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BAYESIAN INFERENCE IN LINEAR RELATIONS

By C. VILLEGAS!
Simon Fraser University

1. Introduction. The statistical analysis of a linear relation among several
unobserved variables, when the observations are all subjected to error, has a
long history, going back to a paper by R. J. Adcock published in 1877. The
early writers on this subject, notably R. J. Adcock (1878), C. H. Kummel (1879)
Karl Pearson (1901) and M. J. van Uven (1930) were mainly concerned with the
derivation of least squares estimators. Modern statistical methods were used for
the first time in the analysis of linear relations by A. Wald in paper published
in 1940. As was pointed out by J. Neyman in 1937, if no replications are avail-
able and the errors and the unobserved variables are independent and have
Gaussian distributions, then the linear relation may be unidentifiable in the
sense that even a complete knowledge of the sampling distributions of the ob-
served random variables is not sufficient to determine the linear relation, be-
cause the number of parameters in the linear relation model is, in such cases,
greater than the number of parameters which determine the sampling distribu-
tions. If we try to solve this problem by Bayesian methods, we cannot expect
that the posterior distribution will be consistent in the sense of converging to
the true values of the parameters when the sample size increases indefinitely.
However, the assumption that the unobserved variables are independent is
unrealistic in many cases, particularly in time series analysis, and better alter-
native models are needed. Of course, under certain additional conditions there
are no problems of identifiability. Thus, J. Kiefer and J. Wolfowitz (1956)
showed that, under certain conditions of identifiability, when no replications
are available and the unobserved variables have probability distributions, the
method of maximum likelihood, if properly applied, will yield not only con-
sistent estimators of the linear relation, but, what is even more remarkable, it
will yield also consistent estimators of the probability distribution of the un-
observed random variables. However, Kiefer and Wolfowitz do not give ex-
plicit expressions for the maximum likelihood estimators.

In experimental work it is usually possible to replicate the observations.
Replicated experiments can be analyzed without great difficulties, because we
can easily obtain from them estimators of the experimental errors which have
known distributions. The case in which replicated observations are available
was considered systematically for the first time by G. W. Housner and J. F.
Brennan (1948), but the first important work on this case was done by John W.
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Tukey (1951), who showed how estimators of the linear relation may be easily
derived from a variance component analysis. In a series of recent papers Villegas
proved that an estimator previously proposed by Acton (1959) was the maximum
likelihood estimator (1961); obtained invariant least squares estimators (1963)
and confidence regions (1964); proved that the least squares estimators are
asymptotically efficient (1966) and considered the case of non-linear relations
(1969). The problems of testing the linearity of a relation and testing for simul-
taneous linear relations have been considered, respectively, by C. R. Rao (1965)
and A. P. Basu (1969). A more complex model with strongly correlated obser-
vations was considered by Sprent (1966). The case when no replications are
available has been considered recently by Lindley and El-Sayyad (1968) using
Bayesian methods and by Kalbfleisch and Sprott (1970)using likelihood methods.
For a more detailed survey of the extensive literature available on the analysis of
linear relations, the interested reader is referred to a paper by Madansky (1959).
In this paper a Bayesian statistical theory of linear relations will be developed
for the case in which replicated observations are available, but assuming no ad-
ditional prior knowledge about the linear relation. The prior to be used must
be therefore a prior representing ignorance. In a previous paper [29] it was
argued that, if the parameter is an element of a group of transformations of the
sample space, and if this group has an invariant Haar measure, then this Haar
measure is the prior which represents ignorance. However, the prior used in
this paper is not a single Haar measure but rather a product of Haar measures
of several groups of transformations of the sample space. The results obtained
in this paper remain valid when no replications are available, provided that there
is some additional prior knowledge compensating for the lack of replication.
Some results of a purely mathematical nature which are used in this paper
have been collected in an Appendix. The first Section of this Appendix is de-
voted to the theory of invariant measures in homogeneous spaces. In this sec-
tion we review the more relevant results of this theory, giving a new derivation
of the invariant measure for hyperplanes. For a more detailed account of this
important and interesting theory, the reader is referred to Nachbin [16].

2. Notation and model. An affine linear relation
(2.1) Bix® 4 ot 4 Bx® 45 =0

among p real variables x, ..., x»» may be represented geometrically, in a p-
dimensional vector space .2, by a hyperplane, or, in other words, by a (p — 1)-
dimensional affine subspace. To simplify our analysis, it will be convenient to
assume that the vector space 2 has been equipped with an inner product and
with an orthonormal basis o,, - - -, 0, arbitrarily chosen. If the coefficients of
(2.1) are normalized by }; 8;> = 1, then d is the (signed) distance from the origin
to the hyperplane.

In general, an m-dimensional affine subspace, or, briefly, an m-dimensional
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flat is the image of an m-dimensional subspace H under a translation x — x + aq,
and may be denoted by H + a. Thus
(2.2) H4a={x+4a:xeH}.
Clearly, if xe€ H + a, then H + x denotes the same flat. Therefore the vector
a in the notation H + a is not uniquely determined. However, there is one and
only one vector lying on the flat and orthogonal to it, and, if a is this vector,
then the flat will be denoted by H @ a, where the special symbol @ is used to
emphasize the fact that a is orthogonal to H and is therefore uniquely determined.
We can think of ® as a relation from the space 57 of all m-dimensional sub-
spaces to the vector space %. The graph of this relation, that is, the set of all
points (H, a) of the Cartesian product 57 x 2 such that a is orthogonal to H,
will be denoted by &7°® . There is a natural bijective (i.e., one-to-one) cor-
respondence between 7”@ & and the space of all m-dimensional flats, and we
shall use the same notation H @ a to denote a hyperplane and the correspond-
ing point of Z#°@® 2. The space of all m-dimensional subspaces of .22, equipped
with its natural topology, is called a Grassmann manifold. In the particular case
m = 1, we have the space of all lines going through the origin, which is called
the (p — 1)-dimensional projective space. Arbitrary m-dimensional flats will be
considered only in the Appendix; in all the remaining sections of this paper we
shall consider only the case m = p — 1 in which the flats are called hyperplanes.
By duality, the space 2~ of all hyperplanes H going through the origin is also
a projective space.

