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ON THE CORRELATION COEFFICIENT OF A BIVARIATE,
EQUAL VARIANCE, COMPLEX GAUSSIAN SAMPLE!

By ToBy BERGER

Cornell University

Let u, denote the sample correlation coefficient for n observations from
a bivariate, equal variance, complex Gaussian distribution. In this note we
derive the exact distribution of u» by extending a method of Mehta and
Gurland to the complex case. The asymptotic behavior of E|un|* as n — co
is determined via the method of steepest descent. Applicability of the results
to the analysis of certain estimators of spectral parameters of stationary
time series is discussed.

1. Density of u,. Let £,&,, -..,&, be an indepehdent sample from a zero
mean, bivariate, equal variance, complex Gaussian distribution with correla-
tion matrix

- 2 2
(1) %, — E&& = <" g ”) .
(72‘6 0-2
The Hermitian sample correlation matrix 4 = (4;;) =n' Y7, &,&,/, 1 <,
J = 2, then has the bivariate complex Wishart density

(2) p(A) = A" [zD(m)T(n — 1)|Z["]"* exp[—tr (T, 4)] -

(See Goodman (1963) for a detailed discussion of the complex Gaussian and
complex Wishart distributions.) The function p(A), defined over the domain
where A4 is Hermitian positive semi-definite, is a compact way of writing the
joint density of the four real random variables A,,, 4,,, A;,5, and 4,,,. The usual
estimator u, of the complex correlation coefficient p is a function of the elements
of 4, namely

u, = 24,[Ay + Ap]™ .

Throughout the remainder of this section we suppress the subscript n on u,.
The joint probability density of the real random variables u, and u, defined by
the relation u = u, + iu, may be found by extending the method of Mehta and
Gurland (1969) to the complex case as follows. First, two auxiliary variables
v = A, + A4, and w = A,, are introduced. A simple calculation reveals that
the magnitude of the Jacobian of the transformation (A, Ay, Ayp, A1) —
(g, Uy, v, w) equals (v/2)%. It follows from (1), (2), and some algebra that
P(ugy up, 0, w) = Ky(v/2)[(v — w)w — (|u|v/2)*]"~2exp[—vo™ + vRe(s%F)], where
K7 = T'(n)l'(n — D)za**(1 — |p|*)", o7* is the (j, k)th element of X! and the
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density vanishes outside the region 0 < w < v < oo, |u] < 2[(w/v) — (w/v)]t.
Although p(uy, u;) may be obtained by integrating p(up, #,, v, w) over this region
with respect to v and w, it proves more convenient first to introduce the variable
t defined by

w=(2)[1 + «(1 — [uP)].
Then p(ug, u;, v, t) = p(ug, u;, v, w)|dw/ot| is supported on the cylinder 0 < |u| < 1,
0<v< oo, —1=<¢=1, wherein it assumes the form
Pl g, 0, 1) = Ky(1 — £)"=3(1 — |u]?)@-3/2(v/2)=1 exp[ —va™ + v Re(a™i)] .
Integrating over v and ¢ yields
() Plug, ur) = Ky(1 — [uf)®=9%[g" — Re(s™n)] ™, |u[ <1,
where K, = T'2n)[z*T(m)['(n — })a**(1 — |p[?)y221]L
Subsequent discussion is facilitated by transforming (3) to polar coordinates.
Letting u = |ule’’» and p = |p|e*’», and using the explicit expressions for ¢'' and
¢' from (1), we obtain
4) p(lul; 6.,) = Clul(l — [u[?)®="[1 — |u||p| cos(6, — 6,)]™"
O<p <1, —7<0,<7),
where
(3) C = (1 — |pyT@n)[=*T(n)I'(n — 3)271]7".

Note that |u| and @, are not statistically independent. Extensions of certain of
the above results to the unequal variances case appear in Goodman (1957).

