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POWER BOUNDS AND ASYMPTOTIC MINIMAX RESULTS
FOR ONE-SAMPLE RANK TESTS

By KieLL DoksuM! AND RoRY THOMPSON?

University of California at Berkeley and Woods Hole Oceanographic Institution

1. Introduction and summary. Let X, -, Xy be identically independently distri-
buted with the common continuous distribution function F, and let r; <r, <
-+» <rg denote the ordered ranks of the positive X’s among |X;|, -, |Xy|. Two
problems are considered. The first is the location problem where the null hypothesis
H, that F is symmetric about zero (or more generally F(x) = 1 — F(—x) for all x)
is tested against the alternative that X is stochastically larger than —X (i.e.
F(x) £ 1—-F(—x) for all x with strict inequality for some x). Departure from the
null hypothesis will be measured in terms of the distribution difference D(x) =
[1—F(—x)]—F(x), i.e. the difference of the distributions of —X and X. We let
O(F) = sup, |D(x)| denote the Kolmogorov distance between these distributions
and consider the class Q(A) = {F: D(x) = 0 and (F) = A} of one-sided alternatives
with this distance at least A. Lower bounds on the power of monotone rank tests
are given for F in Q(A) (Theorem 2.1), and similarly, upper bounds on the power
of monotone rank tests are found for Fin Q(A) = {F:5(F) £ A} (see Theorem 2.2,
Corollary 2.2 and Corollary 2.3). Q(A) and Q(A) are of interest for paired com-
parison and one-sample experiments in which the location of Fis the main concern.
Note that the above location alternatives are not necessarily shift alternatives.

The second problem considered is the symmetry problem where the hypothesis
that F is symmetric about zero is to be tested against the alternative that it is
skewed to the right. Lower (Theorem 3.1) and upper (Corollary 3.2) bounds on
the power of monotone rank tests are found for F in QyA) = {F: FeQ(A) and F
has median 0} and Qy(A) = {F:8(F) < A and F has median 0}, respectively.

Hoeffding (1951) and Ruist (1954) considered alternative classes of the type
I'(q) = {F: F is symmetric and (F(0)—%) < ¢} and found that the Sign test is
minimax (maximizes the minimum power, i.e., minimizes the maximum risk =
(1-power)) for I'(g). For the location alternative, we consider the problem of
maximizing the minimum power over Q(A) and find (Theorem 4.1) that for a class
of statistics of the form Y 5, Jy(r;/(N+1)), a solution is asymptotically given by
the statistics 7(A) =W+ [ZAN—-1)—1/(N+1]S, where S is the number of
positive X’s and where W = Z?;l ri/(N+1) is the one-sample Wilcoxon statistic.
This result contrasts with the two-sample result of [6] in which the Wilcoxon
statistic is asymptotically the uniformly (in A) unique minimax solution. For the
symmetry problem, a class of statistics of the form ) _; J(r;/(N+ 1)) is considered,
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POWER BOUNDS FOR ONE-SAMPLE RANK TESTS 13

and it is shown (Theorem 4.2) that V' = W—1S asymptotically maximizes the
minimum power over Q(A).

T(A) and V are functions of the one-sample Wilcoxon statistic # and the Sign
statistic S. Such statistics have also been considered by Ruist (1954). See also
Hodges and Lehmann (1962, page 495). ¥ has been considered by Gross (1966,
page 76) and is asymptotically equivalent to the statistic considered by Gupta (1967).

The power bounds are tabulated exactly or estimated using Monte Carlo
methods for sample sizes 10 and 20 in Section 2B. In particular, the minimum
power over Q(A) of the statistics W, T™ = T(A,) and T® = T(A,), where
A, = (1.645/(3N)*)* and A, = (2.326/(3N) *) %, is given or estimated using Monte
Carlo power methods. These choices of A are discussed in Section 4, Remark 4.3.
The results show that for N = 10, TV and T‘® do not improve on the minimum
power of the Wilcoxon statistic W, while for « = .05 and N = 20, the asymptotic
results are in effect in the sense that 7(* and T‘? are improvements on W.

The statistic V' is similarly compared with the statistic [Gross (1966)] Tg =

S_ r2/(N+1)*=(3)S and it is found (Section 3) that in terms of minimum power
over Q(A), V is much better than T already for sample sizes N = 10 and 20.

Power bounds similar to the ones obtained in this paper have been obtained by
Birnbaum (1953) and Chapman (1958) for the goodness-of-fit problem, by Bell,
Moser and Thompson (1966) for the two-sample problem, and by Bell and Doksum
(1967) for the independence problem.

In Section 5, tables of the null distributions of TV, ¥ and T are given for
N £ 10, and the Monte Carlo powers of T, T and W are compared for normal,
double exponential and logistic shift alternatives for N =10 and 20. For the
double exponential distribution, 7™ and T are slightly better than W when
N = 20. For the normal distribution, W is slightly better than 7™ and 7‘®. Thus
T™ and T® appear to be better than W for “heavy” tail shift alternatives, while
the opposite holds for “light” tail shift alternatives. Although there is essentially
no difference in the power of 7™ and T'? for the various models considered,
T™ is recommended because the normal approximation to the rejection limits of
(N+DTD = (N+1)W+[.487(N—1)N ~*—1]S are closer to the true limits.

2. Power bounds for monotone tests in the location problem.

2A. Theoretical results. The alternative classes of distributions and the tests
considered in this section are both of interest in the paired comparison problem in
which the sample X, - -+, Xy consists of differences and under the null-hypothesis
the distribution of the X’s is symmetric about zero (or more generally, X is
stochastically no larger than — X'), while under the alternative X is stochastically
larger than —X. It will be shown in this section that (i) for rank tests, the distri-
butions Fy , of Figures 1 and 2 below are least favorable for the location problem
and (ii) upper bounds on the power of rank tests for the location problem are
given by the formulas in Corollaries 2.2 and 2.3.

