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1. Introduction. In this paper we will consider some techniques of formal Bayes
estimation and apply them to the estimation of components of variance in the one
way layout random effects model of the analysis of variance. In particular, we will
consider the following problem in canonical form: we observe

YN 9,t(:u"(a-e'*_']a-a)/l’])aSl ~ o-eX%(.I—l)’ and S2 ~ (ae+JGa)X%—1

where I and J are positive integers (the number of treatments and replications
respectively), u is real, and o, and o, are positive. We want to find estimates for
0. and o, using essentially mean squared error as a measure of performance.

The problem of estimating o, and o, is not new, and minimum variance unbiased
estimates and maximum likelihood estimates are well known. However, one can
look for improvements; and in the estimation of ¢, a special problem arises; the
unbiased estimate may be negative and the maximum likelihood estimate may be
exactly zero. This particular problem has been considered recently by a number of
investigators (see, for example, Scheffé [12] and Thompson [18]) and various
interpretations for such estimates have been suggested. However, in problems
where estimates are really desired, use of such estimators seems to me to be
unacceptable. To solve this problem we will consider the use of formal Bayes
estimators (i.e. Bayes estimators versus priors which are not necessarily finite),
which will be strictly positive. We will show that certain formal Bayes estimators
both of ¢, and o, have good mean squared error properties and can seriously be
recommended.

Inferences about ¢, and o, from a Bayesian viewpoint have been recently
presented by Box and Tiao [1], Hill [4], Stone and Springer [17], and Tiao and
Tan [19]. The methods described in these papers are generally based on use of the
Jeffreys’ prior. We will later compare these methods with ones considered here and
give reasons why the present methods should be generally preferable.

The techniques used here are special cases of more general considerations
applicable whenever the statistical problem is invariant under a group of trans-
formations which does not act transitively on the parameter space (i.e. in problems
where there is not a unique best invariant procedure). The analysis of variance
problem considered here is easily seen to be invariant under location and scale
changes (if invariant loss functions are used); that is, under transformations on the
parameter space {(y, 0., 0,):—© < u < ©,0q, > 0,g, > 0} described by

u— au+b, o, a*c,,0,— a’o,.

Received January 19, 1970; revised February 8, 1971.
1379

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. STOP\ ®

WWWw.jstor.org
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However, here invariance only reduces the parameter space to the range of the
maximal invariant which we will take to be y = ¢,./(c,.+Jo,). In general, any
invariant procedure will have a risk function which is a function only on the
maximal invariant (in our case, the risk will be a function of y). Thus, we can
assume that there is a prior distribution on the space of the maximal invariant
and ask for the invariant procedure minimizing the expected risk under the assumed
prior distribution. Zidek [22] shows that such Bayes invariant procedures are
actually formal Bayes procedures with respect to a prior measure constructed from
the assumed prior and right Haar measure on the group. Zacks [21] considers
such formal Bayes estimators of ¢, and ¢, and characterizes their structure. Here
we will consider a particular class of such estimators and will describe certain
optimality properties related to mean squared error.

We first list a general multi-parameter admissibility theorem which is later
applied to the present particular problem. This theorem gives sufficient conditions
for admissibility and seems to be particularly applicable in proving admissibility
of these Bayes invariant procedures when the group is one dimensional. It is a
generalization of the work of Stein [15] and Zidek [23] and is proved using the
same argument given in Zidek [23].

In Section 2, a class of estimators of ¢, of the following form is presented:

1 S S K(S;+S
P (S1,52) = 7{(1+ DFS TR e +F,,(sE/(lsl +zs)2))}
where, letting ¢ = L(IJ+1) and d = L(I+3)+b,

c—1 (1-Ic—d,d+1))B(c—d,d+1)
=wl(c——d—1)’ Fy(4) = AT (1= Ay

and where I,(p, ¢) denotes the incomplete beta function. For mean squared error,
the estimator ¢, is admissible among location invariant procedures for
—1 < b < JI(J—1)—2. In Section 3, the particular estimate ¢ _,, is shown to be
admissible among scale and location invariant procedures, nearly minimax, and as
good as possible as ¢,/c, — 0.

In Section 4, related estimators of o, are discussed and conclusions are given in
Section 5. Most of these conclusions are based on calculations of mean squared
errors presented in the appendix.

We now list the general admissibility results used in subsequent sections. They
are most reasonably stated in the following framework of statistical decision
theory: there are measurable spaces (%, %,) (the observation space), (7, %)
(the parameter space), and the action space is the real line, R, (together with the
Borel sets). Consider a loss function, L: .7 x.of x & — [0, c0), of the form

L(0, a,x) = v(0,x)(a—g(0))*

where v:.7 xZ — (0, ) and ¢g:.7 — R are measurable functions. Suppose the
distributions are given by densities defined by p: £ x.7 — [0, o) satisfying

§ po(x)du(x) =1 forall e T

K
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where p is a sigma-finite measure on %, ; and assume that
(1.1) pe(x) >0 forall xeZ andallfeJ.

We restrict ourselves to non-randomized decision rules, which are measurable
functions ¢: & — o, and define the risk of ¢ to be

R(¢, 0) = j L(09 ¢(X), x)pﬂ(x) dnu(x)
The rule ¢ is said to be admissible if there is no rule ¢* such that
(1.2) R(¢*,0) < R(¢,0) for all e T

with strict inequality for some 0, €.7 . If IT is a measure on & -, a rule ¢ is said to
be almost admissible with respect to IT if there is no ¢* for which (1.2) holds with
strict inequality on a set of positive IT measure. Since the loss function is strictly
convex in a for every x and 6, (1.1) implies that if there is a measure IT with respect
to which ¢ is almost admissible, then ¢ is admissible.

With this notation, we now state Lemma 1.1, whose proof appears in James and
Stein [7] on page 371.

LeMMA 1.1. Let I1 be a sigma-finite measure on %4 and let ¢, be an arbitrary
decision rule. Let € = B4 be a countable covering of T by sets of finite I1 measure.
If for every Ce € and every ¢ > 0, there is a function f: T — [0, ©0) satisfying
(1.3), (1.4), and (1.5) below, then ¢ is almost admissible with respect to I1; and,
hence, admissible.

