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PITMAN EFFICIENCIES OF
KOLMOGOROV-SMIRNOV TESTS'

By C.S. Yu
State University of New York at Albany

A comparison, by means of Pitman asymptotic efficiency, is made
between the Kolmogorov—-Smirnov test and the locally most powerful
rank and the locally asymptotically most powerful (Neyman) test for
testing two-sided shifts in the two-sample problem under the assumption
that the true distribution is different from the one assumed. It is shown
that the behavior of the bounds for the Pitman asymptotic efficiencies
are the same as those for testing the one-sided shift using the Smirnov test
in place of the Kolmogorov-Smirnov test.

1. Introduction. Let X;, X,, ---, X,, and Y,, ¥,, ---, Y, be ordered independent
random samples from continuous cumulative distributions F(x) and G(x)
respectively with 0 < © = m/n. We are interested in testing the following statistical
hypothesis:

H,:F(x) = G(x)

H,:G(x) = F(x—0), 6 #0.

A number of optimal (most powerful) tests can be constructed based on F(x);
among them are locally most powerful rank and locally asymptotically most
powerful (“Neyman”) tests. It has been shown that these tests possess certain
optimality properties, see Chernoff and Savage (1958) and Neyman (1959). How-
ever, in many instances, the distribution of X’s is actually ¥(x) which is different
from F(x).

In this paper, we will be concerned with comparing the performance of the above
optimal tests with Kolmogorov-Smirnov test when the underlying distribution
of the X’s is ¥(x).

The above-mentioned tests are based correspondingly on the following statistics:

(i) The Kolmogorov-Smirnov statistic:

mn \*
K = 0 ) 1) =G,

where F,(x) and G,(x) are empirical cumulative distributions of the X’s and Y’s
respectively.

(ii) The locally most powerful rank (LMPR) statistic:
Ty* =Yi-1 E[g(V?)1Z;
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where V' is the jth order statistic in the joint sample of X’s and Y’s; Z; equals
zero or one according to whether ¥ isan X or Y, and g(-) = —f'(-)/f(-) where
fis the density of F.

(iii) The locally asymptotically most powerful (‘“Neyman”) statistic:

T n

Ty = 77 2

1 m
) g(Yj)_ mi;g(xi), T = m/n.

This test is asymptotically equivalent to the likelihood ratio test. For a detailed
discussion of this test, see Neyman (1959).

In order to properly construct the statistics and ensure the asymptotic normality
of the rank statistic, and the derivation of certain functionals, see Chernoff and
Savage (1958), and Kalish and Mikulski (1971), we shall impose the following
conditions on the cumulative distribution function F(x):

CONDITION 1. F(x) is twice continuously differentiable for real x.

CONDITION 2. f(x) = F’'(x) for all x and for ¢ > 0, we have

| [E s yie= | [ e <cm

COoNDITION 3. The function g(x) = —f'(x)/f(x) is strictly increasing and g(0) = 0.

CONDITION 4. Let F*(x) = F[h(x)] where A(x) = g~ '(x). Let F*~! be the
inverse function of F*. Then

dk
—-;F*_l(u)

ol )| S Clu -]+

fork = 0,1, 2; for all u € (0, 1); for some C and some § > 0.
CONDITION 5. F(x) has finite variance, i.e. VargX < 0.

CONDITION 6. g(x) is twice differentiable; g”(x) is F-integrable and uniformly
continuous.

CONDITION 7. [®, g'(x)f(x)dx < 0.
We shall take the definition of Pitman efficiency as given by Fraser (1957):
Let {¢ 5} and {¢5*} be sequences of tests of size a for testing

H,: 0 =0,
H,:0=0 such that §; > 6, as i - oo,
where i is the subscript of {N;} < {N}and {N,;*} < {N} such that
lim;., , Eg[pn,] =1lim;., o, Eg [P ] = B, 0<pB<l1.
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The Pitman efficiency or the relative asymptotic efficiency of {¢ 5} with respect to
{¢p y*} is defined to be:
N;*  lim,,, N;*0;?
e¢N¢N* = hml_,oo N W,

provided that this limit exists and is independent of the choices for {N;} and {N;*};
if this limit does not exist, we define the generalized upper and lower Pitman
asymptotic efficiencies correspondingly to be:

i N;* N lim sup;_, , N;*6,2
e = limsup;., —_———
onén® Pive N2 i inf,_, , N;0;

[ i, N,;* N liminf;_, , N,*0;>
e =liminf,,, — 20— .
—¢NoN* iz N, = limsup;,, N;0,

We shall adopt the following notations:

exr(F; W) = the upper Pitman efficiency computed under

Y(x) of Kolmogorov—Smirnov test with respect to the

Neyman test derived for F(x);

ex«(F; ¥) = the upper Pitman efficiency computed under

Y(x) of Kolmogorov-Smirnov test with respect to LMPR

test derived for F(x);

exr(F; W), exr«(F;¥) = the respective lower Pitman

efficiencies;

er(F; ) = Pitman efficiency computed under ¥(x) of

Neyman test with respect to LMPR test derived for F(x).
where W(x) is taken from a class % of absolutely continuous cumulative distri-
bution functions with W'(x) = /(x) a.e. such that for some x,, ¥(x) is non-
decreasing for x < x, and non-increasing for x = x,, without loss of generality,
we can assume xo, = 0.