A test (function) ¢ = @(xy, -, xy) is said to be monotone if ¢(x,’, -, xy') <
o(xq, "+, xy) whenever x;/ £ x;, i =1, ---, N. Thus the test that rejects H, when
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X exceeds a constant is monotone. However, the ¢-test which rejects H, when the
t statistic exceeds a constant is not monotone. The rank tests commonly used in
paired comparison experiments are monotone, i.e., if Jy(k/(N + 1)) is a nonnegative
function non-decreasing in k = 1,2, ---,'N and if ¢, is of the form

Py =1 if z:g: 1 In(ri/(N+1)) = ky,
=0 otherwise

for some constant ky, then ¢, is a monotone test.
Monotone tests have monotone power, i.e.,

LEMMA 2.1. If F(x) = G(x) for all x, then Ex(p) 2 E(¢) for each monotone test ¢.
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PrOOF.* Let Uy, - -+, Uy be a random sample from the uniform distribution on
(0, 1). Define F~'(u) =inf{x:F(x) 2 u} and G~! similarly, then F~'(U,) and
G~'(U;) have distributions F and G and they satisfy F ~'(U;) = G~'(U,). Applying
the definition of monotone, we have

2.1 @(F~ (U, F7H(Uy)) 2 9(G™'(U,),"++, G~ Y(Uy)).
The result follows upon taking expectations in this inequality.

COROLLARY 2.1. All monotone rank tests are unbiased for testing Hy: F(x) >
1 —F(—x) against H,: F(x) £ 1= F(—Xx).

PrOOF.* Define the distribution average 4(x) = $[F(x)+1—F(—x)]. Then A(x)
is a distribution function symmetric about zero. Note that under H,, F(x) = A(x),
while under H,, F(x) < A(x). The result now follows from Lemma 2.1.

The ranks are invariant under odd and increasing transformations of the X’s,
such as

(2.2) H(x) = F(x)—F(—x).

Thus if we define

(2.3) X =H(X) and F,()=PX/ =),
then for rank tests ¢,

(24 Ex(¢) = E (o).

Note also that |H (x)| = H(|x]).

LetQ, = {F: F(1) = 4(t+1)for =1 <t < l,and F(t)— F(—t) = tfor0 < ¢ < 1};
let Q(A)={F:FeQ, and sup_,c,<,[3(t+1)—F()]=3A}, and Q,A)=
{F:FeQ, and sup_, <, 3(t+1)—F(#)] £ 3A}.

LeEMMA 2.2. If ¢ is a rank test, then

() ianeﬂ(A) Er(p) = ianeﬂi(A) Ex(0), and
(i) SUPrea(a) EF(@) = SUPF e 1, (a) Ex(9).

PRrOOF. (i) Note that Q;(A)=Q(A). Thus it is sufficient to show that the second
infimum in (i) is no larger than the first. This is done by showing that if FeQ(A),
then F; €Q,(A); and by using (2.4). To see that F, eQ,(A); note that:

@ F(O—Fi(=0=P(X/|<0)=P(HX)| 1) =PH(X) <) =1
for 0 < 7 <1 since H is the distribution of |X;|;
(b) sup, [1—F(—x)—F(x)] = 2sup, {3[F(x)+ (1 - F(—x))] - F(x)}
= 2sup, [4(x)— F(x)]
= 25up; <1 [AA7(G(t+ 1)) - FA™'(3(t +1))]
=2sup; << [$(t+1)—F,(1)]

* The result is well known, but the proof is needed for later reference.
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since
Fy(t) = PHF(X)— F(=X) £ 1) = Pe(A(X) £ 3(t+ 1)) = FAT'(3(t+1));

(©) 3[1—F(—x)—F(x)] = 0 implies A(x) = F(x), thus A~'(u) £ F~'(u) and
FAT'A(+1) £3(t+1), e, Fi(1) £ 3(+1),0<t < 1.

The proof for (ii) is similar.

The next result is that a set of least favorable distributions for Q(A), 0 < A < 1,
is {Fy,:0=<a=<1-A}, where Fy ,(x) is defined for 0<a = 1-A, —1£x£1,
by (see Figures 1 and 2).

Fo(9)=4(—a-A+1)  for xe(-a-4 —d],
=x+3ia—-A+1) for xe(—a, —b),
=1(a—A+1) for xe(b,al,
=x+¥—a—A+1) for xe(a,a+A),
=3(x+1) elsewhere,

where b = max {0, a—A}.
We can now show that the minimum power of monotone rank tests over Q(A)
is attained at F, , for some a.

THEOREM 2.1. If ¢ is a monotone rank test, then

inff Q(A) E(p) = inf, <ag1-A EFA,a(q))°

Proor. Since F, ,eQ(A), we need only show that the second infimum is no
larger than the first. According to Lemmas 2.1 and 2.2, we need only show that
for each F on [—1, 1] for which sup,[4(x+1)—F(x)] = 3A, #(x+1)—F(x) 2 0 on
[—1,1], and F(x)—F(—x)=x on (0, 1), there exists 0 <a=<1—A such that
F, ,(x) = F(x). Since F(x)—F(—x) = x, there exists x, = 0 such that (x,+1)—
F(x,) = 1A; moreover, since F(x) = x+ F(—x) and F(—x) is non-increasing, the
largest F(x) can be for x € [x,, xo +A]is x+4(1 —A—x,). Thus F, ,(x) with a = x,
satisfies Fy ,(x) = F(x) on [x, Xo+Al. Since F(x) < 4(x+1), the same holds for
x in (xo+A, 1]. For x,—A £ x £ x,, the largest F(x) can be is F, ,(x,). Since
1(x+1) = F(x) and F(x)—F(—x) = x, F, 4(x) 2 F(x) also holds on [—1, x,—A).
The above a = x, satisfies a = 0; since 3(—x,+1)—F(—x,) = 3A must hold, we
find —xo = —14+A,oras1-A.

The maximum power over O(A) can be given in terms of simpler expressions.
We need the uniform distribution function G,(x) = {(x+1—A) on (—1+A, 1+A),
and G, defined by

Ga(x)=x for xe(1—A,1],
=1 for xe(1,1+A),
= G,(x) elsewh’ere.

Similarly to, but more simply than Theorem 2.1, we find the maximum alternatives.
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THEOREM 2.2. If ¢ is a monotone rank test, then

SUpr e ga) Er(@) = Eg,(¢) = Eg,(9).

An expression for the maximum power itself can be given now. For each test
@, let A(p, N, k) denote the number of rank orderings leading to rejection when it
is known that the k largest ranks correspond to positive X’s.