(1.3) ()21 for all e C.
(1.4) [ R(¢0,0)£(6)dTI(6) < oo.
(1.5) K(f) = [J0(0, x)(¢o(x) — b (x))* Po(x)(0) dTI(0) dp(x) < &

where ¢, is the Bayes rule with respect to the measure fdII.
In James and Stein [7] K(f) is further calculated to be

{§(do(x)—9(0))0(0", x)pe(x)f(0") dTI(0")}
1.6 K(f)={du(x) .
(9 R S TR OOFO)
We now state a multiparameter generalization of the theorem of Zidek [23].
Let 7 =(,0)x 7, where (4, 0) is an interval (not necessarily finite) in the

real line and (7o, #+,) is a measurable space. Consider a sigma-finite measure
IT on J of the form

(1.7) dri(0) = n(6,,0,) dv(0,)d0, 6,e(0,0) and 0,7,

where v is a sigma-finite measure on %5 . Suppose the formal Bayes rule, ¢y, is
well defined by (1.8).

1§9(01,0,)0(04,0,,%)po, 0,)(x)n(6;,0,) dv(6,)d6,
[§0(01,02,%)Pg,,00(%)(01,0,) dv(6,) d6,

(1.8) Pn(x) =
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and define, for 0, € (@, 0) and x € %,
(1.9) hy(84,x) =

§9.§ 7o @n(x)=9(01",02))Po, .00 (*)0(01 02, x)n(0,',0,")dv(0,') a0y’
(1.10) hy(01,%) = [ 74 Peos,00)(%)0(01, 02, X)1(6,,0,) dv(0,)

(1.11) M0,) = [o, E(O],OZ){%} n(0y,0,)v(0;,0,, X)dv(0,).

Note that condition (1.1) implies that /,(6,, x) > 0 forall ,€(0,0) and xe Z.

THEOREM 1.1. Consider the statistical decision theory problem described above
(including the restriction given in (1.1)). Suppose A(0,) (see (1.11)) is a continuous
function of 0, on (8, 8); and suppose further that for every compact sub-interval

lao, bo) = (4, 0)
(1.12) 2§70 R(¢m, (01, 02))m(8y, 0,) dv (0,)dO, < 0.
Suppose also that for every c € (9, 0) conditions (A) and (B) hold;

7

- 01
(A) (2§70 R(5m:(01,0,))m(6;,0,)dv (0,)db, = 0 :ch—m) <o0.

c 01
(B) j;jfo R(¢l‘b(01a 92))n(01,02)dv(02)d01 = 00 :j@%.s = 0.

Then ¢y is admissible.

The proof of this theorem is essentially the same as that given in Zidek [23] and is
given in detail in Portnoy [10].

2. Estimation of the ‘‘between’’ component of variance. We now apply Theorem 1.1
to the estimation of the components of variance in the one way random effects
model (Model II) in analysis of variance. In particular we consider the following
statistical problem in canonical form: we observe

(2.1) Y~ N, (0. +Ja,)/1)),S; ~ 0'eX§(J—1)s Sy~ (0.+Jo )11

where pu is real, 6, > 0, 6, > 0 and [ and J are positive integers. We wish to ties-
mate o, with loss proportional to squared error.

First we will restrict consideration to location and scale invariant procedures;
that is, in particular, estimators not depending on Y. Although the work of Stein
[16] indicates that such procedures are likely to be inadmissible and Zacks [21]
shows that location and scale invariant estimates of o, are, in fact, inadmissible
(among all estimators), we know that consideration of ¥ cannot lead to substantial
improvements (see Brown [2] for some particular calculations).

So consider the reduced problem where we observe

(2.2) Si~0xiy-1) and S, ~ (o, +Jo )14
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For ease in integrating we will use the following parameterization:

1 1 B
(2.3) 0(=2—62, B=m, r=q
Then the densities of S, and S, become
(2.4) Pus(S1,S2) = @I =1 HI=1) p=a(S1+352)
with respect to the measure p given by
(2.5) du(Sy,S;) oc SFHU-D-1g =149 4§,
We take the parameter space to be
(2.6) T ={(,7):0<a<0,0<y<1}.

We wish to estimate

1 /1 1)
O, = m— ;— s
so we take the loss function

27) L)) = aﬂqﬁ—f;;(%— 1))

Then the problem is invariant under scale changes; that is, under the trans-
formations

1 1
(2.8) Sl —)-ésl, Sz _)_CSZ; o — Cco

for ¢ > 0. Thus, we can think of « as a scale parameter and of y as a parameter
indexing the orbits. The result of Zidek [22] indicates that we can find Bayes scale
invariant procedures by considering prior measures with densities of the form
a~f(y). For ease of computation, we will take for the prior density

(2.9) (o) = a%y®

(with respect to Lebesgue measure restricted to ) and we will calculate the Bayes
rules ¢, = ¢y We expect (from Zidek [22]) that ¢, ;) should be reasonable
(in this reduced problem) for @ = —1 (the invariant Haar measure) and b > —1.

The estimator ¢, ;, was calculated for certain a and b in Klotz, Milton, and
Zacks [6] and in other papers. Similar calculations yield

S, Sy (c=1) (5,+8S,)
(210) ¢(a,b)(SlsSZ) _'2—.7{7 c—d—1 cd(c—d—l) F(c+1,d)(A) °

where 4 = §,/(S;+S3), ¢ = 3J—D)+a+2;d = 1(I-1)+b+2, and

1 'Ydd’))
(211)  Fier10(4) =L [A+y(I=a))*!

= G)C_d(-l-:l])m(l —I(c—d,d+1))p(c—d,d+1)
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where I(-,-) is the incomplete Beta function (see Pearson [9]; I.(p,q) =
§5 uP=*(1—w)* 'au/B(p, q)) and B(-, -) is the (complete) Beta function. We can
also write

(212)  ¢(up(S1,S2)

L[S,/ 1-14(c—d,d) S, 1-I(c—d—1,d+1)
T2 d\1-I(c—d,d+1)) c—d—1\ 1—I(c—d,d+1)
which may be easier to compute from tables of the incomplete Beta function
(e.g. Pearson [9]).

To prove admissibility of the appropriate ¢, ,, we will not need explicit
expressions for ¢, ;). We will only require the following inequality:

(2.13) Pap)(S1>82) < M(S,+S,)

where M is a constant depending only on a, b, I, and J, and is finite for d > 0 and
(c—d-1) > 0.
This inequality follows from the fact that

1
1
(2.14) Fe. l,d)(A) = foydd? =4d+1
(which follows since 4+y(1—A4) <1 for 0 <y < 1). Further properties of
& (a,py> Particularly for @ = b = —1, will be discussed in Section 3. We will now

prove

THEOREM 2.1. Consider the statistical problem described by (2.4), (2.5), and
Q@n. rr
(2.15) a=-1 and
(2.16) —1<b<3I(J-1)-2
then ¢, vy defined by (2.10) is admissible. That is, if (2.15) and (2.16) hold, the Bayes

invariant rule ¢, , is admissible in the class of location invariant estimators in the
original problem.

