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LOCAL PROPERTIES OF THE AUTOREGRESSIVE SERIES

By JIki ANDEL

Charles University

0. Summary. Let us have a normal stationary autoregressive series {X,}Z_ of
the nth order with EX, = 0. Denote b the vector of autoregressive parameters. In
this paper the Radon-Nikodym derivative dP,/dP is studied, where P, is the
probability measure corresponding to the finite part (of length N) of the auto-
regressive series and P = P,, i.e., P corresponds to the case, when X, are indepen-
dent normal random variables. The function dP,/dP may be expanded in the power
series of components of vector b. If the norm ||b|| is small, then the absolute term
and the linear terms are most important. These terms are given in the paper and
they are used for an approximation of the probability P,(4), where A is a Borel
set in the N-dimensional Euclidean space Ry. The probability that a normal
stationary autoregressive series does not exceed a constant barrier is analysed as
an example. A second example is devoted to the properties of the sign-test when the
observations are dependent and may be described by the autoregressive model.

1. Introduction. Let ay, a,, "+, a, (a, >0, a;, # 0) be real constants such that
the equation Y i_,a; % = 0 has all roots in absolute value smaller than 1. Let
{Y,}2, be a sequence of independent random variables with N(0, 1). The sequence
{X,}2,, given by recurrent formula

) Z;’=Oan—iXt—i= Y, —o0 <t < o0,

is called the autoregressive series of the nth order. Under above assumptions
{X,}2, is stationary. Let us have a finite part of this series, say X;, --, Xy. The
vector X' =(X,, '+, Xy)' has normal distribution. (Prime denotes the trans-
position.) Put

) a=ap, b;= —a,_i/a, (I1sisn),by= -1

Relation (1) may be written in the form

3) X, =Y/ 1b;X,_;+a"'Y,, -0 <t< o0,

and so b =(by, -+, b,)" is called the vector of autoregressive parameters. Its norm
“b“ = (Z:"=1 b2,

We shall study the properties of the probability measure corresponding to the
random vector X, if ||b|| is small. Such properties may be called “local’” with respect
to an analogy with the local properties of rank tests (e.g. local power) which are
contained in [3], for example. The present author used a similar technique in [1]
in connection with properties of Kolmogorov-Smirnov tests.
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68 JIRf ANDEL

2. The probability density of the finite part of the normal stationary autoregressive
series.

LEMMA 1. If N Z 2n, then the probability density of X = (X, -+, Xy) is
“ p(x) = 2n)~"?a,N""|E|* exp { — }x'Hx},
where
x=0ynxw)s  E=llenlte=r,  H=|hl[Noy,

€jx = Z?:?)(j—l’k_l’”_”—kl)an—ian—i—|j—k| _Z?;r!{;ﬁllx(j,k)+l An—i Qy—i—|j—k| >

hy = {SfJS)an—ian—i—lt—ﬂ , f(t,s) =min(t—1,s—1,n— It—sI,N—t, N —y5s),

|E| = detE.
The matrices E and H are regular.

PrROOF. Lemma 1 is a slightly modified theorem from Hajek’s paper [2], where
the probability density of the vector (X,, X, - -+, Xy)' is given with a more explicit
formula for £(z, ).

LEMMA 2. The probability density (4) may be rewritten in the form

) p(x) = 2m)~"2a" [E*|*exp{—4a Y7o 37041 bi b}

where

©) 4ij = Z:v;mn::?flﬂ)ﬂ XeXexli-j|» 0<i,j<n,
|[E¥| =detE*,  E*=|lefi[js-1 =a"’E, ie.,

@) e = Y ugu T AT lizkD p, bisij-k _Z;’;Ji:nlgx(j,k)+ 10Dy -

The parameters a, by, * -+, b, are given in (2).
This lemma with the following proof belongs to Professor Hajek. He gave it in
his lectures on stationary processes in 1967-1968 at Charles University.

PROOF. The relation a," ~"|E|* = a"|E*|* obviously holds. The elements e% follow
from the Lemma 1 with respect to (2). Further

t, _ 2 t,
hts = if=(OS) an—ian—i—lt—sl =da iféOS) bi bi+|t—s| ’
and )
N N — 2%N N 1,
® Z::l s=1hsx xs=a Zz=1zs=12ifios)bi bi+]t—s|xtxs
_ 27N ) 2, 2 2 1,
=a’y Y bx 2 +2a YD izi<ssn 238 bibyy g X, X,

Consider the first sum. From 0<i<f(s,t) =min(t—1, N—t,n) it follows
0<i<n i+1<t< N—i, and therefore

2N D122 _ 2% 2\ N-i 2 _ 2\n 2
a Zt=12i=0 b*x,*=a Zi=0bi Zx=i+1xt =a Zi=0bi q;; -
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As for the second sum in (8), we introduce j = i+s—t. We have s = t+j—i and
from s> ¢ it follows j>i. Thus 0 <i < f(f,s) = min(t—1,n—j+i, N—t—j+i).
From here we obtain i+1 <t < N—j, 0 <i <n. The relation i £ n—j+i implies
J = n. Together

221 St<ssN Zif=(t6s) bibiys_ix,x;= 220§i<j§n b, bj va;ii 1 Xe X4 j—i
= 220§i<1§n b;b;q;;.
The proof is finished.
3. Radon-Nikodym derivative.