COROLLARY 2.2. If ¢ is a monotone rank test, then

SUPF e ) EF(@) = Y=o (A (1= A" " 4(p, N, k)2* ™.
PRrOOF.

Eg,(¢) =Yr-0Ec,(¢|k X’s exceed 1—A)P(k X’s exceed 1—A),
= Yo MA1—A " Eg, (¢ | k X’s exceed 1—A).
Next note that
Eg, (¢ |k X’s exceed 1—A)
=Eg,(¢|ri=1i,i=N+1—k,---,N and the remaining
(N —k) X’s are no greater than 1 —A), k=1,---,N.

Furthermore, X given X < 1 —A has a uniform distribution on (—1+A, 1—A), so
each possible rank ordering of the N—k remaining X’s has probability 2¥ =¥, which
completes the proof.

In order to find an upper bound on the power of any monotone rank test (which
is independent of the test), one needs to maximize the maximum power. This is
done by the test

po=1 if B=37_,2""" 2 ky,;
=0 otherwise,

where ky, is such that Ep ¢, = « when F is symmetric about zero. Tests ¢ which
satisfy Ep ¢ < « for F symmetric about zero are said to be of level a. ¢, is a
generalization of a test considered by Savage (1959) which consists of rejecting H,,
if too many of the positive X’s exceed all of the negative ones in absolute value. It
follows from the results of Savage that ¢ is a uniformly most powerful level o rank
test for uniform shift (G, vs. G,). This is also clear from Corollary 2.2. Moreover,
if [¢t] denotes the largest integer no larger than ¢, then Corollary 2.2 yields

COROLLARY 2.3. An upper bound on the power of all level & monotone rank tests
for FeQ(A) is given by

Bpo=1-35-oMA(-A)" T (1-a2",

where r = [—log, a].
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PrOOF. Note that if ¥ £ —log,«, then 2% > 2V, Suppose « is of the form
121 =0, -+, 2"). Then 2¥ 7% > 2" implies A(p,, N, k) =/ = o2". On the other
hand, k > —log, a implies A(¢,, N, k) = 2¥ %, thus

Eg (90) = Yi=oMA (1 =BV 2"+ Y3 1 1, (A1 =A% = By ,.
If a is not of the form //2¥, the upper bound still holds.

Note that B, , is the power of ¢, for the alternative G,. Thus B, , is the best
possible upper bound.

2B. Numerical results for the location problem. The results of Section 2A can be
used to obtain numerical bounds on the power functions of rank tests. Some such
results are tabled below.

The upper bound B, , is given in Table 2.1 for various values of 5 £ N =< 50, for
o =.1, .05 and .01, and for A as multiples of 4. The rest of the tables concern the
tests that reject H, for large values of the following statistics.

S = No. of positive observations (sign),

W=Y5%,r/(N+1) (Wilcoxon),

B=Y7,2""" (Binary),
T® = W+ [N —1)(1.645/(3N)*)* — 1]S/(N+1) (minimax (1)),
T® = W+[4(N—1)(2.326/(3N)})* — 1]S/(N+1) (minimax (2)).

B is called the Binary statistic since if it is written as a binary number, then it
determines a rank ordering by identifying positive (negative) x’s with the 1’s (0’s)
in the binary expansion. Thus 10011 determines (r,, 5, r3) = (1,2, 5) when N =5
and B = 19 (base 10) = 20421 424 (base 10) = 10011 (base 2). T and T‘® are
discussed in Remark 4.3. For N = 10 and the significance levels « considered here,
T™ and T‘® are equivalent.

Table 2.2 gives the upper bounds on the power of the tests based on S, W, T,
T™ and B for N =10 and a = .05, .01. B is included to give a comparison with
the bound in Table 2.1. Table 2.3 gives Monte Carlo estimates of these upper
power bounds for N =20 and « = .05, .01. The Monte Carlo power in this paper
is based on 1000 = 250 x 4 antithetic samples (see Hammersley and Hanscomb
(1964, page 60)). In some special cases, it was possible to obtain the exact power.
These results are marked with “**,

Tables 2.4-2.5 give exact values and Monte Carlo estimates of the power of
W, S, T™ and T® for the least favorable distributions F, , for selected values of
a. From considerations of asymptotic power (Section 4), we decided to use a =0,
A, 1 and 1-A.

Note that for the alternatives F, , with a = A, £ and 1 —A, the Sign test obviously
has power o and from Table 2.5 the Wilcoxon test has the highest power among
S, W, TV and T‘?. However, when a = 0, Table 2.4 shows that the Sign test has
the highest power and the Wilcoxon test has the lowest power. This agrees with
the asymptotic results (see Remark 4.1).
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TABLE 2.1
The upper bound B, on the power of monotone rank tests

-4

A .100 .050 .010 .100 .050 010

N=5 N=6
JA25 17950 .09008 .01802 .20067 .10126 .02027
.250 29424 .15200 .03052 .35071 .18756 .03815
375 43810 .24129 .04915 .53008 .31509 .06758
.500 .59687 .36094 07594 70781 47891 11391
.625 75163 .50933 11331 .85423 66076 18413
750 .88193 .67827 16413 95012 .83102 .28723

N=17 N=38
125 22342 11369 .02281 24757 12740 02566
.250 40921 .22835 04767 46792 .27356 .05948
375 .61600 .39571 .09263 .69250 47832 12570
.500 79609 59336 16867 .86211 .69473 .24145
625 .91903 .78168 .28878 95695 .86753 41860
750 .98046 .92035 46528 99277 .96543 .64871

N=9 N=10
125 .27290 .14242 .02886 .29921 15873 .03246
250 .52530 32215 .07398 .58015 .37294 .09154
375 75808 .55864 16754 .81261 .63343 .21800
.500 90918 77842 .32928 94150 .84380 42603
625 97790 92342 55475 98898 95747 67919
750 99744 98594 .79453 99913 99457 .89096

N=12 N=14
125 .35388 19504 .04101 40991 23576 05167
250 .67913 47646 13675 76131 57594 19572
375 .89193 75920 .33969 94032 .85034 47504
.500 97703 92784 .61780 .99149 96918 17294
.625 99744 98809 85772 99945 99698 94673
750 99991 99928 97538 99999 99992 99554