PrOOF. We will apply Theorem 1.1 directly with 6, = a, 0, =y, (@, ) =
(o, OO)’ T o = o, 1)’ n(a, )’) = Oﬁa?b> (e, Y) = 0‘2?2’ X = (Sl> Sz)’ Po(x) given by
(2.4), and ¢y given by (2.10). Condition (1.12) can be checked as follows: By
(2.13) (and (2.2)),

1 /1 2
E L (%,7)) = E(a,r)a?72<¢n(s 1 Sz)_Z_J_oT<;_ 1))
2,2 2 1 2
(2.17) < 01E (e $n’(S1, $2)+ 373 (1-7)
2,2 , 1
= Mo*y*Eqq, (51 +S2) +m’
= M*
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where M* depends only on a, b, I, and J. Therefore, since n integrable on
Cx (0, 1) (with C compact) for b > —1, the integrated risk is also finite on such
sets. It remains to investigate the function A(x) given by (1.11). We have

hy(e, Sy, S3)

hy(a, Sy, S,)

o 1 1 1__,))/
f f <¢n(sl,sz)—2——ﬁ—,( : ))a'fv“‘exp[—a'(s1+v'sz)]dv'da'

(2.18)

Y
fooy“exp[—a(S;+y'S;)]dy’

Changing variables, let T, = S, and T, = ayS,. Then Ty ~ 3x2y -1 To~ $xi-1
and

T, T,\)?
hl(a>Sl’SZ) ? hl 0‘,7,'&_?
(2.19) Eg,y =Eqny 77 7N [

hz(“’sl,sz) h ocﬂ E
2 s o ’ cxy

Furthermore, changing variables from (¢, y’) to x = a'/a, y = 7'/, using the fact
that ¢ is scale invariant for any a and b,

T, T.
hl(“ﬁ_l’ '_2)
a oy

T, T
hZ(“y_!', _2)
o ay

o 1y —
1 1 /1—yy o d
ol R R G gy xy'exp[— (T +yT)x]dy dx

(220) B=

y
o/ y*exp[—(Ty +yT;)]dy

Furthermore from the definition of ¢, the integral over (0, co) in the numerator
of [2.20] is zero. So we also have

1 1/y _
1 1 [1—yy o d
= . én(r Ty, Tz)_'i'.']'x' Xy exp‘[—(Tl +yT,)x]dydx

YJo y
2.21) B=
(2.21) §o'" y'exp[— (T, +yTy)]dy

Note that B is independent of a. Hence, E, ,{h;(a, Sy, S2)/hy(2, Sy, S,)}%is a
function of y alone (i.e., is independent of «). Therefore, from (1.11),

1 2
hl(a’SbSZ)
2.22 Ma)=1| E — b T2yt 2g
( ) () L ‘“'”{hz(a,Sl,Sz) oy Y

! hi(2,S1,S,)\?
—at2 | E NP2 b+2 g
* L @ <hz(“a 51,S2) ' !
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and A() is a continuous function of « whenever the integral in (2.22) is finite. I will
later use (2.20) and (2.21) to show that

1
(2.23) |B|§-)—)(M1+M2T1+M3T2) forc—d—1>0, d>0
where M, M,, M 5 are constants not depending on o and y. From (2.23), it follows
that
T, T,\)?
hl(“aT;’ s .(X—)Z)) 1
(2.24) E(B*) =E,, < 72-M*

T, T
h2<a’-_1' s —%>
o’ ay
and, from (2.19), that

(2.25) Me) S M*a* 2390 dy = T 2M*/(b+1)

which is finite for 5 > —1. To prove ¢ admissible it remains to check conditions
(A) and (B) of Theorem 1.1. From (2.10), ¢(Sy, S;) = S,/d—S;/(c—d—1), so
calculating expectations,

1 2
020)  Rw 1) = 2B 40051557 1-0)

>(I—l)v2 1(J-1)
ST 247 T 2(c—d—1)*

Therefore, combining this with (2.17),
(2.27) §o R(¢n, (o ))m(o, v) dy = M**o’.

For conditions (A) and (B) we want 1/A(x) to be non-integrable whenever
|8 R(¢n, (o, Y))n(e, y)dy is; that is, we want 1/a"* 2 to be non-integrable whenever
o is. But this holds if and only if @ = —1. Thus, ¢y is admissible (by Theorem
1.)fora= —1,b > —landd > 0,c—d—1 > 0. These conditions, by definition,
are just (2.15) and (2.16); hence, to complete the proof of this theorem we need only
prove (2.23), for which we will give the following rather technical and lengthy
argument:
First note that for s, t > 0

e} 1 0
we Mdu =577 Ve Vdv
s t st

1 [co]
(2.28) =-t”__“j v (V" 2 ™) dv

Sty 2e™ | —dv for st = n+2

=g"tlemst for st = n+2.
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Therefore, taking the outer integral (over x) in the numerator of (2.20), we have,
forT; = c+2

1/y

(2.29) y-(numerator) gj

1
, <¢n(vT1,T2)+5J—y+§>y"exp[—(T1+yTz)]dy-

So

1 (i

— d—1 —yT>
);Jerf0 yo ey
2J j‘(l)/yydeszdy

(2.30) - |B| £én(yTi, To)+

Integrating by parts, we can bound the last term in (2.30) by

T, 1 (py)e™h
2Jd 2Jd ({7 yle 2 dy’

(2.31)

and since

1/y 1/y 1
(2.32) fo yle T2 dy > e'“”L yidy =me'T2/’(y)_(“+l)

v
7]
+ | -

—T2/y —d
7e”0)
we have, for 7, = ¢+2, d > 0 (using (2.13)),

(2.33) y'|B|§M1+M2T1+M3T2‘

Now, for T}, < c¢+2, we will use (2.21). Since e~ T** < 1, taking absolute values,
we have