It will be shown that the above-mentioned upper and lower bounds have the

same behavior as those for the Smirnov test described in Kalish and Mikulski

(1971) and Mikulski and Yu (1971).

2. Asymptotic bounds for the power of Kolmogorov—Smirnov test. Consider the
following sequence of two-sample problems: Let Xy, X5, .-+, X,,and Yy, ¥,, .-+, ¥,
be ordered independent random samples from continuous cumulative distri-
butions F(x) and G(x) respectively; we shall assume that m/n = t > 0, 7 a constant,
and we wish to consider the statistical hypotheses

H,: F(x) = G(x)
1.1 F(x) = FO(x), G(x) = G)(x)
such that sup, [F™(x)— G(” (x)| =8, =08,"*+0(n"%),6 > 0 and the supremum
is achieved at some point 7,,, i.e. |F(”(;1 )— GE,‘,}(nn | =6,
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The Kolmogorov—Smirnov test as defined in Section 1 can be used to test the
above hypothesis; the null hypothesis is rejected if K,,, = d,(a) where d,(x) is
determined by the relation

P{K,,, z d,(a) | F(x)} = .

It has been found in Massey (1950) that for large n, the lower bound for the power
of this test is given by 1—(21) % [}2e"#"dt with A; = (4—B)/C, 1, = (A+B)/C

where
-3
A=6, B =< i ) d,(@),
m+n

o {F( D) [1—FO(n,)] N G- G?i%(nn)]}f

m n

It was observed in Capon (1965) that since

, mn \* mn \*
Az =216, Pl —d,(o)|, for 9, povaree —d,(2) >0,

we have the power of the Kolmogorov—Smirnov test for large n is bounded from
below by

(2.1) 1—(2n) [, e" ¥ dt.

In order to obtain an upper bound for the power, we first consider the following
one-sample problem:

Let X,, X,, -+, X, be an ordered random sample from a random variable X
with continuous cumulative distribution F(x); we are testing the statistical hypo-
thesis

H,:F(x) = H(x)
H,:F(x) = G"(x)

such that sup,|H(x)—G™(x)| = 8, = dn"*+o(n™*), 5 > 0 and the supremum is
achieved at some point {,, i.e.

8, = |H(L) = G®(G)]-

It has been found in Quade (1965) that if the Kolmogorov-Smirnov statistic
K, = supxn*}lF,,(x)—H(x)l is used to test this hypothesis, then, for large n, the
power of the Kolmogorov-Smirnov test is bounded from above by the expression

(22) 2Y 2 (= 1) texp [ —2Kk*(d,(x)—n*s,)*] for n*s, < d,(«)
for n#s, = d,(«)

where d,(«) is determined by the relation P{K, = d,(«) | Hx)} = o.
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Now, we shall derive from (2.2) an asymptotic upper bound for the power of the
K., test for testing the two-sample problem stated at the beginning of this section
as follows:

sup, |F,(x)— G,(x)| < sup, [FV(x)— G,(x)|+ sup, |Fn(x) — F(x)|.
ForO0 <y <1,let

mn \?*
() sup )~ 6,69 < (1))

and

(mmf ) sup, [Fo(x)~ FO(0)| < vd,(a),

the two inequalities above imply

(mm:n)% sup, [Fou(¥) = Gy(x)| < du(@).

Hence, by independence of the random samples, we have

P {(mmfnf SUP, |F(x) = Go(x)| < do(e) | FV(x), G(”(x)}

2 Pt sun, F0) -6, < (19| )] 660
p{m%supxw (¥)— F(l)(x)|<y( )d(oc)]F“’(x)}

Set y = (n/(m+n))*, we obtain
P{m*sup, |F,(x)—F(x)| < d,(«) | FV(x)} = 1—«
and

(‘H—l)

P {n sup, [FV(x) ~ G,(x)| < )| 6(x)

(r+1)¥—1

© 2
21-2 3 (—1)"_19"2"2<—7— d,.(a)—n*@,) :
k=1

For large n, the quantity d,(«) can be approximated by [4 log (2/)]%, for a discussion
on this approximation, see Hodges (1957). Incorporate above, we have

P {(mmfnf sup, |F(x) — Gy(x)| < dyf) | F (), G(”(x)}

2 (=912 (e (C  ppnogmni-ns, ) ).
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Finally, we note that the left-hand side of the inequality is one minus the power
for the K, , test; hence the power of the X, , test is bounded from above by

(2.3) a+2(1—q) ki (—1)te 2 <(T+11—ZL_—-1 [4log(2/a)]*— n’i“é,,)2

T+1)F—1 2
<at21-a)e? ((—)— B log(z/a)ﬁ—n%an) .