N=16 N=18
A25 46581 .28008 .06479 .52033 .32705 .08066
250 .82646 .66570 .26685 .87628 74270 .34675
375 96818 91115 .60603 98352 .94922 71951
.500 .99698 98762 .87749 99897 99527 93898
625 99989 99929 98249 99998 99984 99480
750 1.00000 99999 .99931 1.00000  1.00000 99991

N=20 N=30
125 57250 37565 .09952 78111 .61230 .23944
250 91328 .80613 43107 98786 96312 79075
375 99166 97189 .80948 99979 .99896 98385
.500 .99966 99826 97156  1.00000 99999 .99969
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TABLE 2.1 (continued)

x

A .100 .050 .010 .100 .050 .010

N =40 N=50
125 .90045 79057 43138 95836 .89812 .62263
.250 99862 .99470 94853 .99986 99936 .99038
375 1.00000 99997 99924  1.00000  1.00000 .99997

_ TABLE 2.2
Least upper bounds for Fe Q(A) on the power of S, W, TV, T® and B
A
125 250 375 .500 .625 750

N =10, a=.05

S .10496 19529 32675 49556 .68314 .85473
w .14051 .30445 .52359 74282 .90298 .98037
7D, T® 13340 .28153 48321 .69634 .86803 96578
B 15873 .37294 .63343 .84380 95747 99457

N=10, a=.01
S 02596 .05952 12267 22976 .39273 .61034
w .03241 .08993 .20784 .39744 .63383 85112
7O, T 03227 .08715 19602 .37249 .60201 .82761
B .03246 .09154 .21800 42603 76919 .89096

TABLE 2.3
Monte Carlo estimates of the least upper bound for FEQ(A) on the power of S, W, TV and T®
A
0 1 2 3 4 5 75
N =20, a=.05
S .051 .106 218 377 571 765 985
w .048 178 .400 ..653 .867 .963 1.000
TWw .047 159 .361 .604 .825 954 .999
T® .047 .160 .360 .598 .819 951 .999
N =20, oa=.01
S .011 .032 .067 146 .283 471 .986
w .006 .035 129 325 .595 .822 1.000
Tw .007 .030 112 286 .540 .765 .999

7% .007 .030 112 .280 522 754 999
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TABLE 2.4
Exact values (N = 10) and Monte Carlo estimates (N = 20) of the power of W, S, TV and T*® for
the alternative F,

A

0 .1 2 3 4 5 5

N=10, o= .05

w L0500 .0589 0765 .1086 1637 2514 6392
s 0500 0914 1544 2429 3579 4955 8547
T, T L0500 0658 .0885 1220 1749 2584 6396
N=10, o=.01
w .0100 0130 0181 0255 0381 0627 2635
S .0100 0219 0433 .0805 1402 2298 6104
T, T@ .0100 0147 0230 0344 .0498 0740 2655
N=20, a=.05
W 048 .059 082 120 189 296 776
S 051 106 215 380 567 766 985
TM 047 068 .101 168 244 400 830
7@ 047 069 105 175 253 418 880
N=20, o«=.1
w .006 010 015 026 062 110 .560
s 011 026 067 147 278 476 940
7w 007 013 023 041 .088 169 .588
T® 007 015 026 044 .100 192 629
TABLE 2.5

Monte Carlo estimates of the power of W, T and T*® for the alternative
FpoWitha=A,1—A, and }

A

0 0.1 0.2 0.3 0.4 0.5

N =10, o= .05, a=A

w .049 .055 .079 .110 .198 382

T, T® .049 054 .064, 074 .101 156
N =10, a=.01, a=A

w .010 .010 .013 .021 .035 052

T, T® 011 .012 .014 .018 .030 .044
N =20, o = .05, a=A

w .048 .057 .092 169 313 578

T .047 .049 075 132 222 422

7% 047 .048 .074 122 214 422
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TABLE 2.5 (continued)

A
0 0.1 0.2 0.3 0.4 0.5
N =20, a =01, a=A

w .006 .008 .017 .046 .094 252%
T .007 .008 .012 .024 044 132%
T® .007 .009 .011 .021 .043 .132*

N=10, o= .05, a=1-A
w .049 .053 .069 .099 179 382
TO, 7™ .049 .054 .064 .085 113 156
N =10, o =.01, a=1--A
w .010 .010 .011 .015 .034 .052
TD, T® .011 .011 .013 .014 .024 .044
N=20, o = .05, a=1-A

w .048 .053 .082 155 .309 578
T .047 .051 .075 123 238 422
T® .047 .050 074 118 218 422

N =20, o =01, a=1-A

w .006 .006 .009 .033 .098 .252%
T .007 .007 .009 .023 .055 132*
T® .007 .007 .010 .022 .053 .132%

N =10, o= .05, a=1%
w .050 .051 .066 111 .188 .382
D, T .048 .050 .062 .084 112 156
N =10, o =01, a=1}
w .009 .010 .010 .025 .034 .050
TD, T® .011 .011 .012 .019 .026 .044
N =20, o= .05, a=1%

w .055 .060 .082 .164 .307 .568
T .055 .058 .075 141 .247 432
TO® .055 .059 .075 137 237 432

N =20, o =.01, a=1%

w .011 .011 .020 .038 104 252+
T .012 .013 .018 .027 .073 132%
T® .012 .013 .018 .027 .068 132%
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TABLE 2.6
Monte Carlo estimates of the minimum over ac{0, A, 3, 1 — A} of the power of
W, T and T® for the alternative F, ,

A
0 1 2 3 4 5
N =10, o= .05
w .049 .051 .066 .099 164 247
T, T® .048 .050 .062 .074 101 156
N=10, a =01
w .009 .010 .010 .015 .034 .050
T, 7™ .010 .011 .012 014 .024 .044
N =20, o= .05
w .048 .053 .082 120 189 .296
™™™ .047 .049 075 123 222 .400
T .047 .048 074 118 214 .400
N =20, a=.01
w .006 .006 .009 .026 .062 110
T .007 .007 .009 .023 .044 132
T® .007 .007 .010 .021 .043 132

The results of Tables 2.4 and 2.5 are summarized in Table 2.6 in which we
consider the minimum over ae {0, A, 4, 1 —A} of the power of W, T™® and T®
for the alternative F, ,. Asymptotically (see Section 4), the minimum power of W
is attained at @ = 0, while for 7*> and 7‘® the minimum is attained for each
ae[A, 1—A]. Tables 2.4 and 2.5 show that for W, the minimum power is not
attained at ¢ =0 when N = 10, while for N =20, the tables indicate that the
asymptotic result is in effect and the minimum power is attained at a = 0. As far
as T and T® are concerned, the tables for N = 10 and 20 do not indicate any
disagreement with the asymptotic results of Section 4. Keeping this in mind, Table
2.6 indicates that for N = 10, the asymptotic results have not taken effect and W
is better than 7V and 7®, while for & = .05 and N = 20, 7™ and T‘® are better
than W. Note that T*) and T® have about the same power.