(xy)'x " 4e T dy dx

1—yy
d’n(')’Tl s TZ)_W
j‘é/yyde _"Tzdy

Ll
(234) y-|B| et L2

Letting z = xy in the inner integral of the numerator,

1 x/y 1
J {J <¢n(yT1,T2)+ﬁ)z"e_“zdz:|x"“_1dx
. 0 0 o
(2.35) Ve |B| é e 2 4 jé”y“e'y“dy '

The integrand is maximized over0 < x < latx = [ (forc—d—1 > 0). So
1/y 1
én(y Ty, Tz)"'jz‘) zle” T dz

0
foytet™™dy
<M, +M,'T, +My'T,

(2:36) y-|B| S et?
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where we have used the same argument as we used to get (2.33). Therefore (2.23)
follows from (2.33) and (2.36) and the proof of the theorem is complete. []

3. A minimax, formal Bayes estimate of o, admissible among scale and location
invariant estimators. In Section 2 we discussed a class of formal Bayes estimators
¢ (-1, admissible among location invariant procedures. In this section we consider
the limiting case as b - — 1. In particular we will consider the estimator ¢(_;, _1),
which, as is often the case with limits of Bayes rules, we will show to be admissible
among fully invariant procedures. Since we are now taking a = —1in ¢, ), we
will suppress dependence on a throughout this section and refer to ¢, instead of

¢(a,b)‘

We now show that ¢_,, is admissible among location and scale invariant
estimators. To do this, we will reduce the problem by invariance and apply Lemma
1.1 and (1.6) directly. We first discuss the reduced statistical problem.

If ¢ is scale (and location) invariant, there is a function ¥:R — R such that
¢ can be written

(3.1) #(S1,S2) = (5, +Sz)'*’<s isz)

(Note: we let ¥, denote the appropriate function of the maximal invariant corre-
sponding to ¢;.) Then, the risk of any invariant rule is given by

(32) R(, (1) =Ea2v2<¢(51,52)—2—;@(1—v))

_ E<(T1 + TZ)‘P<T :T ) 21—J(1—y)>2

where
(3'3) T, ~ V/ZX%(J—I) and T,~ %sz—p
If we let
T,
(3.4) U=T,+T,, V = T 4T,

then the joint distribution of (U, V) can be found to have densities

(3.5) p(U, V) (lly)yu—1)Ug(1J—1)—1‘V,}1(J—1)—1
(1= PRI D=1 MUY 7 =),

That is, the conditional distribution of U given V is given by

4 2
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Therefore, from (3.2)
R () = B U¥1)- 550 ) ¥}
Y(IT-1)(1J +1) (1—yp(IJ—1) (1-9)*
B E{ W=7 20 i) T }

(3.7) VW -D)LI+O[ (V1= V))A=7) ]
=E{4(V+y(1—V))2|_ Jy(IT+1) ]

(1=y)* (1=p)’(1J-1)
LY R VeI ) }

YA(V)-

w(V)—

We are thus led to consider the statistical problem where we observe V having
densities (parametrized by 7,0 < y < 1)

-4 -1)-1 3(I-1)-1
Y 14 1-v)
(3.8) Py(V) oC V(- V))%(IJ—I)

(with respect to Lebesgue measure restricted to {V:0 < V < 1}), and we wish to
estimate (V+y(1—V))(1 —v)/Jy(IJ +1) with loss

Y-+ 0L, (V+y(1—V))(1—v)]f
AV+y(A-V)EL Jy(IJ+1)

It is clear from (3.7) that ¢(S,, S,) is admissible among invariant procedures (with
squared error as loss) if and only if the corresponding estimate W(V) is admissible
in the above problem.

We remark that ¥, corresponding to the Bayes invariant procedure ¢, is
actually the Bayes procedure (in the reduced problem) with respect to the prior
distribution y* Thus, to prove admissibility of ¥(-1) and hence of ¢(_;,, we can
apply Lemma 1.1 with parameter 0 = y(7 = (0, 1)), IT equal to Lebesgue measure
(restricted to (0, 1)), p, given by (3.8) and L given by (3.9) (and we will use
f() = y"). To apply Lemma 1.1, we will need a bound for (¢ ;,—V;)?. The
following technical lemma provides this bound:

(3.9) L(Y,y,V) =

LEMMA 3.1. Let

s, 1
lpb(Sl +SZ) = (Sl Tl_SZ> ¢b(Sl’ SZ)’

where ¢, is given by (2.10) (with a = —1). Then there are p, > 0 and constants
K and K, (independent of V and p) such that, for p < p,
(3'10) |¢(—1)(V)_‘/’(—1+p)(V)| = P(K1V+K2(1_V))

forall V,0 <V < 1.
The proof of this lemma involves long and tedious calculations which are given
in detail in Portnoy [10]. We now use this lemma to prove
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THEOREM 3.2. If ¢_ 1 is defined by (2.10) (for a = b = —1), then it is admissible
among scale and location invariant estimators in the original problem of estimating
a, with squared error loss.

PROOF. As previously remarked, it is sufficient to prove that W _,, is admissible
in the reduced problem (described by (3.8) and (3.9)). To do this, we will apply
Lemma 1.1 with IT equal to Lebesgue measure (restricted to (0, 1)) and the covering
of the parameter space consisting of just one set, {7 }. In particular, we will show
that for any ¢ > 0, conditions (1.3), (1.4), and (1.5) are satisfied by f(y) of the form
f(y) = y* for —1 < b < —}. First note that, for —1 <b < —3, y* = 1 (for
0 < y < 1); and, hence, (1.3) is satisfied. Furthermore, we showed in Section 2
(see (2.17)) that R(¢(, ) (¢, y)) was bounded for any a, b, I, and J for which
c—d—1>0 and d > 0. Hence, if I > 2, J> 2, R(¢-;), (¢, 7)) is bounded.
Therefore, from (3.7) it follows (since the expectation of the last two terms in the
final expression are bounded) that E,L(¥ _), y, V') is bounded where L is given by
(3.9) (and the distribution by (3.8)). That is, the risk function in the reduced
problem is bounded. Therefore, since f(y) is integrable, it follows that condition

(1.4) holds. To check condition (1.5) we evaluate K(f) (with p defined by b =
—1+p) as follows:

1) k()= || ST Y V)= ¥ e
1Py dy

(1 (PEY K=D)L
= fop JE< V-V )” “”

where the last inequality uses Lemma 2.1. Thus, for p small enough,
(3.12) K(f) S Kup*[oy" 'dy =Ksp<e.
Therefore, condition (1.5), and hence, Lemma 1.1 holds; thus y_,, is admissible
and the desired result follows.

