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A NECESSARY CONDITION ON THE INFINITE DIVISIBILITY
OF PROBABILITY DISTRIBUTIONS

By ALAN F. RUEGG

Ecole polytechnique fédérale, Lausanne, Switzerland

For a probability distribution function on the real line, a necessary
condition on its infinite divisibility is given which deals with its one-sided
asymptotic behavior; the proof is based on properties of characteristic
functions which are analytic in the upper (lower) half plane.

1. Introduction. In a recent note (1970), the author has generalized the familiar
fact that a non-degenerate infinitely divisible (i.d.) distribution function (df) cannot
be finite, i.e. cannot have its entire mass concentrated on a finite interval. Properties
of characteristic functions (ch. f.’s) and of entire functions were used to derive
asymptotic conditions on the tail 7(x) = 1 —F(x)+ F(—x) which force the i.d.
df F to be either normal or degenerate. (An elegant generalization of these results
has been obtained by R. A. Horn (1971), whose demonstration is based on quite
elementary methods.)

As the examples of the Poisson and of the I'-distribution show, there exist one-
sided (i.e. bounded either to the left or to the right) i.d. df’s which are non-degenerate.
The purpose of the present note is to investigate the one-sided asymptotic behavior
of an i.d. df F; it is shown that, although results analogous to those found in the
two-sided case are no longer true, a certain necessary condition (Theorem 3.5) on
the rate of decrease of F(— x) can still be obtained (a similar result holds of course
for 1—F(x)).

In analogy to the methods used in Ruegg (1970), the present proof is based on
ch.f.’s which are analytic at least in the upper half plane; the necessary properties
of these functions are given in Section 2. Although the theorems on entire functions
used in Ruegg (1970) are no longer applicable, the concepts of “order” and of
“form” of a ch.f. “with respect to the upper half plane” permit the presentation
of both the results and their proofs in a rather simple and transparent way.

2. Results on ch.f.’s which are analytic in the upper half plane. Throughout this
paper, F will always denote a df and f the corresponding ch.f. Let A* denote the
class of all ch.f.’s which can be continued analytically in the upper half plane:

f(z) =12 ™ dF(u), Imz 2 0;
it is well known that this is possible if and only if
fliy) =[2e™dF(u) < o

for every positive y (see Esseen (1965) Theorem 1 or Ramachandran (1967) Theorem
2.2.1). By ™, we denote the subclass of A* formed by all those ch.f.’s which are
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not bounded (by one) on Im z = 0, i.e. whose df’s do not vanish identically on
(=00, 0).

For fe #™", f (iy) is strictly convex on [0, +00), and f(iy) = +0 as y - +o©
(Lukacs (1960) page 136). We denote by M *(r, f) the maximum of | f(z)]| for
|z] £ rand Im z 2 0. It then follows easily from the maximum modulus principle
and from a well known maximum property of analytic ch.f.’s (Lukacs (1960) page

134) that the following result holds.

THEOREM 2.1. If f € B*, then there exists R = O such that M*(r, f) = f (ir)

forallr = R.
From this theorem we obtain immediately the next result.

THEOREM 2.2. If f€ B™, then M*(r, f) = F(—Xx) €™ for every r 2 R and every

positive x.
We define the order of a ch.f f € #* with respect to the upper half plane by

p*(f) =limsup,. ;, [loglog M*(r,f)/logr];
in case p*(f) = oo, the concept of “form with respect to the upper half plane,”
given by
AF(f) =limsup, 4 o [logvlog log M*(r,f)/logr],
is a useful refinement in measuring the rate of growth of f on Imz=0.
THEOREM 2.3. If f, g € B™, then p*(f g) = max [p*(f), pT(9)].
Proor. Denoting the last expression by p, we have
M*(r,fg) = M*(r.f)M*(r, 9)
Sexp [Pt eI g ppt @+ el2]
Sexp[2r'T ] S exp[r°*]
for sufficiently large 7, i.e. p*(f g) £ p, and the result follows at once.

THEOREM 2.4. If f € Y, then p*(f) = 1.