3. Power bounds for monotone tests in the symmetry problem. In this section, one
assumes that the population median (see Remark 3.1) has been subtracted from
the observations, and the null hypothesis of symmetry about zero (or skewness to
the left) is to be tested against skewness to the right. A test ¢ is said to be s-monotone
if (ty, -, ty) < o(xy, -+, xy) whenevert; < x;and ¢;x; >0(=1,---, N). Thus
all monotone tests are s-monotone. If Jy(k/(N+ 1)) is nondecreasing in k, then the
test that rejects for large values of Y i, Jy(r;/(N+1)) is s-monotone. Note that
such tests are not necessarily monotone if Jy can take on negative values.

s-monotone tests also have monotone power, i.e., if the smallest median of F'is
inf, {F(x) =1}, then
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LemMa 3.1. If F(x) < G(x) for all x and the smallest medians of F and G equal
zero, then Ep(¢) = Eg(@) for each s-monotone test ¢.

The proof proceeds as in Lemma 2.1. Note that F ~*(U,) > 0 if and only if
G~ Y(U) > 0.

COROLLARY 3.1. Suppose that F has unique median zero. Then all s-monotone rank
tests are unbiased for testing H,: F(x) 2 1 — F(—Xx) against H,: F(x) £ 1 — F(—x).

The proof is the same as for Corollary 2.1, using the fact that A(x) = 1[F(x)+
1— F(—x)] has unique median zero.

One can now proceed as in Section 2 and one finds that the minimum power is
attained at F, ,; however the restriction F(0) = 1 requires a = A. Thus

THEOREM 3.1. If ¢ is an s-monotone rank test, then for 0 < A < 1,

infp Q(A) Er(p) = ian§a§ 1-4A EFA,a((P)-
For the maximum power, one needs the distribution H, defined by
Hy(x) = Gy(x) for x¢(—A,A),
=x+4%+ for xe(—A,0],
=1 for xe(0,A].
From the results of Section 2 and this section, it is clear that

CoROLLARY 3.2. If ¢ is an s-monotone rank test, then for 0 <A <13,
SUPF cai,a) EF(@) = Ep ().

REMARK 3.1. In this paper, we only consider the problem of testing for symmetry
when the population median is assumed known. If it is not known, one could (a)
subtract an estimate of the median based on X, - - -, X,y from the observations (see
Gross (1966) and Gupta (1967)) or (b) subtract an estimate of the median which is
independent of X7, -+, Xy from the observations, e.g., use a preliminary sample
to estimate the median. It is hoped that the results of this paper will in some sense
carry over to tests based on the procedures (a) and (b) above.

Table 3.1 below gives Monte Carlo estimates of the power of

3.1 V=W-1S and T5=35[(n/(N+1)*~1]

for the alternative F, , with a = A, a =14 and with a = 1—A. Gross (1966) has
compared these statistics in terms of Pitman efficiency. Asymptotically (see
Section 4B), the minimum power of Tj is attained for a = A, while for V, the
minimiim power is attained for each ae[A, 1 —A]. The results of Table 3.1 indicate
that the same is true for finite sample sizes. Moreover, if one considers the minimum
over a€ {A, 4, 1—-A} of the power of V" and T for the alternative F, ,, then one
finds that ¥ is much better than Ty.

4. Asymptotic minimax results.
4A. The location problem. In this sub-section, statistics that maximize the
minimum power over Q(A) are obtained asymptotically for certain classes of
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TABLE 3.1
Monte Carlo estimates of the power of V and Tg for the alternative F, ,
witha= A, 1—A, and %

A
0 0.1 0.2 0.3 0.4 0.5
N=10, a=.05, a=A
vV (052 076 112 241 .506 968
Te .053 .061 .093 165 371 934
N =10, o= .01, a=A
Vv .012 .017 .037 .101 332 912
Te .013 012 .023 .074 .281 .806
N =20, o= .05, a=A
| 4 .052 .069 151 402 .813 1.000
T, .055 .062 .094 235 622 998
N =20, o=.01, a=A
Vv .008 .012 .038 .164 569 .993*
Te .007 .010 .020 .085 375 979*
N=10, a =05, a=1-A
4 .052 .073 116 243 .508 968
Te 053 072 128 292 .607 934
N=10, a =01, a=1-A
V 012 .017 .036 .103 .333 912
Te .013 .016 038 .100 .308 .806
N=20, a = .05, a=1-A
Vv .052 069 151 .402 .813 1.000
Te .055 .081 215 575 910 998
N=20, o= .01, a=1-A
Vv .008 .012 .038 164 .569 .993*
Te 007 .011 .066 292 157 979*
N =10, o =05, a=1}%
V 052 064 110 264 .526 968
Te .052 .061 .105 237 486 034
N=10, o= .01, a=1%
vV .012 018 042 109 352 912
Ts 011 014 .037 .096 318 .806
N =20, o =05, a=1%
14 .048 .058 .138 .388 816 1.000
T. .048 .064 142 378 778 1.000
N=20, o=.01, a=1%
Vv .014 014 048 .170 576 .993*
Te .012 014 045 167 520 979*
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statistics. Govindarajulu (1960), Gross (1966) and others considered the class of
statistics of the form

4.1 Ty(J) = Y2- 1 J(r/(N +1)),

where J is a function on (0, 1). It turns out that there is a statistic T(A) that has a
higher minimum power than each member of this class (see Theorem 4.1 and
Remark 4.1). This statistic is defined by

(4.2) T(A) = W+[3(N—1)A—1]S/(N +1),

where W = Y?-1r/(N+1) and S =Number of positive observations. For this
reason, we will consider a larger class of test statistics. Let  denote the class of
level « tests of the form

4.3) oy =0oxJ,dy,by) =1 if Vy(J) = Ty(J)+dyAS+by NS = ky,,
=0 otherwise,

where {dy} and {by} are sequences of constants converging to d and b respectively,
and J is a continuously differentiable function satisfying the conditions of Gross
(1966, page 40).