Since ¢(_,, is a limit of Bayes procedures in the reduced problem, it might be
expected to be a minimax among invariant rules for loss given by (2.7). However,
calculations in Table I in the appendix indicate that this is not true. Nonetheless,

these calculations also show that the risk of ¢ _,, is rarely greater than the lower
bound for the minimax risk (for loss (2.7)) given in the following lemma.

LEMMA 3.3. With the notation of Section 2, let ¢(S, S;) = (S; +S)PY(S1/S1+S5,))
be an invariant rule and suppose the loss is given (for M = 0) by

do® -7\
(3.13) L0, (61) =5 +y;\4)2 <¢ _;JaD

1
(i.e., L(M)((ﬁ, (0'..» Uu)) = ((M + 1)0'e+J0'a)2 (d’ _au)z)'
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If RM)(¢, y) denotes the risk of ¢ for loss L™, then, for any M > 0,

(3.14) lim,_,o R™(,7) = L
: y=0 1) = J2(I+1)
PROOF. First note that since ¢ is invariant, R‘* is indeed a function of y alone;

and that since the densities (2.4) form an exponential family, R(*)(¢, y) is con-
tinuous for y € (0, 1). Now, by invariance,

o il 2
Y

Em{(yrl+rz)w<ny_T> 1';—}

where Ty ~ xi,-1,and T, ~ x7-;. So, by Fatou’s lemma,

1 2 )’Tl 1 y 2
. (M) . .
(3.16) lim,., R™(¢,y) = Elim 1nfy_,0(—~1 yM) ((y11+ 12)|,I/<ﬂ,1 T2>_—J

E|CT. ! 2> 2
- 2 J) =+

where C = liminf,_, ¥(y). []
We now note that this lower bound is not attained by ¢ _,, for loss (2.7) (i.e.,
for L™ with M = 0). In particular, in Portnoy [10] it is shown that although

) 2
(3.17) lim,-.o RO(B - 1) = 7577y
it is also found that
8
: (©
(3.18) llmv_,od RO(¢p-1y,7) = RS () >0

Thus, RO(P_,), y) > 2/(J*(I+1)) for some y > 0 (this is shown explicitly in
calculations in the appendix). Hence, we can not conclude that ¢ _, is minimax
for loss (2.7). However, for loss L™ (given by (3.13)) the risk R*™X(p_ ), y)
satisfies

1
(M) —_—
(3.19) R (¢(—1),)’) "(1 -I—yM)Zf(y)
where f(y) = R9($ -, y). Thus, taking derivatives and letting y — 0,
) d

where f(0) and f7(0) are given by (3.17) and (3.18) respectively. Therefore, for M
large enough R™X(¢_ ), y) is decreasing in y for 0 < y < 7y, for some y, > 0.
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Furthermore, since f(y) is bounded (say, by Kj), it follows from (3.19) that for
Y > yO,

(3.21)

1 1
R(M)(d)(_l),))) =< (l-l-‘yM)Zf(y) = (1 +y0M)2 Ko

< lim,,, R(M)(d’(— 1) 7)

for M large enough (depending on y, and K,). Therefore, R (¢, y) is
maximized at y = 0; and hence, ¢_, is minimax among invariant procedures for
loss L™ for large enough M. We can now apply Kiefer’s theorem (Kiefer [5]) to
infer that ¢ _,, is minimax among all procedures (in the original problem) for
loss LMD,

It should be noted that 2/(J2(I+1)) is merely a lower bound for the minimax
risk and that it may not be attained. This would indicate that ¢._,, is nearly
minimax for loss (2.7). Furthermore, ¢ _,, does do as well as possible at y = 0,
and thus is optimal in this sense.

4. Estimates of the ‘‘within’* component. We now discuss the problem of estimating
o, in the previously described analysis of variance problem. As before, we observe

(4.1) Sy N%CX?(J—I) and Sz"“z_i‘yX?—l
where we are using the same parameterization
(4.2) oc=—£- and y=—02—.

20, o.+Jo,
Again we take the loss function to be

2
@3) Lo ) =795,
and consider formal Bayes estimators with respect to prior measures
(4.4) drl (o, y) = a*y* dody.
Again letting
(4.5) c=31IJ-1)+a+2 and d=%I-1)+b+2
we find (as before)
(4-6) d)(a,b)(Sl’SZ) =3 &l |:1 - : ]
(c—d—1) CAF .4 1,4(A)

where A = S,/(S;+S,) and F.4,4/(A) is given by (2.11). We also have, directly,
(“7) Pan(S1:52) =31 == 1)[1 ;iAz(j(:i;,ld’ 11)1)]

where I,(-,-) is the incomplete beta function (again, see Pearson [9]).
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Similar proofs to those in Section 2 can now be used to show admissibility of the

appropriate ¢, ;). However, in this case there is a slight difference. From (4.6)
we have

Sy
(4.8) Dan(S1,8:) = We—d—1)

Therefore, since ¢, 5, is positive, the risk satisfies

1 2
(4'9) R(d)(a,b),(a’ 7)) = “272E<¢(a,b)(51, Sz)—z'—()() =< My2

where M is a fixed constant depending on a, b, I, J and finite whenever c—d—1 > 0.
That is, the risk is integrable with respect to IT as long as b > —3 (instead of
b > —1). Furthermore, using similar reasoning to that in Section 2, we can find
in this case (using notation of Sections 1 and 2),

hy(S1,S2,%) 2
—_— < *
(4'10) E(a,v){hz(sl’ Sz,a) =M

(in contrast to (2.24)). Thercfore, Theorem 1.1 implies that ¢, ;, is admissible for
a= —land b > —3.

As before, we can show that the limiting estimator ¢, _ 5, is admissible among
scale (and location) invariant estimators. Furthermore, although using loss function

(4.3) will force the risk to tend to zero as y approaches zero, we can consider the
following, perhaps more reasonable, loss function:

1

c,?

(4.11) LX(¢,(0.,0,)) =—5(d—0.)".

Again, for this loss function, ¢, _ 3, does as well as possible at y = 0; and there
will be related loss functions for which ¢ _; _ 5, will be minimax. In fact, numerical
calculations in the appendix seem to indicate that ¢._, _3, is actually minimax
for the loss function given by (4.11), although I have been unable to prove this.

