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SEQUENTIAL DISCRIMINATION WITH LIKELIHOOD
RATIOS

BY CHARLES YARBROUGH!
University of California, Berkeley

1. Introduction and summary. Let X, X,, --- beindependent identically distributed
random variables. You observe the X’s sequentially, knowing that their distribution
is one of countably many different probabilities. Within an arbitrary error level,
can you decide which one ? This is the general problem of sequential discrimination.

Freedman [4] showed that the discriminability of a family © is equivalent to a
seemingly weaker condition. Namely, for any error level « and any particular
0 € O there is a uniformly powerful fixed sample size test of {0} versus ®@-{0} with
error level uniformly as small as «. The proof is constructive. Given the fixed
sample size tests there is a recipe for manufacturing a sequential procedure to
decide among all the members of @.

The fixed sample size tests are, however, still required. Hoeffding and
Wolfowitz [5] considered this problem at length. LeCam and Schwartz [7] also
touched upon it briefly. Both papers considered separations in various topologies
and structures.

Here we return to the original problem and ask whether likelihood ratios can
be sensibly used. A rule is easy to specify. For each § € ® you pick a number
greater than one. Now watch X, X, ---. At each step compute the likelihood ratio
for every pair of probabilities. Eventually it may happen that for some 0 all the
ratios with 0 in the numerator are as big as the pre-assigned number. If so, stop and
declare 0 to be the true distribution. This rule is the extension to the countable
case of the general sequential probability ratio test proposed by Barnard [2] and
detailed by Armitage [1]. It does require the computation of all the likelihood
ratios; but since @ is countable, there is always at least one base for calculating
densities. Any one will do.

Likelihood ratio procedures have the advantage of being easy to formulate.
Also, the comparison of densities seems to be a reasonably natural technique.
However, it does not always work. An example will illustrate that it may fail
spectacularly.

When do likelihood ratio procedures work? The principal result is a charac-
terization of families which are likelihood ratio discriminable. Check each prob-
ability 0 separately. There may be a number K(6) bigger than one which will be
eventually exceeded simultaneously by all the ratios with 6 in the numerator. If
not, likelihood ratios will not work. If so, then the values K(6) may be chosen so
as to limit the error to any desired level.

1 Current address: Instituto de Nutricion de Centro América y Panamd, Guatemala.
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Despite their failures, likelihood ratio procedures may work when other natural
conditions fail. Freedman showed that if each 8 € © is isolated in the topology of
setwise convergence, then O is discriminable. The converse is false. There is a
family which is likelihood ratio discriminable, but which has one element in the
setwise closure of all the others. This is a direct consequence of a recent theorem
by LeCam [8].

Finally, with many familiar families likelihood ratio procedures have finite
expected stopping time. Cases vary, however, and there is a discriminable family
which has infinite expected stopping time for sampling under one of its elements.

2. Preliminaries. (2, ¢) is a measurable space and O is a countable collection of
probabilities defined on (Q, %). For € ® and N = 1, 2, ---, o0 the probability
space (QY, @V, 0") is the usual N-fold product and ™ is the sub-o-field of ¥*
consisting of events depending only on the first N coordinates. For a point w € Q*
denote the Nth coordinate by wy. Let Xy(w) = wy.

Since © is countable there exist o-finite measures on (2, %) which dominate all
the 0 € ®. Fix one such measure u. Let f; be the density of 6 with respect to u.
Then f; is a real valued nonnegative ¥ measurable function on Q. Write
folwy, -+, wy) as shorthand for [ i~ fy(w;). Let 0° | #™ be the restriction of 6%
to ¥™. Then (00 | #™/ou” | V) (w) = fy(w;, -+, wy) holds u®-a.e. This is an
easy consequence of the natural association between ¥ and ™.

For any pair 0, o € © define the following likelihood ratio functions on Q*, with
0/0 = 1.

Roon(@) = fo(@y, s on)[ fo@ys -+ wp)
Ron(@) = inf, ¢ o o7 Roon(®).
Of course R,y and R,y are ¥™ measurable. For o € Q® and N a natural number,
define the shift mapping Sy of Q% onto itself by Sy(®) = (W, 4y, ©W24n, -*+). TWO
easy facts:
(1) For fixed o # 0 0*°[RgonTo0] = 1.
(2) For all positive integers L, M, and N =L+ M

R (@) Rop(Si(@)) = Ron(w).