When A > 0 is fixed and N — oo, then the minimum power over Q(A) of the
Wilcoxon, Sign and other consistent statistics tends to one, while if one considers
sequences {Ay} such that

(4.4 AyN* >, some ce[0, 0],

then it turns out that for 0 < ¢ < o0, the limit of the minimum power depends on
the alternative sequence {Ay}. Thus we restrict attention to the sequences (4.4).
Note that the trivial cases Ay = 0 and Ay = A > 0 are included in (4.4).

Gross (1966) has shown that Ty(J) properly normalized can be written as a sum
of N independent random variables plus a remainder term that tends uniformly in
the underlying distribution to zero in probability. Since S is a sum of N independent
random variables, it follows that if Vy(J) is a statistic of the form

(4.5) VN(J)—_— TN(J)+dNAS+bNN_1S,

then it has a distribution that can be approximated uniformly by the normal
distribution in the sense that if (4.4) holds with ¢ < co and @ denotes the standard
normal distribution function, then

SUPo<a<1-An PAN,a(V—N(i)_#A—N'a(‘L) = t)—(l)(t) -0 as N- oo,
T on(J)
where
6 Magad) = N{ZIWdFay o0)+3(1+ Ay —a)dAy+bN ")}

when 0 < a < Ay,

= N{[§ J()) dF () +3(dAy+bN ™)}
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when Ay S a =< 1—Ay,
o’ () =120 [JGE/(N+ 1) +dyAy+by N~ > ~ Y J2(i/(N +1))
~ N [§J%(u)du.

Here, P,,, denotes probabilities computed under Fy,,, and yy ~ Ay means
yn/Axy — 1 as N — oo. For some statistics such as S, W and T(A), better approxi-
mations can be obtained by replacing u,, ,(J) by the exact expected value. Applying
(4.6) to the power E,, [(oy(J, dy, by)) = Pa, Vy(J) = ky,),- One obtains the
following approximation to the minimum power of y(J, dy, by) for J nonnegative
and nondecreasing, and d > 0 (or d = b = 0).

41 i o En i ) g1, @ 4 o) g
i ox(J)
as N - oo, where
2, =0 W) and poo(J) = N{[& J()idt+3(dAy+bN 1)}
Let ¢(A) denote the level o test
(4.8) od)=1 if TQ)Z kya
=0 otherwise.

LEMMA 4.1. For sequences {Ay} satisfying (4.4), the minimum power of ¢(Ay)
over Q(Ay) has the limit

(4.9) limy_, o, [infr c aay) E@(AN))] = O(z,+3*c?).
To see this, compute
E, T(A))—Eo,o(T(A))
=[IN(N—1)A? +IN(N—1)(aA—a*)]/(N+1), when 0=Za<A;
=IN(N—-1)A*/(N+1), when A<a=<l1-A.
on (T(A) = 4 3, (i+HN—-1DA-1)* /(N +1)?
~&NQN+1)/(N+1) when A=Ay—0.

Now the result follows upon substituting these quantities and Ay = c¢N ~* into the
right-hand side of (4.7). Note that the result is immediate when Ay does not tend
to zero or ¢ = 0.

THEOREM 4.1. @(A) is asymptotically minimax over Q(A) and T in the sense that
(4.10) limy., o, [inff Q(AN) Ex(o(Ay))] Z limsupy., ,, [infr. Q(AN) Ex(oy)]
Jor all tests oye T and all sequences {Ay} satisfying (4.4).

Proor. Using Lemma 4.1, we need only show that there is Fe Q(Ay) such that
the limit of the minimum power of @y(J, dy, by)€Z is bounded above by the
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right-hand side of (4.9). When ¢ = o0, (4.10) trivially holds in view of Lemma 4.1;
we thus assume ¢ < 0. Using (4.6), we find that for the distribution F,, ,eQ(Ay)
with a > 0 fixed,

J'(a)c?
Zet T 3
(JoJ*(x) dx)
If J'(a) < 0 for some 0 < a < 1, the result follows. If J'(@) >0 forall0 <a <1,

then J = H ~' for some distribution function H (say) with density 4 and the right-
hand side of (4.11) becomes

(4.12) O(z,+ 2/ h(J (@) x*h(x) dx)?).

Among all densities & with | x?h(x)dx fixed, the uniform density has the smallest
supremum sup, h(x), namely [3 [ x24(x) dx]~*. This follows from the arguments of
Capon (1965, pages 851 and 852) (see also [6]). Thus there exists an a, €(0, 1) such
that A(J(a,)) = [3 [ x*h(x)dx]~*. This inequality together with (4.11) and (4.12)
yields the result.

(4.11) limy-., Ex o(@n(J, dy, by)) = cp( ) 0<a<l.

REMARK 4.1. The above proof shows that no test based on a statistic of the form
Zf J(r;/(N+1)) can be asymptotically minimax. For if it were, then we would
have to have J(u) = yu for some y > 0 and all u€(0, 1). The test would then be
equivalent to the Wilcoxon test; however, the asymptotic minimum power of the
Wilcoxon test ¢y, is attained at Fy, o and equals

(4.13) limy ., o, [infr c oay) E(@w)] = (2, + 3%c?/2).

On the other hand, the statistic W+ ¢S is of the form Y3 J(r;/(N+1)) with J(u) =
u+e, and the test based on it has an asymptotic minimum power attained at
Fy, A, Which can be made arbitrarily close to the upper bound ®(z,+3*c?) by
taking ¢ small enough. Note the discontinuity (see (4.13)) at ¢ = 0.

