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MULTIVARIATE PROCEDURES INVARIANT
UNDER LINEAR TRANSFORMATIONS'

By R. L. OBENCHAIN
Bell Telephone Laboratories

Many well-known procedures in multivariate data analysis are
invariant under the group, L(p), of translations and nonsingular linear
transformations. New maximal L(p) invariant statistics are derived and are
shown to have the geometrical interpretation of a scatter of points in
Euclidean space. The distribution of maximal L(p) invariants for the case
of a single multivariate normal population is shown to follow from a
result of James (1954). Finally we consider tests of the null hypothesis that
k > 1 populations are identical and show that optimal L(p) invariant tests
are similar tests of randomness.

1. Introduction and summary. Suppose p = 1 variables are measured on
individuals in random samples from k = 1 populations. We focus interest on
procedures invariant under the group, L(p), of translations and nonsingular linear
transformations of the variables being observed. Sections 2 through 5 are essentially
independent of probabilistic considerations and deal with data reduction to a
maximal invariant function, a uniquely determined matrix of squared interpoint
distances achieved by a scatter of points in Euclidean space of p or fewer dimensions.

The distribution of maximal L(p) invariants is considered in Section 6. It is
shown that L(p) preserves the interchangeability (but not the independence) of the
observations in a random sample when the transformation depends (symmetrically)
on the data. The distribution of maximal L(p) invariants is displayed for the case
of a single multivariate normal population by reinterpreting a result of James
(1954).

In Section 7, L(p) invariant tests of randomness are considered for the multi-
variate, several-sample problem. Optimal L(p) invariant tests are seen to be
permutation tests of interchangeability. A test based upon the Pillai (1955) trace
criterion is given a geometrical interpretation and is recommended when no
specific alternative hypothesis is of interest.

2. The data and the model for invariance. Suppose that a vector, x = (x; --- x,)’
of p = 1 real valued variables is to be observed on individuals from k& = 1 popu-
lations, a random sample of size n; being taken from the jth population. The
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data to be collected is formed into a p x N matrix of random variables, X, where
the N = Zn; columns are all stochastically independent, but only certain subsets
of the columns are necessarily identically distributed.

A statistic, ¢, computed from a data matrix, X, will be said to be invariant under
the group, L(p), of translations and nonsingular linear transformations if and only
if

(2.1) ((X) = t(ae’ + BX)

for every px 1 vector a and for every p x p nonsingular matrix B, where ¢’ is the
1 x N vector of all unities. The statistic, #, may be real valued or consist of a vector
or matrix of real values. Many well-known test statistics in multivariate analysis
satisfy (2.1); these include Hotelling’s 72 for detecting difference in location of two
populations, the likelihood ratio criterion of Wilks and ‘the trace criteria of Lawley-
Hotelling and Pillai for comparing & = 2 (normal) populations, and Fisher’s
sample linear discriminant function.

Let us write Z(p, N) for the set of all p x N matrices with real elements. L(p)
partitions Z(p, N) into equivalence classes or orbits; two data matrices, X; and
X, belonging to Z(p, N), are on the same orbit if and only if there exists [a, B] € L(p)
such that X, = ae’+BX,;. A statistic satisfying (2.1) is called a maximal L(p)
invariant if it takes on a different value on each orbit of Z(p, N). The maximal
L(p) invariants which will be derived here are matrix valued statistics. The value
computed at the point X can be interpreted as a reference point on the orbit
through X or as a canonical form for the data, X, when considering invariance
under L(p).

3. Central measures compatible with L(p). In the next section, a maximal invariant
is derived under the subgroup of transformations [0, B] € L°(p) = L(p) in which
the translation vector @ = 0. We now show that it is possible to restrict attention
from L(p) to L°(p) by subtracting from each column of the data matrix, X, an
appropriately chosen measure of “location,” m = m(X).

Let X; and X, € Z(p, N) be on the same orbit induced by L(p). Let m; = m(X))
for i = 1, 2 be the two px 1 vectors of real valued statistics computed from X,
and X, respectively, and write Y, = X;—m;e’. Thus Y, = (a+Bm,—m,)e’ +
BY,, and it follows that Y, and Y, are on the same orbit induced by L°(p) if and
only if m has the following property:

(3.1) m(ae’ + BX) = a+Bm(X)

for every [a, B] € L(p) and X € Z(p, N). A statistic, m, which satisfies (3.1) will be
called a central measure compatible with L(p) because its value on transformed data
is equal to its transformed value. Note that the occurrence of the vector a on the
right-hand side of (3.1) shows that the statistic 7 contains no information invariant
under L(p).