THEOREM 3. Put a = 1 and denote the probability measure corresponding to the
density (5) by P,. Further put P, = P. Then P, < P and

&) dPy/dP = 1+ qo; b;+0(b),
where lim,_, , o(b)/Hb” = 0 and q,; are given in (6), i.e.,
(10) qdoi = Zf‘v;li XeXeti-

ProOF. Normal distribution with the density p(x) is regular according to
Lemma 1. The probability measure P corresponds to the N-dimensional normal
distribution Ny(0, I) with zero mean values and unit covariance matrix. This
normal distribution is regular, too. Thus the measures P, and P are equivalent
and P, < P obviously holds.

Denoting p the Lebegue’s measure in space Ry, we may write density p(x)
in (5) in the form dPy/du. The well-known property of the Radon-Nikodym
derivatives is

dP, dP, |dP
1 % _ ,
(1D dP ~ du/ du

For a = 1 we have
dPldp = 2m) M2 exp {—3 Y1, x7} = (2m) V2 exp { — 300}

and with respect to (11) we obtain

(12) dPy|dP = [E*[*exp{—4 Y71 Y= 1 4i;bib;+ Y= 1 dos b}

because of go; = g0, 1 S i< n.
The elements ej"j‘ are functions of b, -, b, and we denote occasionally
efi = eji(by," -+, b,). Analogously E* = E*(by, -+, b,) etc. According to (7) we get
by, by = 1+ i b2 =Y i iy b for 1<j=n
and, therefore,

deji(by, -, by)

= 1<s<n.
b, - 0 for 1<s<n

(13)
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Further we see that
(14) E*(0,0,-:-,0) =1,
where I is the unit matrix. Now, we want to prove

aIE*(bla T bn)|

= <s<
(15) 2b. . 0 for 1<s<n.
From the calculus we know that
O|E*(by, -+, b,)
(16) ”‘l‘_‘alb—‘ﬁ*__l Z IDk(bl, Y bn)la
where

Dk(bla b)_ ”d(k)(bl"“abn)”:",j=1a
dgf)(bl’“',bn)=eij(b1"“3bn) for i#k,15j<n,

0
dgc,;')(bl"“,bn)=é_b"el::kj(b1,"'ab,,) for 1<j=<n.

From the definition of d{¥(b,,---,b,) it follows with respect to (14) that
dg(0,0,:-,0) = 0 for i # k. From (13) we have d¥X(0,0,---,0) = 0. Then all the
elements of the kth column of D,(0, O, - - -, 0) are zeros and therefore

|D(0,0,--+,0)| =0 for 1Sk<n.

Now, the relation (16) implies (15). Denote

17 dP,/dP = f(by,***,b,).
Taylor formula gives
® by =00 B{TCETE Lo
Using (15) we easily get
a—,f(bl’“"b")i = qos for 1<s<n.

0b b=0
From here it follows (9).
THEOREM 4. Denote By the system of Borel sets in Ry. Then
(19) Py(A) = P(A)+Y1_; b;[4 qoidP+o(b)
holds for any A€ By, where lim,_, o(b)/||b]| =
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PRrROOF. From the Taylor formula we have
fB)y=f0)+|b 0 +-+b g f(0)+2Z
= 1 3b, "ob, ) T4
where
Z=1lb —a—+---+b i 2f(@b) ®e(0,1)
=2\ "1 %p, "3, ’ e,

and f(b) = f(by, **, b,), f(0)=f(0, -, 0). In Theorem 3 it has been proved that

0 0 "
<b152)—1+ '+bna—bn>f(0)—i; doi b;.

We are obliged to analyze the remainder term Z only. With respect to (12) we write
f(b) = |E*|*g(b), where

g(b) = g(by,"--,b,) = CXP{—%Z?=1Z;!=1 Qi;bib;+Y 71 o by}

We easily get

Pf _ iper-s OCIE*| | a-s O|E*|O|E¥|
ab 00, ~ 1] 9avian, F 9 ab,
_,0|E*| og _,0|E*| og o%g
+L1|E* %‘___I__l E* L P § 2L 2
HE ob; 0b; HE b, b, | 'abiabj

for 1 =4,j < n, where f = f(b), |[E*| = |E*(b)|, g =g(b). Obviously |E*|, 0| E*|/0b,
and 0%|E*|/ob;0b; (1 <1, j < n) are polynomials in b,, - - -, b,. From the proof of
Theorem 3 we see that |E*(0)| = 1. Thus for every i, j (1 < 7, j < 1) the ¢ > 0 and
finite constants K, K, K3, K, exist such that for ||]| <¢