5. Conclusions. There is, I think, sufficient evidence to seriously recommend
the use of a formal Bayes rule for estimating o, in the model II analysis of variance
problem considered here. Although one may claim that point estimation of o,
in this problem is not a serious or useful statistical consideration, there are prob-
lems, I think, where point estimates are really desired. For example, one may
want to use the data to plan future experiments, or one may want to compare the
data with some other results and perhaps estimate a correlation coefficient. In
either of these problems, the use of a negative, or even a zero, estimate is un-
acceptable. Thus, a Bayes or formal Bayes estimate should be used. The formal
Bayes estimates considered in Section 2 are scale and location invariant estimates
with what I feel are adequate mean squared error properties. The theoretical
considerations in Chapter 2 certainly indicate that no estimate can be substantially
better than ¢_,, (given by (2.10) for a = b = —1). Numerical calculations
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(Table I) indicate that other estimates are better than ¢, only very near
o./(c.+Jo,) = 1. Elsewhere, ¢ _;, is just as good and is actually a definite
improvement in small and moderate sample sizes for o,/(6,+Ja,) < -5. Thus
there seems to be adequate reason to seriously recommend the formal Bayes
estimators of a,.

Recommendation of the formal Bayes estimators of ¢, does not seem quite so
strongly indicated, primarily because in this problem there are already reasonably
good estimators. In this case the maximum likelihood estimator, (A.7) in the
appendix, or the related estimate, (A.8) in the appendix, have nearly as good mean
squared error properties as any other estimate. The numerical calculations (Table
II in the appendix) do indicate that the formal Bayes estimators can offer some
improvement in certain cases. Furthermore, they do have the desirable property
that formal Bayes estimates of o, are strictly less than formal Bayes estimates of
(o.+Jo,). However, the fact that the formal Bayes estimators are more difficult to
calculate, together with the fact that there are other estimators approximately
as good seem to be sufficient reason not to seriously recommend their use in this
case.

Actually, the most noticeable feature of the calculations listed in Table I is the
extremely poor performance (in terms of mean squared error) of the posterior
expected value of o, for the Jeffrey’s prior suggested by Tiao and Tan [19] (see
(A.5) in Table I). Calculations in Klotz, Milton and Zacks [6] show that much of
this large mean squared error is due to the extremely large bias of (A.5). Nonethe-
less, the expected posterior variance is still 5 to 10 times larger than the mean
squared error of ¢ _,,. The behavior of the posterior distribution suggested by
Tiao and Tan becomes clear if we note that the estimator (A.3), the mode of the
Tiao-Tan posterior, is, on the average, reasonably close to the true value. Thus,
the posterior distribution with respect to the Jeffreys’ prior is centred approxi-
mately correctly but has far too large mean and variance (on the average).

For the case of the present estimator, ¢_,), we actually find that the prior
distribution (for @ = —1, b = —1) corresponds exactly to the Jeffreys’ prior,
do do /(0 (0.+Jo,)). However, ¢, is not the posterior mean, but the posterior
expected value of ¢,/(g,+Ja,)? over the posterior expected value of 1/(a,+Ja,)?,
the denominator coming from the normalizing factor in the loss function. This is
the same as taking the posterior mean for the prior do.do,/((c,+Jc,)*c,). The
reasonable size of the mean squared error of ¢ _ ) shows that this latter posterior
distribution is centered at least as well and has substantially smaller variance (on
the average) than the posterior for the Jeffreys’ prior. Thus, if one wishes to make
inferences based on a posterior distribution, one can seriously recommend using
the prior do do,/((c,+J5,)%c,) instead of the Jeffreys’ prior. This serves to justify,
in my opinion, the use of squared error as loss: by using squared error and by
taking an appropriate limit of what might be called Bayes invariant priors, one is
assured of finding a posterior distribution which, on the average, is reasonably
centered and has reasonably small variance. As this example shows, the Jeffreys’
prior can lead to posterior distributions with mean and variance far too large.
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One other comment should be made: in this case, the appropriate limit of Bayes
invariant priors was exactly the Jeffreys’ prior. This need not always be the case.
In particular, the appropriate limit may be any of a large class of priors; and in
this case was chosen strictly for ease of calculation. In other problems (e.g. the
estimation of parameters of a gamma distribution with unknown shape and scale)
the Jeffreys’ prior may be computationally unfeasible; but there may be a reason-
able limit of Bayes invariant priors (see Portnoy [11]).

In conclusion, we have presented a method (not yet completely well defined)
for finding reasonable formal Bayes procedures. In problems invariant under a
group, & (hopefully as small as possible), with a parameter space of the form
® x.7, we take Haar measure on ® and multiply by an appropriate limit of
probability measures on .7 (or a probability measure itself). We then take an
invariant version of the squared error loss function (or some other reasonable loss
function), chosen so that for some procedure, the risk is bounded above zero and
less than infinity (so that the concept of a minimax procedure makes sense). We
finally make inferences using the posterior distribution with respect to the prior
distribution modified by any appropriate normalizing functions in the loss function.
These techniques, in problems like the present one, should lead to reasonable
statistical procedures, especially in problems where the existing procedures are
inadequate.

APPENDIX

Numerical Calculations of Mean Squared Errors for
Estimators of ¢, and o,

A computer program was used to calculate expectations with respect to the
following distributions:

SINUeXIz(J—l) and S, ~ (o, +Jo)xi- 1.

In Table I, the following expectation is listed as a function of ¢,/(¢.+Jo,) for
estimators ¢ of a,:
2

. J 2
Risk = mee.au(‘f’—%) .

This form of the mean squared error was chosen so that the results could be
directly compared with those in Klotz, Milton and Zacks [6]. In Table I, we
compare the above risk of formal Bayes estimators ¢, defined by (2.10) for

a = —1 and listed values of b with values for the following estimators given in
Klotz, Milton and Zacks [6]:

1/5, S \*
(A1) 7<T_I(J—1)>

/s, s \
(42) 7<1+_1 10— 1))
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1/ 8, Sy +
(A-3) T (1’1—2_1@—1)+2)

1/ S, Sy +

(A4) J <I_+I I(J—l)—2>

(A.5) is the expected value of ¢, under the Tiao-Tan posterior using the Jeffreys’
prior (see (2.6) or (2.7) on page 39 of Tiao-Tan [19]); where (x)* = max (x, 0).
Note that (A.1) is the maximum likelihood estimator, (A.2) is suggested by Zacks
[20], (A.3) is the o, component of the mode of the posterior distribution (2.6) in
Tiao-Tan [19], and (A.4) is the mode of the posterior distribution (2.7) in Tiao—
Tan [19].