Fix 0 € ©® and let ® be ©-{0}. Then to say that 0 is in the weak closure of ®
means that for every real ¢ > 0, every natural number M, and every collection
Ay, Ay, ey Ay of Z-sets there is a 0 € @ such that |0[A,-]—0[A,-]| < ¢ for all
i=1,2 -, M. ’

3. Definition of likelihood ratio discrimination. The formal definition is
motivated by the following idea. Given ® and a maximum permissible error
level a, choose a function K, on ® with K,(6) > 1 for all § € ®. Sample until all
the likelihood ratios Ry,y are at least K, (0) for some 6 against all its competitors
o € ©-{0}. Stop and declare 6 to be the true distribution.
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Formally, let K be a real-valued function on ® with K(0) > 1 for all 6 € ©.
Define on Q®:
(3) (w)=o if Ryy(w) < K(0) for
all 6e® and for all
N=12,--

= min[N | Rgp(w) 2 K(0) for some 0e®] otherwise
(4) Di(w) =0, (arbitrary)  if tx(w) =00
=0 if t(w)< oo and Ry, (@) = K(0).

Since the values of K are strictly larger than one, Dy is unambiguous. No two
ratios Ry,n(w) and R, ,y(w) can both be greater than one. Both [ty = N] and
[tk = N, Dy = 0] are 9™ measurable, so the obvious procedure of waiting until
7 and then choosing Dy makes sense as a non-randomized sequential decision
procedure.

DEFINITION. Suppose there is a function K, on © for every real o € (0, 1) such
that forevery 0 € ©

Q) K, (0)>1 and
(6) 0°[tg, < 0] =1 and
(7) 0°[Dy, =0] = 1—a.

Then likelihood ratio discrimination exists.
In this case we shall also say that the family © is likelihood ratio discriminable.

4. Theorems and discussion. The results announced in Section 1 are reiterated
here in formal detail. The examples appear in the following section.

We are concerned with the properties of ratios of densities taken with respect
to a fixed dominating measure u. Is the choice of u arbitrary? All procedures
defined below involve only countable operations on sets defined by the countable
family of measurable functions fy(w)/f,(w) for 8, ¢ € ®. So an affirmative answer
is given by

(8) FACT. Let p and p be two measures which dominate all 0 € ©. Let f, = 00/0u
and g, = 00/0p. Then for any pair 0,0 € © the ratios folf, and g,/g, are equal
0-a.e.

To expose the main theorem we need a function T, defined on Q% for each
0 € © and each real 4 by '

9) Ty(w)=o0 if Rgy(w)<hforall N =1,2,--
=min[N|Roy(w) 2 h]  otherwise.

Useful facts about Ty, are

(10) [Tor = N]eg™.
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(11) T,4(w) is a monotone non-decreasing function of 4.
(12) For K any function from © to (1, ),for N = 1,2, ---,and forall 0 € ©®

The event [T, < oo]is fundamental. It consists of those w which will eventually
identify 0 at a likelihood ratio level of 4. Suppose that there is a function K on ©
such that 0°[Tyxe < co] = 1 for all § € ©. Then the likelihood ratio procedure
surely stops, and it is necessary only to control the error. This is done by choosing
new (and generally higher) values for K.

For all 0,0 € ® (R,4y; N = 1, 2, ---) is a nonnegative 6*-super-martingale with
expectation < 1. As such, it can be decomposed into a positive martingale with
expectation one and a non-positive part. Applying the Kolmogorov inequality
gives

0°[R,ex = K(o) some N =1,2,---] < 1/K(0).
(13)  0°[Dx # 0] < 0°[R,oy = K(o) some N and some 0] < Yy o[1/K(0)]

which can be made arbitrarily small by a suitable choice of K.

If revising K does not alter the certainty of stopping, we are done. To check this
we will have to examine T, on [1, c0). Note that this includes Ty, even though all
values of K are greater than one.

(14) LEMMA. Fix 0 € © and let h > g > 1 be real numbers. Then 0°[Ty, < ] = 0
if and only if 0°[T, < ] =0. Also, 0°[T,, < o] =1 if and only if
0°[T,, < o] = 1. Informally: if you are sure to miss (or find) one of the 6 € ©

by using some particular 4, then you can use any other level. To prove (14) we
need

(15) FACT. Suppose f is a real-valued, non-increasing function on (1, 0o) such that
1 = f(x) = f(x?*) = [f(x)]? holds for all x.