ReMARK 4.2. The asymptotic minimax solution ¢(A) is not asymptotically
unique in . In fact, from the proof of Lemma 4.1, it is clear that all statistics of
the form

(4.14) W+[4d(N—-1)A—-1]S/(N +1)

are asymptotically minimax provided d = 1. In T(A) we have chosen d = 1 since
this value minimizes the exact null variance of (4.14). Asymptotically, the null
variance is independent of d.

REMARK 4.3. When applying 7' (Ay) one has to choose one specific sequence
{Ay} in order to be able to carry out the asymptotic minimax test ¢(Ay). Suppose
o =.05 and one chooses Ay? = (Ay*)? = 1.645/(3N)%, then c¢? = c, 2 = 1.645/3*
and the right-hand side of (4.9) becomes 3. It is clear from Remark 4.2 that p(Ay*)
is not only asymptotically minimax for {Ay*}, but uniformly in all sequences
{Ay} withlimy_, , Ay/Ay* £ 1. Since ®(z.o5 + 3¥cy?) = 4, these are all the sequences
for which the limit of the minimum power of all tests in 7 is bounded below by .
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By choosing Ay larger than Ay*, we could obtain a larger class of {Ay} for which
o(Ay) if optimal. However, the null variance of T'(Ay) would then be increased and
the limiting minimum power (4.9) used in proving the minimax result would be
a poorer approximation (an ‘“‘overestimate’) to the finite sample size power
function.

The statistics T(Ay*) and T(Ay') with (Ay')? = 2.326/(3N)* are investigated in
terms of Monte Carlo power in Section 2B with N = 10 and 20. The results there
indicate that the asymptotic results are in effect for ¥ = 20 and o = .05 in the sense
that T(Ay*) and T(Ay") are improvements on the Wilcoxon statistic W, but that
they are not in effect when N = 10 (see Table 2.6).

4B. The symmetry problem. For the class of alternatives Q(A), we consider the
class 7, of level « tests of the form

o =) =1 if YIIE/N+1) 2 ky,,
=0 otherwise,

where J is a continuously differentiable function satisfying the conditions of Gross
(1966, page 47). Let ¢, be the test that rejects for large values of V= W—-1S8=

S (ri/(N+1)—1), then E,, (V) =3IN(N—1)A?/(N+1) for ASa<1-A, and
Var (V| Hy) = Y (i/(N+1)—$)* ~ N/48. From this, Theorem 3.1, and the argu-
ments of Section 4A, one concludes that

(4.15) limy_, ., [infr e o,a) EF(@¥)] = ®(z,+2 (3%)c?).
Similarly, we find that for y(J)e 7,
(4.16) limy ., Epy,o(@n®) = O(z,+J'(a)c*([5 I (x) dx) %)

provided (4.4) holds with ¢ < o0, and 0 < a < 1. As in the proof of Theorem 4.1,
we find that (4.16) is bounded by (4.15), moreover, since J does not depend on N,
the only function that reaches the upper bound (4.15) is J(#) = u—4. We have

THEOREM 4.2. ¢y, is asymptotically minimax over QA) and T  in the sense that

4.17)  limy,,, [infg, Q(AN) Er(py)] 2 limsupy., ,, [infr, Q(AN) EF((pN(S))]

Sor all tests o5 €T and all sequences {Ay} satisfying (4.4). Moreover, ¢y is
unique, i.e., it is the only test in T  asymptotically minimax in the above sense.

The minimum power of the test based on T (see (3.1)) has the limit « when
0 < ¢ < oo since here J(u) = u>—1 and infy <, J'(a) = 0 (see (4.16)). The results
of Section 3 show that already for sample size 10, V has a considerably larger
minimum power than Tj.

5. Rejection limits for ¥, T') and T,;, and Monte Carlo power for shift alterna-
tives. Tables 5.1-5.3 below give the rejection limits for ¥, TV and T for4 < N £ 10
and for significance levels close to a = .01, .025, .05 and .1. In Table 5.4, the re-
jection limits obtained from the normal approximation to the null-distributions
are given, and the significance levels which would result if these limits were used
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TABLE 5.1
Upper percentage points v for the null distribution of the (N + 1)V statistic for sample sizes N = 4(1)10
and significance levels bracketing o = .01, .025, .050, and .100. P(v) = Pr{(N + )V = v}

Significance levels «

.010 .025 .050 .100
N=4 N 2.0 2.0 2.0 2.0 1.5
P@v) 06250 .06250 06250  .06250  .18750
N=5 v 3.0 3.0 3.0 3.0 3.0
P(v) 06250 .06250 06250  .06250  .18750
N=6 v 4.5 4.5 4.0 4.0 35 3.0 2.5
P@) 01563  .01563  .04688  .04688  .06250  .09375  .15625
N=7 v 6.0 6.0 5.0 5.0 4.0 4.0 3.0
P(v) 01563  .01563  .04688  .04688  .09375  .09375  .18750
N=8 v 8.0 1.5 6.5 6.0 6.0 5.5 4.5 4.0
P@) .00391 01172 .02344 .03906 .03906  .05469  .09766  .13281
N=9 v 10.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0
P(») .00391 .01172  .02344  .04688  .04688  .08203  .08203  .12891
N=10 v 10.5 10.0 9.0 8.5 8.0 7.5 6.5 6.0

P@) .00977 01367 .02441  .03321 .04492  .05762  .08789  .10938

TABLE 5.2
Upper percentage points t for the null distribution of the (N +1)TV statistic for sample sizes
N = 4(1)10 and significance levels bracketing « = .010, .025, .050, and .100.
P(t)=Pr{(N+1)T® = ¢}

Significance levels «

.010 025 .050 .100
N=4 10.135 10.135 10.135  10.135 9.101
P(t) .06250 06250 06250  .06250  .12500
N=35 t 16.517 16.517  16.517 15214 14.214 13.214
P(t) .03125 03125 .03125  .06250  .09375  .12500
N=6 t 24.340  24.340 22783 21783  20.783  19.784  19.227
P(t) 01563 01563  .03125  .04688  .06250  .09375  .10938