’f(b) dg(b) dg(b) |0%g(b)
=K,g9(b)+K K K
5b,ab,) = K9+ Ka 5 24 Ky =5 = Ky 3b, b,
holds. Using the Schwarz inequality we get from (6)
(20) lay| <3N x2 for 0i,j<n.
Further we derive
dg(b n
A bt o, Jo® for 1srsn,
r i=1

azg(b) n n
2b.0p. ~ "I+ — Y bt do )| = Y qubit+qo, )gd) for 1<rs<n.
r s i=1 i=1
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Suppose ¢ < 1/8x. It implies [b}| < 1/8n for 1 i< n. For ||b|| < & we have with
respect to (20) g(b) < exp {4 Y, x,*} and

N
o, <?2 Z X, exp{ 1y x,z} for 1<r<n,
Py N 2 N
2-I-4( x2> :lexp{;} xz} for 1<rs<n.
ob, db, [Z ,; ' ,; '

From 0 < © < 1 it follows that || ©5|| < ||6|| and thus for ||b|| < & we get
Ibyb, o*f(B)
v 0B 0B;

< |[blI*R,

2
<) Jol
1 t=1
For any set A€ By

0<[,RdAP < [ RQ2r) M?exp{—4Y L x }dx, dxy < 0
obviously holds. Now, the assertion of Theorem 4 follows from the Radon-

Nikodym theorem.
Unfortunately, the bound for Z given above is rather large for practical purposes.

12|

p=0b

II/\
M:
ul\/Js

11]

where

M=
IS
M=
=
N
—

" N N
= 5{Kl +2K,+K3) Y x2+K,| Y x,2+4<
L =1 t

t=1

4. Examples. We choose some special sets A€ By, which occur in classical
statistical problems.

EXAMPLE 5. Let ¢ be a real number. Put 4 = {x; < ¢, ***, xy < ¢}. Then P,(A4)
is the probability that normal stationary autoregressive series X, -*-, Xy with
zero mean values does not exceed the value ¢ (does not exceed the barrier c).
Denote ¢(x) = (2m) "*exp { —x?}, (x) = [* , @(u) du. We have

P(A) = (2r) M2 [ o pexp {—4 Y Yo, x;  dxy - dxy = DN(e)
and
FatordP = Qr) ™M [ [ onp {4 Tl %7}y -
= (N—i)(2n)"'exp {—c*}®" " %(c).
From Theorem 4 we obtain
Py(A) = ON(c)+(2n) T exp {— 2} DY () Y7o, (N —i)b;+ o(b).

EXAMPLE 6. Let the set 4 consist of all the points (x,, - * -, xy), which have exactly
k components positive. It corresponds to the study of properties of the sign test in
the case, when the observations with zero mean values are dependent and they
form the normal stationary autoregressive series with “‘small” autoregressive
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parameters. It is well known that the critical region of this test is given as the unifi-
cation of sets A for some k’s.

What result may be expected? Suppose for simplicity that X 1", Xy is the
autoregressive series of the first order generated by X, = bX,_, + Y, (in this case
we put briefly b; = b). If b is near to 1, the members X, -+, Xy are highly corre-
lated. With a large probability all the members have the same sign. If b is near to
—1, then with a large probability the members change the sign regularly. The
number of positive members is expected to be near to N/2. We also shall see
similar properties for small b.

Come back to the normal stationary autoregressive series of nth order. The set
A may be written in the form

A = U(i)Ail."' i’

where iy, -+, 4 (i, <@y <+ <) is a subset of {1,2,--, N} and 4, ... ,
{Gers o5 x0):x, >0 for tefiy, -, i}, x, <0 for t¢{i), -, i} }. The symbol
U@4i,, ..., means the union of all the sets 4, ..., . Their total number makes
(%) and the union is obviously disjoint. The analogous meaning will have the
symbol Y ; p;, ... ;. as the sum of numbers. We have

Ja40;dP = va;ljZ(i)yA;x, e X Xes ;AP

When ¢ and j are fixed, then there are exactly (YZ3) sets 4;, ... ; such that x, > 0,
X;+; > 0, and exactly (" ?) sets such that x, £ 0, x,, ; £ 0. In other cases, the total
number of which makes

V=GIH-" D =202h,
we have either x, > 0, x,,; <0, or x, £ 0, X4 > 0.
With respect to the formulas

2o @(x)dx = [§ p(x)dx = 4,
Lo 2o xye(x)e(y) dx dy = [§ [§ xye(x)e(y) dx dy
= =8 20 xyp(x)e(y) dx dy = (2n) ™"

we obtain

Yo S sy XeXes ;AP = 22782 T AZH + (VD - 2007 3)]

=21V [() -4,

Obviously P(4) = ()27~ holds and therefore we get according to Theorem 4

Py(d) = (027" + - s (N=2' "M [() = 4(Y2D)]b, + o(b).
Especially for the autoregressive series of the first order we have

Py(d) = (027" +(N=12' "z~ ' [() = 4(Y=H]b + o(b).

It may be easily derived that (})—4(§22)>0 for k < H{(N—N*) and for k >
HN+NY; (D) —-4(02D) <0 for (N—-N*¥) < k < 4(N+N?). Let b be a sufficiently
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small positive number. Then P,(4) > P(A), if k is near to zero or to N, whereas
P,(A) < P(A), if k is near to N/2. For negative b, which is sufficiently small in
absolute value, the contrary is true.
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