov-Smirnov result for cross-spectral
distribution functions. Let {X;}}!; and {X,;})2, be two independent series of
observations from one time series and let {Y ,;}* | and {Y, 712, betwo independent
series of observations from another. Let C{;y(4) be the sample co-spectral dis-
tribution function of the first sets of observations and let C3n(4) be the co-spectral
distribution function of the second sets of observations. Let Q%y(4) and Q@)y(1)
be defined similarly and let Hi}(n), H52X(n), H{(n) and H{?(r) be consistent
estimators of their population analogues.

THEOREM 5.3. Assume Condition 5. Let N =2N,N,/(N, + N,) and let N;, Ty —> o©
such that Ty [N;— 0. Then, fNJIN;>c>0,i+j, and if « >0

(i) lim P[sup, iz N 3 |C§(1Y)N1(l) - C&Z)?Nz(/m S olH CT(IQ(’T) +H 01(32)(75))%] = Aw),
(i) lim P[supo ;<. N*|Q%n,(A) — 0@, ()| < a(H 10,0+ HED(m)] = Aw).

Proor. The facts that
NN
lim 12

NiTxo;Tx N0 N1+ N,

Cov [(Ci, (D) — CEa(D), (C&n, (1) — CBa ()]

= H$,[min (4, )]
and

H5(m)+ B2 () — , 2HS ()

imply (i) and (ii) is proved similarly.
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Suppose one were to consider multiple series (each with N observations taken)
and were to look for a more general statement of Theorem 5.2 or of Theorem 5
[6], page 198. Then, assuming Y ¢; =0 and each series to have a common but
unknown spectral distribution function, one can show that Ly(1) = N*c¢'Fy(A)e.
Also in the notation of Lemma 2.2.2 it can be shown that H;(n) =c'R%c where R?
has as its i, jth component, (21)™' ) 2, R;;(v), and that H,(n) can be consistently
estimated by H, (m)= ¢'R%, ¢ where the i, jth component of RZ, is given by

(2m)™' Yy <1y R3n(v) where N, Ty —co and Ty/N — 0. Thus, under the above
assumption, expressions such as (5.1) remain valid with H,(n) replaced by H, ().
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