N=T7 't 33.582  31.785 30785  29.785  28.7@5  27.987  26.785  25.587
P(¢t) .00781  .01563  .02344  .03125 .04688  .05469  .08594  .10156
N=8 t 42,197  41.197  39.197 * 38.197 37.197 36.197 34.169  33.169
P(r) .00781 .01172  .02344  .03125 .04297 .05469  .08984  .11328
N=9 ¢ 51.005 50.754  48.005 47.754 45504 44754  41.754  41.504
P(t) .00977 01172 .02344  .02734  .04688  .05469  .09375  .10352
N=10 ¢ 62.195  61.729  58.195 57.729 54.729 54263 50.729  50.263
P(t) .00879 .01074  .02441 .02832  .04980  .05469  .09668  .10645
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TABLE 5.3
Upper percentage points t for the null distribution of the Tg statistic for sample sizes N = 4(1)10
and significance levels bracketing o = 010, .025, .050, and .100. P(t) = Pr{Ts =t}

Significance levels «

.010 025 .050 .100
N=4 ¢ .33333 .33333 33333 33333 .30667
P(t) 06250 .06250 06250  .06250  .12500
N=35 t 47222 47222 47222 38889 36111  .27778
P(t) .03125 03125 .03125  .06250  .09375  .12500
N=6 "t 57823 57823 57143 42857 42177 39456  .32653
P(t) 01563  .01563  .03125  .04688  .06250  .09375  .10938

N=T7T t 71875  .66146 63542 57813 48958  .46875  .40104  .39063
P() .00781 01563  .02344 03125 .04688  .05469  .09375  .10156
N=8 ¢ 81481 72840  .67901  .61728 55556  .54321 43210  .41975
P(r) .00781 .01172  .02344  .02734  .04688  .05078  .09375  .10156
N=9 t 81000  .79333 70000 .69667  .59C00  .57667  .4€CCO  .45€67
P(t) .00977 01172  .02344 02539  .04883  .05078  .09961  .10156
N=10 ¢ 86501  .86226  .76033  .73829  .63361  .62810  .47934  .47658
P(t) .00977 .01074 .02414  .02539  .04980 .05078  .09961  .10156

TABLE 5.4
Normal approximate rejection limits and resultant actual significance
levels for N = 10 and desired levels o = .01, .025, and .05 for (N+1)V,
T, (N +1)T®, and (N +1)T®

desired o .01 .025 .050

N+1)V limit 10.563 8.901 7.471
actual level .00586 .02441 .05762

Te limit .89706 74398 61224
actual level .00781 .02441 .06078

(N +1)TV limit 62.543 58.182 54.418
actual level .00781 .02441 .04980

(N+1D)T® limit 66.467 61.856 57.888
actual level .00684 .02344 04980

are listed. This table shows that the normal approximation is very good for
o =.025 and .050; in fact for TV, the normal and exact (see Table 5.2) rejection
limits are equivalent.

Next, the powers of functions of W, T and T‘® are considered for shift
alternatives, i.e., it is assumed that the distribution of the X’s is of the form
F(x) = G(x—#0), 0 > 0, for some continuous distribution G symmetric about zero.
For these alternatives, W, T and T? are asymptotically equivalent in the sense
that their relative Pitman efficiencies are one (assuming conditions on G under
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Monte Carlo estimates of the power of W, TV and T'® for normal, double exponential and

logistic shift alternatives

Normal shift

0
0 .25 .50 75 1.00 1.25 1.50
N=10, a=.05
14 .049 .184 .400 .692 .893 .967 992
T, T .049 172 .395 672 .882 .962 .992
N =10, a=.01
w .010 .049 157 .358 .621 .829 951
T, T .010 .046 151 .356 .606 .823 946
N =120, o =.05
w .048 .280 .678 939 .987 .999
T .047 278 662 934 .985 .999
T® .047 275 .661 931 .985 999
N =20, o=.01
w .006 .079 .370 157 .960 998
T .007 .085 .349 733 .950 .998
T® .007 .081 .341 728 .948 .998
Double exponential shift
0
0 25 .50 75 1.00 1.25 1.50
a = .05, N=10
w .049 .170 336 .559 731 .855 922
T, T® .050 166 .340 557 732 .851 .924
a=.01, N=10
w .010 .046 134 .270 423 581 716
TmD, T .010 .044 129 .269 422 578 716
a =085, N=20
w .055 239 540 .821 .948 983 .997
T .055 .250 577 .839 .953 985 998
T® .055 251 .579 .840 953 998 .998
o=.01, N=20
w .006 .073 264 .555 782 918 976
T .007 .072 284 574 .808 933 983
T® .007 .072 284 574 .808 934 .981
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TABLE 5.5 (continued)

Logistic shift

0 25 .50 75 1.00 1.25 1.50

o =05, N=10

w .050 115 213 .344 510 .661 792

TO, T® .048 .108 .209 337 512 .648 792
o= .01, N=10

w .009 027 063 128 .233 .343 481

7D, 7™ 011 .026 .060 122 229 .341 475
o= .05, N=20

w .055 147 .346 .568 782 916 971

TW .055 158 352 .587 782 918 973

T® .055 159 .349 .588 783 918 973
=01, N=20

w 011 .036 112 283 483 11 .863

T .012 .041 113 .286 .490 11 .868

VAR 012 .041 113 282 487 713 .866

which the efficiencies can be computed). This is because the part of T*) and T®
containing the sign statistic is of a smaller order of magnitude than the part
containing the Wilcoxon statistic. This holds in general for each T'(Ay) when Ay
satisfies (4.4) with 0 < ¢ < co. Thus for this model one can only compare power
functions for finite sample sizes. Monte Carlo estimates of the power of W, T
and T® are given in Table 5.5 for normal shift alternatives F(x) = ®(x—0),
double exponential shift alternatives F(x) = K(x—0), where k(x) = }exp(—|x|),
and logistic shift alternatives F(x) = L(x—0), where L(x) = [1 +exp(—x)]~*. For
normal shift, W is slightly better than T and T(®, while for double exponential
shift there is no difference in the power functions when N = 10, while when N = 20,
T™ and T® are slightly better than W. W is locally most powerful for logistic
shift alternatives, however Table 5.5 shows that it is not better than 7*> and T®
for N =20 and the values of 0 given. Table 5.5 is computed using the normal
approximations to the rejection limits of W, T and T’ when N = 20.
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