In the univariate case, p = 1, most measures of location (e.g., medians) satisfy
(3.1). The multivariate central measures compatible with L(p) are characterized in
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the following lemma. A statistic, m = m(X), is said to be continuous on Z(p, N) if,
for every sequence X, X,, --- of matrices from Z(p, N) that approaches a limit
matrix elementwise, lim m(X;) = m(lim X;) elementwise.

LEMMA 1. The only continuous central measures compatible with L(p) when
p > 1 are weighted means of the form

(3.2) m(X) = Xy

where y is a fixed N x 1 vector such that y'e = 1. Also, r = rank ¥ < min (p, N— 1),
where Y = X—me'.

Proor. If m is continuous, it follows from (3.1) that m(BX) = Bm(X) even when
B is singular. Taking B to be a null matrix except for a’unity in the jth position
of its first row, it follows that m(X), the jth element of m(X), equals m, (X s
where X is the matrix whose first row is the jth row of X and whose remaining
rows are null. But, with B null except for b,, and b, arbitrary, m,(b;; X;+
by, X5) = byym(X)+b,,my(X) = byym(X;)+by,m(X,). Thus m; is a linear
functional on N-dimensional real space, and m(X) = Xy for some fixed Nx1
vector, y. Taking B null in (3.1) then shows e’y = 1. Finally, note that ¥ =
X(I—ye’) has rank less than or equal to the minimum of p and N—1 because
I—ve’ is idempotent with trace N—1.

4. Maximal L(p) invariants. Write ¥ = X—me’ = XV, where V, = I—ye as
before, and define an N x N matrix of statistics, P = P(X), by the formula

(4.1) P=Y(YY) Y

where (YY")™ denotes any generalized inverse for the p x p matrix YY’. Now P
is the projection matrix associated with the vector space generated by the rows of
Y; P is symmetric, idempotent, and uniquely determined regardless of the choice
of the generalized inverse involved in its definition, Rao (1966), Lemma 5. Then we
have the following theorem.

THEOREM 1. If m(X) is compatible with L(p), Equation (3.1), then the statistic P
defined by (4.1) is a maximal L(p) invariant.

ProoF. The result is now obvious because [a, B] € L(p) acting upon X transforms
Y into BY; the transformations are forming nonsingular linear combinations of
the rows of Y. The vector space generated by the rows of Y is thus invariant and
maximal. A direct proof of the theorem proceeds as follows: (i) P is invariant
because X, = ae’+ BX, implies that a possible choice for [Y,Y,]” is B'~'x
[Y,Y,']” B~ (ii) P is maximal because P, = P, implies that the rows of Y, and
Y, both form a (possibly singular) basis for the same vector space. The usual
argument for change of basis then shows that there exists [a, B] € L(p) such that
X, = ae’ +BX;; in fact, the transformation which does this is unique only if rank
Y, = rank Y, = p. This concludes the proof.
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The statistic P is not the maximal invariant which is the easiest to understand
and work with. A simple argument can be used to extend the statement of James
(1954), page 45, and to show that the orbits of Z(p, N) induced by L(p) are in
one to one correspondence with the elements of the Grassmann manifold,
Gpon—p-1- See also Fraser (1968), page 228. However, we wish to show that a
maximal invariant has the geometrical representation of a scatter of N points
in Euclidean space. We note that P is an N x N association matrix in the sense of
Gower (1966); p;;, the element in the ith row and jth column of P, compares
the ith and jth individuals in the sample taking all p variables measured into con-
sideration. An analysis of the characteristic roots (= c-roots) and vectors of P
leads to the representation we desire. If we write r = trace P = rank Y, then the
analysis of P produces a r x N matrix, W, whose jth column, w;, gives the coordi-
nates of a point, to be plotted using r orthogonal axes, which represents the jth
individual.

The calculation of a coordinate representation, W, is complicated by the fact
that P is idempotent. W is to be chosen such that

(4.2) W'W =P
and
(4.3) Ww' =1.