(i). If thereis an hwith f(h) = 1thenf = 1.
(ii). If there is an h withf(h) = O thenf = 0.

PRrOOF. Claim (i). By monotonicity f(x) = 1 for all x < h. Fix x > h and let N
be an integer so large that /¥ > x. Then

fE 2 2 G 2 2 WP =1.

Claim (ii). By monotonicity f(x) = O forall x > h. Fix x < h and let N be so
large that x*™ = h. Then

0=/ z[/(x)I". 0
Proor oF (14). By (11) [T,, < o] = [Ty, < oo]. Moreover

[Ty2<o0] = U;O=1 Uf=1 [Toy = Tand Ty, (81 (w)) = J]
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by (2). But the X’s are independent and identically distributed, so for fixed I,
[Rps(Si(w)) = g]is independent of [T, og = I1and has probability 6°[T,, = J]. So

07[Toy < 0] 2 0°[Tpe < 0] Z Y121 Y 7=y 0°[Tyy =17 07[ Ty, = J]

=0"[T,, < 0]*;

Fact (15) applies. []

For the next lemma we need the strong Markov property.

(16) FAct. Let t be a stopping time on Q®; ie., [t = Nle 9™. Suppose
0%[t < o] = landletty = 0,7, = t,andty,, = ©(S,,). Let

Zy = (@ @)+ 107" Dey(a)-

ThenZ,, Z, --- are independently and identically distributed.

(17) LEMMA. Fix 0 € @ and let h > 1 be a real number. If

0°[Ty <oo]=1 and 0°[Ty, < 0] >0 then 0°[T,, <oo]=1.

ProOF. For a fixed N (chosen below) define the following system on Q:

(18) Yo =0 and Yy=min[M|M> Y, ;+N and Ryy_y,_ (Sy, )=1]

By (16) the increments Yy, — Yy are independent identically distributed. They
are finite a.e. since 0*[Ty; < o] = I implies that 0®-a.e Ryy(w) = 1 infinitely
often. So there is some N and p such that

0°[Tn < N]Z p>0.
Then 0°[Ty, < Y,] 2 p, and Fact (2) implies

0L Ton > Y1 l Ty, > Y] < 1-p.
So
(19) 0°[Ty, > Y] = (1-p)¥
and T, is finite. []

Lemmas (14) and (17) show that there are only three possibilities for [T, < o]
as a function of 4 on [1, o). It may be identically one, or zero on (1, oo0) with any
value at i = I, or strictly positive and strictly less than 1. The main theorem will
argue that likelihood ratios discriminate if and only if 0°[T,, < oo] is identically
one. First we rule out the other cases.

(20) THEOREM. Suppose there is a 0 € © such that lim,_,, 0°[ T, < co] < 1. Then
O is not likelihood ratio discriminable.

Proor. Let lim,_,; 0°[Ty, < o] = 1—4. The monotonicity of T, (11) implies
0°[ Ty gy < 0] < 1 -6 forall K on © with K(0) > 1 for all § € ©. But by (12)

0%[tg < 00, Dg = 0] < 0%[Tyk(e) < 00] £ 1-46.

So either %[ty < 0] < 1 or 0°[Dy = 0] £ 1—6 contrary to definitions (6) and
(M. 1
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(21) CoROLLARY. If 0°[Ty, = o] = 1 for some real h > 1 and some 0 € © then
there is no likelihood ratio discrimination.
The main result is a characterization theorem.

(22) THEOREM. O is likelihood ratio discriminable if and only if for every 0 € ©
there is areal K(0) > 1 such that 0°[ Ty < 0] =1.

Proor. Lemmas (14), (17), and Theorem (20) demonstrate the necessity;
Lemma (14) and inequality (13) the sufficiency. []

ReMARK. Of course, if some function K works, then any other with values
greater than one will too. It is an open question, however, whether likelihood ratio
procedures which surely stop for all 6 € ® imply the discriminability of ©.

Here are three direct consequences of (22).

(23) COROLLARY. Any finite © is likelihood ratio discriminable.