In our subsequent computations, we shall use the last expression as the upper
bound of the power for the Kolmogorov—Smirnov test.

3. Computation of bounds for Pitman efficiencies. In this section, we will compute
the upper and lower bounds of the Pitman asymptotic efficiency of the Kolmogorov—
Smirnov test with respect to the Neyman test and LMPR test for the following
sequence of two-sample problems: Let X, X,, -+, X,,, and Y,, ¥,, ---, ¥, be
ordered independent random samples from continuous cumulative distributions
F(x) and G(x) respectively with m;/n; = 7 > 0, 7 a constant. We are testing the
following sequence of hypotheses:

H,: F(x) = G(x)
HI‘:G(X)=F(x—6i), 019&0
with 0, so chosen that sup, |F(x)—F(x—0,)| =6, =0n,"%, §>0.

We note that this problem is a special case of the problem considered at the
beginning of Section 2.

LeMMA 1. Let {T;} be a sequence of a-level Neyman tests for testing the above
statistical hypotheses and {N(T)}, N(T) = m;+n;, be a sequence of sample sizes
for which the sequence {T;} of Neyman tests have limiting power > a. Then

(Koj2— Kp)*(1+17)?
1(Ey[g'(X)])?

(3.1) lim;, , N(T)0; < Varyg

and

(K2 = Kip-o2)) (1 +1)*
1(Ey[g'(X)])?

where K, is determined by the relation (27r)"~‘f,°§pe"'2/ 2dt.

(3-2) lim,, , N(T)07 < Vary g,

Proor. Under the null hypotheses, T; has an asymptotic distribution

N (0, N(T) (14%?72 Vary g)
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for each sample size N(T) there is a critical point C; determined by P[|T(N(T), 0)| >
C;] = «. Since T; converges to a continuous symmetric distribution, we have

i o G
[N,-(T) (Tf?)‘z Vary g]

Upper bound for lim;_, » N(T)0,;%. By definition,
B =lim;, , P[—C; > T(N(T),6,), T(N(T),6,) > C.],

(3.3) lim c =Ky

hence
Bz lim;., P[T(Ni(T)a 0;) > C/]

Ey(9(X)-9(Y))

I mn;
T(N(T),0;)+ —

m;+n;

[NE(T)(—I_—;—)Z Vary gT

Ey(9(X)—9(Y))

=lim,.,, P

mini

C.
'+m,~+n,-

[N,-(T) (—1—51—)2 Vary g]% |

or

Cot i Ealo(X)=(¥)

[N,.(T)(—I—J:?)—2 Vary g]%

K, <

and by (3.3), we have

N_l":;(';:_) (Ni(T))%Ew(g(X) - g(Y))

(s |

By the relation mn,/N;*(T) = 1/(1+1)* we have

lim;, , [N(T)]*Eg(9(X)—9(Y)) > wcé'f)(l——-i_—r)(Varw 9)*

]iml_,oo g Kﬂ—Ka/Z'

For Y = X+0,, 0, > 0, we have
lim;, o, [N(T)]*Ey[9(X)—9(Y)] = lim,_, , [N(T)]*Ey[g(X)—g(X +6,)]
= —lim;.,,, [Ni(T)]%eiE‘l’[gl(X)'i_ ‘%‘Oig"(f)] ¢elx,x+0/]
= —lim;., , [N(T)]*60,E4[9'(X)].
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Therefore

_ sy, Kap—Ky)(Vary g)*(1 +1)
(3.4) lim,., o, [N(T)]*6; < L [9'(X)]

Now, suppose 0; < 0, we have

B 2 lim,.,, P[—C; > T(N(T),6,)]
T(N(T),6; )+ Ew[g(X) 9(Y)]
|:Ni(T) (1—+—"1:)2 Vary g:r
—Cit—— Ew[g(X) 9(Y)]

[ (T)( e |

=lim;,, P

<

Therefore

—Cito s +,,E\u[g(X) 9(Y)]

[N (T)(1+ ) Var\yg:r ’

but

— Ci > K

[N,.( T) (1—;)—2wru, g}l

as i— oo.