TABLE 1
JZ
Risk of Estimators of 0,: ER E(¢— ¢2)*
I=4 J=2
% Al A2 A3 A4 AS  b=-1 b=—1}

o.+Jo,

1.0 2744 1408 1220 0604  20.6496  .3764  .2340
8182 2588 .1379  .1107  .0807  17.2529 2159  .1140
6667 2775 1703 .1364  .1392  14.8606  .1483 0775
5385 3101 2170 .1787 2133 13.1576  .1366  .0897
4286 3455 2663 2261 2886 119439 1582 .1306
3333 3776 3111 2720 3561 11.0876  .1988  .1870
2500 4033 3478 3131 .4091  10.5013  .2489  .2502
1765 4216 3744 3481 4422 10.1264 3017 3138
1111 4323 3911 3764 4520  9.9263 3515 3722
0526 4369 3987  .3988  .4363 9.8820 3910  .4174

0.0 4375 4000 4167 4000  10.0000  .4000 4167

[=4 J=4
e Al A2 A3 A4 AS  b=—1 b=—1 b=0
g.+Jo,

1.0 2080  .0960  .0640 0704  18.4016  .3824  .2400  .1616
6923 2452 1477 1155 1354 13.5725 1316 0643  .0369
5000 3119 2319 2044 2338 11.5275 1219 0906  .0875
3684 3625 2978 2761 3085  10.5910  .1737 1631  .1742
2727 3957 3415 3269 3574 10.1593 2360 2377  .2588
2000 4157 3692 3610 3858 9.9756 2926 3026  .3300
1492 4273 3853 3833 .4006  9.9165  .3380  .3535  .3859
0968 4335 3941 3976  .4064 99180  .3709  .3899  .4256
0588 .4364 3982 4066  .4068 9.9446 3917 4122 .4494

.0270 4373 .3997 4126 4039 9.9757 .4008 4206 4572
0.0 4375 .4000 4167 .4000 10.0000 .4000 4167 4490
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(TABLE 1—continued)
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I=4 J=8
e Al A2 A3 A4 AS  b=—1 b=—-% b=0
o.+Jo,

1.0 1856 .0832 0448 0704  17.5424 3904 2432 1664
5294 2967 2170 .1927 2170 114048  .1063  .0753  .0709
3333 3744 3156 3044 3211 102633 .1933  .1900  .2056
2258 4089 3610 3596  .3676 9.9963 2757 2830  .3077
1579 4246 3820 3865  .3883 9.9439 3306 3439 3732
A111 4317 3919 4004 3972 9.9473 3644 3805 4128
0769 4350 3967 4078  .4007 9.9626 3841 4017  .4353
0508 4367 3988 4118  .4017 9.9773 3944 4126  .4466
0303 4372 3996 4143 4014 99882 3992 4171 4509
0137 4375 3999 4156  .4007 9.9954 4004 4178  .4510

0.0 4375 4000  .4167 4000  10.0000  .4000  .4167  .4490

I=4 J=10
ge Al A2 A3 A4 AS  b=—-1 b=—-% b=0
o.+Jo,

1.0 1800  .0800  .0400  .0700  17.3900  .3900  .2500  .1700
4737 3186 2438 2244 2465 109418  .1191  .0970  .0997
2857 3903 3367 3329 3418 10.1046  .2283  .2296 2500
1892 4178 3733 3769 .3784 9.9613 3068  .3170  .3440
1304 4291 3885 3965  .3927 9.9400 3520 3667  .3970
0909  .4340 3950  .4060  .3983 9.9617 3769 3937  .4261
0625 4360 3979  .4109  .4006 9.9753 3903 4077 4412
0411 4370 3993 4136 4010 9.9859 3969  .4145 4481
0244 4374 3998 4151 4010 9.9929 3996 4172 4503
0110 4375 4000 4160  .4004  9.9972  .4003  .4173 4502

0.0 4375 4000 4167 4000  10.0000 4000 4167  .4490

I=10 J=4
e Al A2 A3 A4 A5 b=-1b=-% b=0
g.+Jo,

1.0 1056 0672 0544 0560 7696 .1968 1472 .1136
6923 1363 .1079 0937  .1041 4500 0729 0483  .0341
5000 L1713 1531 1431 .1563 4188 0888  .0775  .0756
3684 1866  .1742  .1680  .1804 4171 1254 1232 .1294
2727 1911 1815 1782  .1878 4271 1547 1583 .1702
2000 .1917 1830  .1823  .1884 4362 1725 1792 .1948
1492 1912 1829  .1841  .1867 4420 1810 1890  .2053
0968  .1906  .1825  .1850  .1850 4452 1835 1916  .2084
0588 .1902  .1820  .1859  .1837 4468 1834 1909  .2068
0270 .1900 1819  .1866  .1826 4480 1826 .1891 2038

0.0 1900 1818 .1875  .1818 4490 1818 .1875 2012
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(TABLE 1—continued)

I=10 J=10
% Al A2 A3 A4 A5  b=—1 b= —1
o.+Jo,

1.0 0900 .0600  .0400  .0500 7400 .1900  .1400
4737 717 L1551 .1496  .1579 4183 0997  .0886
2857 .1888  .1786  .1798  .1811 4337 1543 .1569
1892 .1899  .1819  .1855  .1833 4834 1753 .1797
1304 .1905  .1819  .1862  .1834 4466 1810 1876
0909  .1902  .I1818  .1868  .1828 4479 1821 1891
0625 .1902  .1818  .1870  .1824 4482 1824 .1884
0411 1901 1818  .1871  .1822 4485 1822 .1880
0244 .1901  .1818  .1872  .1820 4487 1820 .1878
0110 1900  .1818  .1874  .1819 44890 1819 1877

0.0 1900 .1818  .1875  .1818 4490 1818 1875

In Table II we list the following expectation as a function of a,/(c,+0c,) for
estimators ¢ of o,:

1
(A.6) Risk = FE((],’)—oe)z.
Here, we compare the risk of formal Bayes estimators ¢, defined by (4.6) for
a = —1 and listed values of b with values for the following estimators:
. Sy S8,
. Sy Si+S,
(A8) min <I(J—1)+2’ 1J+1 >
. Sy Si+S,
(A-9) mn (I(J—,1)+2’ 17 +4 )
. Sy Si+S,
(A-10) i (I(J—1)+1 " TT+4 )