PrROOF. By (1) Ry,y T 00 with 0®-probability one. The finiteness of ® implies
min, ¢ g9 Roon 1 0 also. []

REMARK. As is well known, this result can be obtained by a direct appeal to the
law of large numbers.

(24) CorOLLARY. O is likelihood ratio discriminable if for every 0 € © there is a
natural number N and a set A e %™ with 0°[A] > 0 and o®[A] = 0 for all
o € ©-{0}.

Proor. Fix 0, N, A. For all ¢ # 0, f(w,, -+, wy) = 0 on A, which implies
Ryn(w) = o0 on A. The events [Sx(w) € A] for K = 0, N, 2N, --- are independent
and equally probable. They have positive probability. One such event is sure to
occur, So

0°[T), < 0] = 0°[Ryx =00 some K =1,2,---]=1.[

(25) COROLLARY. Fix 0 € ©. Let Cy, be the weak closure of [¢" | 6 ¢ ® and o # 0].
IfON € Cyforall N = 1,2, --- then likelihood ratio discrimination does not exist.

ProorF. Fix real # > 1 and positive integer N. [Ty, = N] < [Ry,y = H] for all
o # 0.So

h-o”[Ty,=N] = j[Tg;,=N] h-f(wy, -, wy)0u” Ig(N)

< ,f[TO,,=N]fe(w1, '“,wN)alIOO | g™ = Ow[TOh = N]-
Weak closure implies sup, . 6”[4] = 0”[A] forall 4 € ¥™.So
0°[Ty,=N]=0 and 0*[Ty, <] =0. [

REMARK. In this last case a stronger result is true: no discrimination is possible
by any means. This fact is a generalization of Theorem 4 in Freedman to rules
measurable on the o-fields of Xy, ---, XyforN = 1,2, ---.

Can every discriminable family be separated by likelihood ratios? Example |
shows that the answer is no. In fact 0*[T},, = o] = 1 forall0 e ®and & > 1.
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Example 2 is based on a theorem by LeCam. It exhibits a likelihood ratio
discriminable ® which has one element in the weak closure of the rest. The key is
that in two dimensions all the probabilities are weakly separated. This peculiar
situation is not well understood, but it does show that separation in the weak topo-
logy is not equivalent to discriminability.

When likelihood ratios do discriminate, what can be said about the stopping
time ? Since tx < Ty, by (11), we first look to T, and show

(26) LEMMA. For any realh > g > 1, E4[Ty,] < oo if and only if Eg[Ty,] < o0.

PRrOOF. Ty, is monotone in x which shows the necessity. So suppose Ey[T,,] < oo
for some g. Then Ey[T,,] < oo and there is an N and p with 0*°[T,, < N] = p > 0.
Define Y, Y, -+ by (18). Then by (19) and (16)

Eg[Ton] < EoY1/(1—p) < (Eo[ Tyy + N])/(1 —p) < 0. []
Thus if Ty, has finite expectation, you may change the test levels. This lemma

coupled with Wald’s identity gives a result which covers many common families.

(27) THEOREM. Suppose there is an N such that o > Eqy[logRgy] > 0. Then
Eg[Ty,] < oo for all h > 1. In particular this applies to the normal family
® = [Ny, 1), I = 1,2, ---]in the discriminable case that all 4, are isolated.

PrOOF. By (2) and Lemma (26) it is sufficient to show that if Y,, Y,, --- are
independent and distributed as log Ryy, then for some h,7, = inf[M | YL, Y, > h]
has finite expectation. But if E7, < oo then Et, < oo; and for any independent
and identically distributed Y,, Y, ---,if o0 > EY; > 0, then Fry, < oo ([3] page
380). [

REMARK. The finiteness of Eqgy[log Rgy] is not necessary.

Any more general result must take into account Example 3. There is a family
which is likelihood ratio discriminable and which has infinite expected stopping
time under sampling from one of its members.

5. Examples.

EXAMPLE 1. A4 discriminable family which is not likelihood ratio discriminable.
All probabilities in @ = [0;p; I = 2,3, ---; M = 1,2, -+, 27 are defined on [0, 1]
with respect to Lebesgue measure 4. Let A;,, = [(M—1)/2!, M/2"]. Then

fo,,(x)=%+2""1 for xedy
=1 otherwise.