2. Asymptotic behavior of E|u,|*. The asymptotic behavior of E|u,|* for large
n may be obtained as follows. From (4) we have

(6) EluJ* = C {7, df §idx X" [ L— ]

M TN A ) (1 — x|o| cos 6)2]
For |6 < =/2 the integrand has a high peak centered at x = |p| cos § when n is
large, while for z/2 < |#] < = the integrand contains the nth power of a factor
that is smaller than 1 for all 0 < x < 1. Accordingly, the error associated with
limiting the range of integration to |¢| < x/2 is negligible when n is large. For
each such @ the inner integral in (6) is of the form

I'=§;9(x) exp[—nf(x)] dx,

where g(x) = x**}(1 — x?)~%, f(x) = log [(1 — bx)*/(1 — x*)], and b = |p| cos 0.
Since f(x) has a minimum at x = b and f”(b) = 2(1 — 4%~*, the method of
steepest descent yields 7 ~ (z/n)tb¥*'/(1 — b%)"+4. Therefore

(7) Elu,|t ~ <,ﬂ_>& C iy, (|o] cos @)kt
" (1 — |p|* cos? B)+4

Since |p| < 1 in nondegenerate cases, the integrand in (7) peaks sharply at 6 = 0
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for large n. Steepest descent therefore is applicable again. In this regard we
note that, to second order in 6,

(1 — |p|* cos® §)~"
= exp[—nlog(1 — |of* cos* )] ~ (1 — |of))™" exp (—

n|o|*6 )
L — o

It follows that

Eju,|* ~ <_’f_>* c oI o exp (- nlo[*0” >d0 _ __7Clol*
n

(1 — |of)=+ L—1loP/ " a1 — o)
Substituting for C from (5) yields the desired result,
(8) Elu,|* ~ ntl'(2n)|o|*

nL(n)[(n — §)22-1°

Asymptotic expansion of the gamma functions in (8) verifies the intuitively ob-
vious fact that E|u,|* — |o|* as n — oo, whereupon the L,-convergence theorem
(Loéve (1963)) implies that the |u,| converge in rth mean to the constant |p| for
all r > 0.

3. Applicability to estimation of spectral parameters. The above results find
direct application to the analysis of certain radar estimates of spectral parameters
of distributed-velocity media such as storm clouds and clear air turbulence. Spe-
cifically, the in-phase and quadrature signals returned from the portion of such
a medium that is located at a fixed range from the transmitter may be modeled
as the real and imaginary parts, respectively, of a zero mean complex Gaussian
random process {Z,}. It follows that range gating of the returns from a pair of
narrow radar pulses spaced 7' seconds apart produces a bivariate complex Gaussian
random variable &. If there is no clutter from ambiguous range cells, then § =
(Z,, Z,,,). Moreover, if {Z,} is wide-sense stationary, which usually is the case,
then Z, and Z,,, have equal variances. Their correlation matrix X, then is of
the form (1) with ¢* = { dF(y) and o®0 = § """ dF(y), where F is the spectral
distribution function of {Z,}. An independent sample §; = (Z,, Z, ,,), 1 =
j < n, of such bivariate, equal variance, complex Gaussian random variables
may be obtained either by frequency-stepping the radar carrier frequency or by
inserting sufficiently long delays between successive pulse pairs. In many appli-
cations it is of interest to estimate the centroid y, and spread ¢,* of F, which are
defined by § (y — 7,) dF(y) = 0 and o%¢,> = § (r — 7,)’dF(r). Reasonable estima-
tors of these quantities proposed by Rummler (1968a) are expressible as func-
tions of the complex statistic u = |u|e‘’s, specifically 7, = (22T)7'¢, and 6.’ =
(27°T?)~(1 — |u|). Some properties of these estimators and of certain extensions
of them to cases in which {Z,} is corrupted by additive, independent, “white”
receiver noise have been explored by Rummler (1968b), Hofstetter (1970), and

Berger (1971).
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