It is clear from (4.1) that y is a c-vector of P with c-root zero. Since the rows of the
W are c-vectors of P with c-root one, it follows that

(4.4) m(W) =Wy =0,

the weighted mean of the scatter is the origin. If W, satisfies (4.2) and (4.3), then
so does

(4.5) W, = CW,,

where C is any r x r orthogonal matrix which rotates the reference axes. It follows
from (4.3) that the sample sum of squares of projections of the scatter onto any
direction in r-space is one, and the sample correlation between the projections on
any two directions is zero if and only if the directions are orthogonal.

Equation (4.5) suggests that the geometrical interpretation of P is best approached
by an analysis of the unique distances among points rather than by references to a
nonunique coordinate system. Write D'® = ((d3)) to denote the Nx N matrix
where dj is the squared distance between the representations of the ith and jth
individuals in the combined sample. D‘® is symmetric with null diagonal; D®
cannot be written as a matrix product DD’ or DD = D?. Then we have the
following corollary to Theorem 1.
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CoRrROLLARY 1A. If m(X) is a central measure compatible with L(p), then the
statistic D'® = ((d}})) is a maximal L(p) invariant equivalent to P = ((p;;)), where

(4.6) di = (wi—w;) (wi—w))

(4.7) = pu+Dj;—2pi

(4.8) = (x;—x;)'S ™ (x;—x;),

and

(4.9) S =YY = XX'—N(mx'+%m'—mm')

is the p x p pooled within and among samples adjusted sums of squares and products
matrix. Also

(4.10) 0=d%22—(vi—v;)*".

Proor. The expression (4.7) follows immediately from (4.2) and the definition
(4.6) as pointed out by Gower (1966). If we rewrite (4.7) in matrix form it becomes

(4.7) D® = poe’ +ep,’ — 2P,

where po = (P11, P22, > Pyn)- To determine P from D@, multiply (4.7") on the
right (left) by V,(V,’) and get

(4.11) P = (I—ey)(~ DPP2)(I-y¢').

Now note that /—P—yy’/y’y is symmetric, idempotent, orthogonal to P and 7,
and of rank N—r— 1. Expression (4.10) follows by noting that the squared distance
in this orthogonal space is computed as in (4.7"). This concludes the proof.

The following point is now stressed: when & > 1 populations are being sampled,
maximal L(p) invariant statistics discard all information about the average
location and dispersion of the populations. However, information on the relative
location and dispersion of the populations is preserved. Some further geometrical
properties of maximal L(p) invariants are considered in Section 5, the one sample
situation (k = 1) is examined in Section 6, and we return to the several sample
problem in Section 7.

5. Geometrical properties of the representation. One notes immediately that the
maximal L(p) invariant, D‘®, measures distance in a familiar way. Except for the
fact that S contains among sample effects when & > 1, formula (4.8) is a Mahala-
nobis (1936) distance, equivalent to Hotelling’s 72 statistic. In fact, Wald and
Wolfowitz (1944), Section 7, show that such statistics are monotonically related to
(4.8) whenm = X (y = ¢/N) and k = 2.

If we write

(5.1) S =GI?G’'
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where L? is the r x r diagonal matrix of nonzero c-roots of S, (4.9), and G is the
p x r semi-orthogonal matrix of corresponding c-vectors, then we see that

(5.2) W =L"'G'(X —me')

satisfies (4.2) and (4.3). That is, the sample principal components, normed to
weighted mean zero and sum of squares one, form a possible coordinate
representation of P.

Before proceeding further, it should be noted that the specific measure of
distance (4.8) was considered by Gower (1966), Section 4.2, for the case m = X.
Gower states that use of this measure of distance “reflects the attitude that the
group of individuals is homogeneous.” There is, however, reason to doubt this
assertion. Suppose, for example, that p = 2 characteristics are measured on a
population whose bivariate density has unusual equal probability contours. These
contours would be ellipses if the distribution were bivariate normal, and represent-
ations of such data would tend to convert these contours into circles. Therefore,
suppose the contours are not even closed or connected. Then data from such a
population and its L(p) invariant representation would both display the same
behavior in probability. Empirical evidence could thus be gathered to support the
hypothesis that the population consists of a mixture of two or more simple
distributions.

The above argument does break down, however, when many variables are
measured on only a few subjects. If r = N—1 < p, then

(5.3) P=I-yylyy,

a constant which does not depend upon the data. When m = %, the representation
of (5.3) is that of N equally spaced points in N—1 dimensions.

The proof of the following lemma parallels that of Corollary 1A, so it is not given
here.