To prove discriminability we show each element of ® is weakly isolated. Fix 7
and M. Let

B=[AmK=1,2,-,2" and K #M; Aryy,m; and  Apoqomeql.

Foranyo # 0, a direct computation yields sup . 4 |073[B]—0”[B]| = 1.
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However, @ is not likelihood ratio discriminable. Fix N. Now fix K and consider
Ry, 0.~ for L = 1, ---, 2%, Since all densities are at least 1 everywhere, each factor
in the ratio is at most three. But for any value of X, and any K there is an L for
which fg,, is higher than f, . In fact as K — coinfy_; ..., [Ro,,0,,8] 0. So
Ry, ,n = 0 with 05 -probability one.

Here the failure of likelihood ratios is complete. For any N, I, and M we have
OiulRe,,,n =0] =1.

REMARK. The family of densities given by Kraft ([6] page 132) provides another
example in which likelihood ratios fail completely.

EXAMPLE 2. A4 likelihood ratio discriminable family with one element in the weak
closure of the rest. This example rests on a little understood property of weak
closure. LeCam [8] proves the existence of a countable family ¥ = [vy] with
continuous densities defined on [0, 1] whose weak closure includes A. On the
square A% is separated from [v* | v € V]. ¥ need not be discriminable. The following
construction copes with this possibility.

Let By = [(H)V*!, 1] and let 0, be 1. For N = 1, 2, - define Oy to be zero on
[0, 3)V*') except for mass (3)"*! on the midpoint (1)¥*2. On By let

0x[A] = va[A N By]- AL By1/vn[By].

That 0, is in the weak closure of (0, 0,, ---) is a direct consequence of the fact
that by construction 8y — vy converges uniformly to zero on all measurable sets.

Corollary (24) shows likelihood ratio discriminability for ©® = [0y, N =1,2,---].
For N = 1,2 --- Oy puts positive mass on the point ()" *? while the others, having
continuous densities there, do not. For 6, we must look for a separation on the
unit square. Here, by construction [8], there is an A with 0,2[4] = 3 but vy2[4] = 0
for all other N. Let D = 4 n [%, 1]%. Then 0,%[D] =0 for N = 1,2, --- but
*[D] > 0.

EXAMPLE 3. A likelihood ratio discriminable family with Eq tyx = co. All elements
of ® = [0y, 0, ---] have densities with respect to Lebesgue measure. The first,
0o, is 4 on [0, 1]. Let p, a, and b be real numbers to be defined below. Let 5y be
the Nth binary fractional digit of the real number x. Define 0, N = 1 by

Jonu(x) = a-dx(x) xe[0,1—p)

=1/a xe[l—p,1]
= by xe[N,N+1]
=0 otherwise.

For every p € (0, 1) there are real numbersa > l and by > b > Ofor N =1, 2, ---
such that the 0’s are probabilities.

First we must show that © is likelihood ratio discriminable when p = 1. For
M # N, 0,"[(N, N+1) = 0 while 0,°[(N, N+1)] = by > 0. The proof used for
Corollary (24) gives 0,“[Ty,, < ©] = 1for N = 1, 2, ---. To handle 0, we need
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FACT. Under 0, the sequence log Ry y, N = 1, 2, -+- is a random walk with jumps
of + log(a) having respective probabilities p and 1 — p.

PROOF. Let Y;equalawhen0 < X; < 1—pandequal 1/awhenl—p < X; < 1.
Let J be any finite set of integers and suppose 0 £ X; < 1—p for all i e J. With
0,”-probability one there is an M = M(X,, i€J) with f, (X;) = a for all ieJ.
For each possible J, condition on [X; < 1—p if and only if ieJ] to get
00°°[R00N = l_LN=1 Y]=1forN = 1,2, ]

For p = 1 the random walk eventually reaches any positive height, so
00™[Ty,z < ] = 1 and Theorem (22) says that @ is likelihood ratio discriminable.

Now we show that for p = 1 and any function K from © to (1, o) we have
Eg,to,x = 0. For M =1,2,--- 0,°[Ry,y=1 for N=1,2,-]=1 so
00*[Tyy, < 0] = 0 which implies 0,°[Dg # 0p] = 0 and 14 = Ty ke, With
0,®-probability one. But for p = 1 the expected time for a coin walk to become
positive is infinite.
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