a/2

Hence

m+n EW[Q(X) -9(Y)]

[N,.(T)(—I:%2 Vary g]’}

_Kﬁ+Ka/2

or

K, »—Ky)(1+
( /2 T%ﬂ)( T)(Var.,,g)*,

lim; o, [N(T)PFEe[9(X)—9(Y)] =

since for small 0
Ey[9(X)—g(Y)] ~(Eg[g'(X)] for (= -0,
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we have
(3-5) lim; (Ni(T))’}E.,,[g(X)—g(Y)] =lim;.,, (Ni(T))’}(:E.,,[g’(X)]
< (Kaz—Kp)(1+7

= T%

(Varg g)*.
Combining (3.4) and (3.5), we obtain the inequality (3.1).
Lower bound for lim,_, » N(T)0;%. Suppose 6; > 0,
B <lim;_,, P[—(C;—&) > T(N(T),0,), T(N{(T),6;) > C.]
= a/2+lim;, , P[T(N(T),0;) > C]
where & = (t/1+1)Ee[g(X+06,)], .
or p—a/2 < lim,;, , P[T(N(T),6,) > C;]

T(N(T), 6+

i Exlo(xX) ~g(¥)]

[Ni(T)(l_i_——TT—)-zVar\,, gT

Ci+ m +n.E\,,[g(X)—g(Y)]
> - ’

I:N,.(T)zl—_gT)-z Vary g]%

after simple computation, we obtain

6 i (e > SRl v gy

=lim;, , P

m;n;
i

Similarly, for 8; < 0, by using the relation
B < lim,_, P[—C; > T(N(T),0,), T(N(T),6,) > (C;+&)],
we obtain

Ko ;i/:g;_[f(aggl i T)(Var\., 9)*

Hence, combining (3.6) and (3.7), we have the inequality (3.2).

(3.7) lim,..., (N(T))*6; =

LeMMA 2. Let {K;} be a sequence of a-level Kolmogorov—Smirnov tests for testing
the problem stated at the beginning of this section, and {N(K)}, N(K) = m;+n,, be
a sequence of sample sizes for which the sequence of tests {K;} have limiting power
B > o. Then

, (1+17)° +T2
limsup;_, o Ni(K)G,-Z = W[%K( 1-pt (lflog &)
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and

lim inf,.,, Ny(K);® = E;:E;)) [(T hi 2:_ ! (% log <§>>I— <log 2 <;_TZ>>T

Proor. From (2.1) we have
B = limsup;._, []_ —(2n)—i~ﬁol' o 12 dt]

where
mn; \*
Y
or
1—B < limsup;.,,, (27)"# 3 ey,
Hence

m;n;
Ka-p 2 hmsupz-»oo[fs (m n ) dm(“)]'

Since d;(a) — (4 log (2/))%, we have

P mn; \*
3K 1 -5 +(310g(2/0))* 2 limsup;..., & mitn;)

since

(o)~ v 57

and by Kalish and Mikulski (1971)
limsup;_, ., 62 N{(K) = y*(0)limsup;_, ., N(K)6;?,

we have the first part of the lemma.
By virtue of (2.3), we have

B sa+2l-a)liminfi., CXP[ <( A ) (%log (2/a)) —n;*6 )2]

and the second assertion of the lemma can be obtained after a simple calculation.
Now, combining the results of Kalish and Mikulski (1971), Mikulski and Yu
(1971), and Lemmas 1 and 2, we have the following:

THEOREM 1. If the assumptions of Lemmas 1 and 2 are satisfied then

(a) for any distribution F and positive constant C, there is a distribution ¥ € €
such that ex(F; ¥) = C;

(b) if g(x) is bounded, then infy 4 (F;¥) =0;

(c) if g'(x) satisfies the condition 0 < ¢ < g'(x) < L for all x. Then infy .48z
(F;¥)>0.
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An important special case, when ¥ = F, of the above theorem has been
given in Capon (1965).
It has been shown in Mikulski (1963) that

§% 0 I T(x)]¥*(x) dx]* Varg g(x)
erv(F; W) = Ey[g'(X ’
L9’ (X)] Var,g(x)
where the function J(u) is as defined in Chernoff and Savage (1958), and J'(v) =

dJ(u)/du. Incorporate this and results obtained in Kalish and Mikulski (1971)
and Mikulski and Yu (1971), and we have the following theorem:

THEOREM 2. If the assumption of Lemmas 1 and 2 are satisfied, then

(a) for any distribution F and any constant C there is a distribution ¥ € € such
that ex+(F; '¥) 2 C,

(b) if g(x) is bounded, then infy .4 ex+(F;¥) > 0;
(c) if g(x) is unbounded, then infy . 4éxr+(F;¥) = 0.
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