This is an immediate consequence of Theorem 2.2.

The following two theorems are one-sided versions of results obtained by B.
Ramachandran (1962), who investigated the relations existing between the asymp-
totic behavior of the tail T(x) = 1—F(x)+ F(—x) of a df F and the order and
form of the corresponding (entire) ch.f.

THEOREM 2.5. Let g(x) = {loglog [1/F(— x)]}/log x and o > 0. Then lim
inf, 4o g(x) is () >, (ii) = or (i) < 14« if and only if f€ B* and p*(f) is
(i) <, (i) = or (iii) > 1+1/a.

ReMARK. The conditions (i) and (ii) used in Theorem 7.2.4. (Lukacs (1960),
page 142) are sufficient but not necessary for lim inf,_,, g(x) =2 1+« and
lim inf,, ., g(x) = 1+« to hold.
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THEOREM 2.6. Let h(x) = {log log [1/F(—x)]—log x}/log log x and & > 0. Then
lim inf,_, , o, A(x)is (i) >, (ii) = or (iii) < l/aifandonly iff € B and (i) p* (f) <
worpt(f)=o0and 27(f) < o, (i) p*(f) = 0 and A*(f) = aor (iii) p*(f) =
o0 and A*(f) > a.

The proofs given by Ramachandran for his Theorems 6.1 and 9.3 can be modified
in a straightforward way to cover the one-sided case. (Incidentally, the same is true
for his other results, but we will not need these in the present context.)

3. One-sided asymptotic behavior of i.d. df’s. It is well known that the family of
i.d. probability laws_coincides with those defined by the Lévy canonical repre-
sentation:

logf(x) = iax —02x*[2+ [, 20 [€** — 1 —iux/(1 +u®)] dL(u)

where a, o are real constants and L is defined on the real line, except at the origin,
is nondecreasing on (— o0, 0) and on (0, +o0) and satisfies L(—o0) = L(+o0) = 0
and j0<|u,<eu2 dL(u)< oo for some positive &. For our purpose, the following
modification of Lévy’s formula, based on the identity u/(1 +u?) = u—u>/(1 + u?),
will be useful:
logf(x) = P(x)+ Ay (x)+ B,(x)+C,(x)

where ¢ is an arbitrary positive constant and

P(x) = = [z dL(u)+ix[a+ o<y <.’ /(1 +u?)dL(u)

—Juz /(1 +u?)dL(u)]—0’x%/2,

A(X) = Jo<u<e (€™ —1—iux)dL(u),

B(x) =[,c-. " dL(u),

Cy(x) = [uz. € dL(u).

For the proof of the following theorem, we refer to Esseen (1965) (Theorem 2)

or to Ramachandran (1967) (Theorem 2.4.2).

THEOREM 3.1. If f is i.d. and an element of W*, then both the original and the
modified Lévy representation remain valid if we replace x by z = x+iy (y Z 0).

REMARK 1. Provided that L does not vanish identically on the respective intervals,
A,(2) is an entire function of exponential type (its second derivative is up to a
constant factor the ch.f. of a finite df), whereas B,(z) (if f € #*) and C(z) are, up
to positive constant factors, ch.f.’s which are elements respectively of 2% and of A ™.

REMARK 2. It is easy to verify that < and (if f € #%) % are (again up to constant
factors) i.d. ch.f.’s which are in #7 (at least if the exponents do not vanish identi-
cally), whereas € is in 2" but not in #*, and €’ is in A* and possibly in 7.
For e for instance, this results from the fact that

A[2) = fo<pu<.[€™ —1—iuz)(1+u?)]dL(u) =iz fo <uy <. > /(1 + u®)dL(u),
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both terms being logarithms of i.d. ch.f.’s. It follows in particular that Theorem
2.3 applies if we decompose fe #™" into factors of the above type, provided we
neglect all those factors which are in A" but not in #* (for these functions, M *(r)
converges to a finite limit as r — +00).

THEOREM 3.2. Let f be i.d. Then f € W* if and only if there exists a positive &
such that B (iy) < oo for all positive y.