LemMA 2. Let d2 ; denote the squared distance between the representation of the
Jjth individual and the origin, the representation of m(X). Then

(54) dg; = pj; = (x;=m)'S™(x;—m),
where 0 < d3; < 1—y2ly'y and Y}, dj; =r < min(p, N—1).

6. The null distribution of maximal L(p) invariants. Suppose that the columns of X
are interchangeable random p-vectors. An important special case occurs when,
perhaps by hypothesis, the columns of X are independent and identically distri-
buted (i.i.d.). Because of the importance of the following theorem, in the remainder
of this paper we restrict attention to maximal L(p) invariants constructed using
y = e/N in the compatible central measure, m.

THEOREM 2. If the columns of X are interchangeable random vectors and a maximal
L(p) invariant is constructed using m = X, then the representation of the N individuals
is that of interchangeable random quantities.
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Proor. The columns of X—Xe' are interchangeable random vectors with a
nonrandom sum, Chernoff and Teicher (1958), case (a). Now S defined by (4.9)
when m = X is a symmetric function of the columns of X — Xe’, so this is true of
L and G in (5.1). Thus the coordinator representation, W, defined by (5.2) has
interchangeable columns. P and D'® are invariant in distribution under simultane-
ous permutations of their rows and columns when the columns of X are inter-
changeable. This concludes the proof.

The distribution of a maximal L(p) invariant is singular because it contains only
r(N—r—1) functionally independent entries. This is most easily seen by examining
the coordinate representation, W, a matrix with rN elements. The assumption
of translation invariance (a in (2.1)) creates r constraints on W summarized by
(4.4). The assumption of nonsingular linear transformation invariance (B in (2.1))
adds r? constraints. Of these constraints, r(r+1)/2 imply (4.3) and r(r—1)/2
degrees of freedom are lost because coordinate representations are not unique,
Equation (4.5).

The exact distribution of maximal L(p) invariants with m = x can be displayed
for the case of a multivariate normal population. James (1954) shows how locally
defined exterior differential forms can be used to derive sampling distributions
in this case; his result on the decomposition of a random sample will be
reinterpreted here. Suppose that

(6.1) X —_—d./i/‘pN(ﬂe/;E@R)

where N > p, X is a p x p positive definite variance-covariance matrix, and R =
(1—p)I+pee’ is a Nx N correlation matrix with —1/(N—1) < p < 1. In the
following we denote the ith row of W by w, and choose any (N—p—1)xN
matrix U, whose jth row is u;’, such that [N~%e:W’':U']is an Nx N orthogonal
matrix. We can now restate Theorem 8.1 of James (1954), (8.22).

THEOREM 3. The distribution (6.1) of X can be decomposed into four independent
distributions:

(6.2) dF(X) = dF(X)- dF(S)- dF(D®)- dF(C),
where
(i) x =44 (n;(1+(N—=1)p)Z/N),
(i) S = Wy(N—1,(1-p)E.0),
(iii) dF(D®)=K(p,N) H?’;{’—l P u/(—dDP2)w,,
where the constant is

K(p, N) =z~ ?®=p= D2 [Tr_ T((N —i)/2)/T(i[2),
and

(iv) C has the invariant distribution on the orthogonal group.
dF(C) = 27?2+ DIATTr_ T(if2) [ Ji<jc; de;.
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The possible realizations of D® consist of the space of N x N symmetric matrices
with nonnegative entries and null diagonal such that the matrix

(6.3) P =(I—ee'/N)(—DP)2)(I—ee'|N)
is idempotent of rank p.

Proor. We note that dP = (dW' )W+ W’'(dW) is such that
(6.4) U(dP)W' = U(—dD®2)W' =UdW’' =B'dH

where B’ is (N—p—1) x (N—1), semi-orthogonal, and orthogonal to H of James
(1954), (5.17). We arrive at the probability element (6.2 (iii)) by noting that the
indicated double product of linear differential forms is the exterior product of the
elements of any of the matrices shown in (6.4). It is stressed that the validity of
(6.2 (iii)) does not depend upon any uniqueness property of W; the w;s and
u;’s can be chosen as any orthonormal set of c-vectors of P and I—ee'|N—P,
respectively, corresponding to c-roots of + 1.

7. Tests of structure S(r, o) invariant under L(p). Suppose we wish to test the null
hypothesis, H, that £ > 1 populations are identical against the alternative hypo-
thesis, K, that at least two of the populations are different. The null hypothesis
can be written as

(7.1) H: the columns of X are independent and identically distributed.