Note that (A.7) is the maximum likelihood estimator, (A.9) is the ¢, component
of the mode of the distribution (2.6) in Tiao-Tan [19], and (A.10) is the mode of a
posterior distribution considered by Stone and Springer [17].
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I=4 J=2

Ja AT A8 A9 A0 b=—-30b=—25b=—-20b=—10
Oet0q

00 27350 31433 34070  .32058  .33333  .31363  .29638  .26900
0.1 28327 31481 33176 .30862  .32880  .30730  .28837  .25847
02 29761 31612 32490 29961  .32484 30183 28161  .25047
03 31639 .31802 .32018 .29408  .32153 29744 27657  .24650
04 33928 32034 31759 29252 31898 29444 27397 24914
0.5  .36572 32289 31706 .29531 31734 29329 27494  .26293
0.6  .39490 32551 31843  .30268  .31682  .29470  .28130  .29656
07 42561 32806 32141 31451 31776 29976 29624 36834
0.8 45602 .33037 32556 33005  .32061  .31034  .32590  .52379
0.9  .48317 33226 33011 34730 32600  .32971  .38387 91512
1.0 .50000 33333  .33333  .36000  .33333  .36000  .50000  3.00000

I=4 J=14
a A7 A8 A9  A10 b= -30b=-25b=-20b=—10

Oet+ 0,

00  .12840 .13683 .15081  .14635  .14286  .13741  .13315  .12723
0.1  .13362 .13737 .14338  .13740  .13990  .13371  .12894  .12275
0.2  .13981 .13838 .13978  .13349  .13821  .13184  .12723  .12249
0.3  .14579  .13942 13847 .13291  .13747  .13145  .12773  .12666
04  .15111  .14033  .13844  .13432  .13743 13225  .13016  .13549
0.5  .15560 .14108 .13906 .13675  .13791  .13400  .13428  .14923
0.6  .15928  .14169 -13996 .13959  .13875  .13648  .13985  .16809
07  .16219 .14216  .14092  .14241 . .13983  .13946  .14655  .19220
0.8  .16439 .14251 .14179 .14491  .14101  .14270  .15400  .22130
0.9 16592 14274  .14248  .14687  .14213  .14583  .16144  .25376
1.0 .16667 .14286 .14286  .14793  .14286  .14793  .16667  .28000
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(TABLE 2—continued)

Oq

A7 A.8 A9 Al0 b=-30b=-25b=-20b=-10
O.t0g

0.0 06314  .06503  .07003  .06901 .06667 .06527 .06422 .06283
0.1 06561  .06542  .06633  .06480 .06539 .06381 06272 .06166
0.2 06760  .06584  .06560  .06437 .06515 .06379 .06315 .06366
0.3 06893  .06613  .06564  .06493 .06529 .06433 .06436 .06720
0.4 06981  .06632  .06586  .06565 .06555 .06504 06581 .07134
0.5 .07040  .06645  .06609  .06629 .06583 .06574 .06723 .07550
0.6 07080  .06654  .06629  .06681 .06609 .06637 .06852 .07937
0.7 07108  .06659  .06644  .06721 .06631 .06690 .06961 .08277
0.8 07126 .06663  .06656  .06749 .06648 .06732 .07048 .08557
0.9 07138  .06666  .06663  .06769 .06660 .06762 07111 .08760
1.0 07143 .06667  .06667  .06778 .06667 06778 .07143 .08876

Ta —20 b

AT A8 A9 Al0 b= -30b=-2505b -1.0

Oet 0,

0.0 .05039  .05157  .05501  .05437 .05263 05174 .05107 .05018
0.1 .05227  .05189  .05227  .05132 .05172 .05073 .05009 .04961
0.2 05356 .05218  .05194  .05129 .05167 .05090 .05067 .05155
0.3 05432 05235  .05204 05175 .05182 .05137 .05164 .05426
0.4 .05478  .05246  .05220  .05221 .05202 .05186 .05262 .05698
0.5 .05508  .05253  .05234  .05258 .05220 .05229 .05347 .05942
0.6 05527 .05257  .05244  .05286 .05234 .05264 .05417 .06148
0.7 .05540  .05260  .05252  .05305 .05246 .05291 .05472 .06314
0.8 .05548  .05262  .05258  .05319 .05255 .05312 .05514 .06441
0.9 05553 .05263  .05262  .05328 .05260 .05326 .05542 .06529
1.0 05556  .05263  .05263  .05332 .05263 .05332 .05556 06574
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[=10 J=4

%a AT A8 A9  AI0 b=-30b=—25b=-20b=—10
O+ 0,

0.0  .05405 .05795 06075 05871  .06250  .06022  .05832  .05537
0.1  .05766 .05909 .05809 05573  .05920 05674  .05475  .05203
02 06158 06063 .05900 .05737  .05851  .05635  .05485  .05365
0.3 06421 06163 .06048 .05984 05915 05763  .05705  .05862
04 06563 06215 .06154 06170  .06022  .05948  .06000  .06510
0.5 06629 06238 .06212 .06275  .06122  .06118  .06277  .07143
0.6 06655 .06246 .06238 .06324 06192  .06241  .06481  .07647
07 06664 06249 .06247 06342 06221  .06311  .06601  .07968
0.8 06666 06250 06250 .06347  .06246  .06341 06653  .08097
0.9  .06667 .06250 .06250 .06348  .06249  .06346  .06664  .08161
1.0 .06667 .06250 .06250 06348 06250  .06348  .06667  .08163

I=10 J=10
Ta A7 A8 A9 A10 b= —30 b= —25b=—20b=—10

Oe+ 0,

0.0 02053 .02104 .02160 .02134 02174  .02140  .02113  .02073
0.1 02169 02151 .02126 .02107  .02112  .02087  .02071  .02067
02 02210 02169 .02159 .02160 02141 02133  .02142  .02210
0.3 02219 .02173 .02170 .02178 02159  .02163  .02188  .02307
04 02221 02174 02173 .02184 02170  .02179  .02206  .02350
0.5 02222 02174 02174 .02185 02173  .02183  .02219  .02368
0.6 02222 02174 02174 .02186 02174 02185  .02221  .02373
07 02222 02174 02174 02186 02174 02185 02222  .02376
0.8 02222 .02174 02174 .02186 ' .02174  .02186  .02222  .02376
0.9 02222 02174 02174 02186  .02174 02186  .02222  .02376
1.0 .02222  .02174 02174 02186 02174 02186  .02222  .02376
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