PRroOF. Since 4, is an entire function and C, is analytic in Im z > 0, it follows
that the two conditions f € A* and B, € #* (up to a constant factor) imply each
other, from which the theorem results.

THEOREM 3.3. Let f be an i.d. element of #*. Then p*(f) < o if and only if
L = 0 on (— o0, 0). Moreover, we have then p*(f) £ 2.

Proor. If L = 0 on (—o0, 0), then all factors of f as given by the modified Lévy
formula are of order less than or equal to two with respect to the upper half plane;
for e, this follows from the inequality e *—1+x < x*/2 (x = 0). It then results
from Theorem 2.3 and Remark 2 above that p*(f) =< 2.

Conversely, if L # 0 on (—o0, 0), then there exists some positive ¢ such that
B, #0, ie. B, € #* (up to a constant factor), and it follows that p*(B,) = 1
(Theorem 2.4), i.e. p*(e®<) = oo and therefore p*(f) = o (Theorem 2.3).

REeMARK 1. The following example shows that, in contradiction to the two-sided
case, there exist i.d. ch.f.’s f with p*(f) = « for every « between one and two. If
o = 0, and if we choose L such that dL(x) = u~' ~*du on (0, &) where 1 < o < 2,
then a simple change of variable shows that

Air) =r*[g(e”" =14+~ "*dy,
and since the integral converges for r — 400, we have
p*(f) = p*(e*) =limsup,, , , [log A,(ir)/logr]
=a.
REMARK 2. Under the assumption that ¢ = 0 and L = 0 on (—o00, 0), it can be
shown (see Baxter and Shapiro (1960) and Esseen (1965)), that the additional
condition requiring that [ <,<udL(u) < oo for some positive & is necessary and

sufficient for f to be “of exponential type with respect to the upper half plane’ or,
equivalently, for Fto be bounded to the left.

THEOREM 3.4. Let f be ani.d. element of B*. Then p* (f) = oo implies A*(f) = 1.

Proor. By Theorem 3.3, L # 0 on (—o0, 0), i.e. there exists a positive & such
that B, € 8™ (up to a constant factor), and therefore (Theorem 2.4) p*(B,) Z 1.
But then it follows easily from Theorem 2.1 that A*(e®?) = 1 and therefore
AT(f) z L

REMARK. The existence of i.d. ch.f.’s f with p*(f) = o0 and A*(f) = « for
every o = 1is an immediate consequence of the relation A*(e??) = p*(B,).
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THEOREM 3.5. Let the df F be non-bounded to the left and assume that
(i) liminf,.,, {loglog[1/F(—x)]}/logx <2 and
(i) liminf, ., {loglog[1/F(—x)]—logx}/loglogx > 1.
Then F cannot be i.d.

PrOOF. By Theorem 2.5, (i) implies that Fhasa ch.f.f € 8" suchthat p*(f) > 2,
whereas by (ii) and Theorem 2.6, we have either p*(f) < o0 or p*(f) = ©
and A*(f) < 1. But in both these cases, it follows respectively from Theorem 3.3
and Theorem 3.4 that Fcannot be i.d.

REMARK 1. A consequence of this result is that F cannot be i.d. if F(—x) ~ a
exp [—bx*]as x » +oo witha > 0,6 >0and 1 < a < 2.

REMARK 2. The remarks following Theorems 3.3 and 3.4 show that the assump-
tions made in Theorem 3.5 on the two lower limits cannot be weakened.

REMARK 3. If we define k(x) = {log log [1/L(— x)]}/log x and h(x) as in Theorem
2.6, we can use Theorems 2.5 and 2.6 to obtain the following relations between
the one-sided asymptotic behaviors of L and F:

(1) If L is bounded to the left, without vanishing identically on (—o0, 0), then
lim inf, _, , LA(x) = 1.

(ii) If Lis not bounded to the left, then we have (for every positive &) lim inf, _, ; o,
k(x) = 1+aif and only if lim inf,, ; ,A(x) = a/(1+a).
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