In order for a statistic, # = #(X), to be of any use in testing the null hypothesis
against the stated alternative, f must not be invariant under the group, «, of permu-
tations of the N columns of X. However, t is invariant in distribution under this
group when A holds.

We now restrict attention to tests invariant under L(p). As shown in Theorem 2,
L(p) preserves the interchangeability, but not the independence, of the observations
in a random sample. Thus the null hypothesis may as well be weakened to the
statement

(7.2) H': the distribution of X is invariant under .

We are now in a position to apply the results of Lehmann and Stein (1949) who
showed that the theory of optimum tests of H' is the same as the theory of optimum
similar tests of H.

We will represent the transformations in = by Nx N permutation matrices, C,
which are null except for one unity in each row and column. We define t¥’(X) as
being the jth largest value of #(XC) for C e r; actually, we need not consider
within sample permutations when k > 1, but this complicates the notation. A
randomized test function is then defined by

(7.3) $(X) =1 it 1(X) > 19(X)
—aX) if H(X)=19(x)
~0 it (X) < 19(X)
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where, given 0 < a < 1, the integer j and the function a(X)e [0, 1] can be so
chosen that the test is of size « under H’. The statistic # must be invariant under
L(p), (2.1), but the choice of ¢ depends upon the specific alternative of interest.

Most powerful L(p) invariant tests of H against a simple alternative can be
constructed in theory. For example, let g(D(®) denote the generalized density of a
normal distribution eK with respect to the measure (6.2 (iii)) eH, then one should
take t(X) = g(D?®).

When no specific alternative ¢K is of interest, it is heuristically satisfactory to
base the test upon a L(p) invariant statistic which measures the disparity between
within-sample and among-sample distances. Thus

(7.4) H(X) =Y *di; = df,

is suggested, where the symbol £* denotes summation over all subscripts i and j
which belongs to different samples. We introduce the following notation:

(7.5) X =Y "xi/n,,
is the sample mean vector for the observations from the mth population, and
(7.6) S, = Y (x, — %™ (x, — 5

is the matrix of adjusted sums of squares and products within the mth sample.
We write d*(m, ¢), to denote the average value of d ,ZJ for all i # j, i from sample m,
and j from sample g. It follows that

_ 2
(7.7) d*(m,m) = —— [¥"py—n,(3" ~%)S™ (3"~ 5)]
= —— tr(s7S,) and

— 1 1
(7.8)  @(m,q)=tr {s—[n— S+ — sw@+(x<m>_x<q>)(x<m>—x<«>)']}.
m q

It is easily shown that the overall average squared distance in the representation
is 2r/(N—1). We write S = S,+ S,, to divide S into its among-sample and within-
sample parts, and we note that dfa) of (7.4) takes on the following particularly
simple form when S is nonsingular and all samples are of the same size (1,, = n
for1 =m £ k): ‘

(7.9) diy =n[kp—trS™'S,]
=n[trS™'S,+p(k—1)].

Thus d(za) is a monotonically increasing function of the Pillai (1955) trace criterion
when all the k samples are of the same size; otherwise d(za) is weighted by sample
sizes.
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8. Conclusions. Geometrical insight may be brought to bear upon multivariate
procedures invariant under L(p) by considering the data as a scatter of N points in
Euclidean space of p or fewer dimensions. The metric (x;—x;)'S™ (x;—x;) is used
for this purpose, and these squared distances between individuals (observations)
can be ordered quite differently from those computed from the scatter of the raw
data using the formula (x;—x;)'(x;—x ).

As an example of the usefulness of geometrical representation, consider the
situation described in Mardia (1967). Mardia shows that a concept of “‘rank on
angle” is invariant under L(2) and produces a statistic which is distribution free
under the hypothesis (7.1). The results of this paper make it clear that a concept
of distance from the origin is also preserved by L(p). Procedures which combine
information about radius and angle are not unconditionally distribution free, but
clearly are of great interest. The associated probability of an observed test statistic
can be computed exactly when N is small or estimated using random permutations
when N is large.

The assumption of invariance in multivariate analysis is most commonly made
with respect to the group L(p); but other “linear” choices are possible. Maximal
invariants are displayed in Obenchain (1969) for the cases where B of (2.1) is
restricted to be block diagonal and/or where any information that k > 1 popu-
lations may differ in location is to be ignored.
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