Suppose that, in order to obtain information about a hyperplane H®a, a
replicated experiment has been performed, and that, from a preliminary statis-

tical analysis, we have derived estimates y;, - - -, y, of n points x,, - - -, x, lying
on H@® a. Then, more precisely, our model will be
(2.3) Ly —x) =1 G(=1,.--,n),

where: (i) the observed random vectors y, have unknown mean values x; which
lie on a hyperplane H @ a but do not lie on any other flat of smaller dimension;
(ii) the v; are independently and identically distributed random vectors which
have the standard p-dimensional Gaussian distribution; and (iii) the unknown
parameter I is, with respect to the given basis, a positive upper triangular trans-
formation, i.e., it has, with respect to the given basis, a matrix which is upper
triangular and has positive diagonal elements. The parameter I' will be called,
simply, the linear parameter. Note that, with probability 1, the observed vec-
tors y, do not lie on any proper flat; and, in what follows, we assume that this
is true for the realized vectors.

We assume, in addition, that from the same preliminary statistical analysis
we have derived also a positive definite transformation W which is independent
from the y; and has the usual Wishart distribution with ¢ > p degrees of freedom
and parameter £ = (I'I")~?, where I'” denotes the adjoint of I'. This transfor-
mation W may be called a Wishar: transformation. When no replications are
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available, the transformation W does not exist. However, the results obtained
in this paper will also be valid in this case, provided that the lack of replications
is compensated by an additional prior knowledge equivalent to the observation
of a Wishart transformation W.

In some cases it is known that the affine linear relation is homogeneous, i.e.,
that ¢ = 0. This happens for instance when the experiment has a block design
and the y, are the estimates of the intrablock effects (see [24] page 1056). Al-
though the estimates of the intrablock effects are not independent, this case can
be brought back to the case of independent y; considered in this paper by a linear
transformation.

3. The likelihood function. As was said before, it will be convenient to assume
that the vector space % has been equipped with an arbitrarily chosen inner
product, becoming in this way a Euclidean space. As usual, the inner product
of two vectors x, ye &2 will be denoted by (x, y) and the norm of a vector x
will be denoted by ||x||. If 4: .22 — 27 is a bijective (i.e., a one-to-one) linear
transformation, then a new inner product (x, y), and a new norm ||x||, called
the A-inner product and the 4-norm, may be defined by

(3.1) (5 V)a = (Ax, 4y) s Ix]la = || 4x]] -

It can be shown that any inner product can be defined in this way, using a suit-
ably chosen 4. The vector space &, equipped with the new A-inner product,
becomes a new Euclidean space .52, and (3.1) shows that the transformation
A: R, — Z is an isometry. The usual Euclidean measures in .22 and in <%,
of a measurable set E will be denoted by |E| and by |E|, and will be called, re-
spectively, the measure and the A-measure of E. Clearly

(3-2) |Ely = |4E| = |4]|E],

where | 4| denotes the absolute value of the determinant of 4. We shall say that
a random vector y has the A-standard Gaussian distribution in &2 if the random
vector v = Ay has the standard Gaussian distribution in .Z%. The differential
form of the A-standard Gaussian distribution is proportional to

exp[—31yll."1ldyl4
where |dy|, denotes the differential form of the A-measure in 2. By (3.2) we
have

|yl = |4 dy

and therefore the density of the A-standard Gaussian distribution is propor-
tional to

4] exp — [yl -

This distribution may be called also the Gaussian distribution with zero mean

and linear parameter 4. It is clear now that the joint density of the random
variables y; in the linear relation model is proportional to

(3.3) |T'|” exp —40Qr
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where
(3.4) Or = 2y — xille

By assumption, the transformation W has a Wishart distribution with parameter
Z = (I"'T')" and ¢ = p degrees of freedom. Let us denote by tr 4 the trace of
a linear transformation 4: .22 — 2. Then the sampling density of W is propor-
tional to

(3.5) |W|te=»=0AT e exp — tr I'T'W

for W positive definite and is equal to zero otherwise. The likelihood is pro-
portional to the product of (3.3) and (3.5) or, equivalently, it is proportional to

(3.6) IT|" exp —4(Qy + tr WI'T),

where N = ¢ + n. It is well known that the likelihood is also the posterior den-
sity, with respect to any given prior measure, of the corresponding posterior
distribution of the parameters I', H® a, x,, - - -, X,.

4. Prior measures. It will be convenient to substitute new parameter vectors

X, defined by
(4.1) x.:in (i:l,...’n).

%

Then the model equation (2.3) becomes

(4.2) Ty, — % =, (i=1,.-.-.,n).

?

The new parameters %, lie on a hyperplane, which we shall denote by A @ a.
Let .2 be a (p — 1)-dimensional subspace which has been arbitrarily chosen,
and let O be an orthogonal transformation such that

(4.3) O07=H.

Then the vectors O’x, lie on the hyperplane .Z'® c, where

(4.4) c=0'a

belongs to the orthogonal complement _Z* of _# and we can write
4.5) O'% =u, + ¢

where u; is the projection of O'%; on _# Since the p-dimensional standard
Gaussian distribution is invariant under orthogonal transformations, we can
write our model equation as

(4.6) Ay, —u, — c =,
where
(4.7) A=0T

is a bijective linear transformation. Let .4 be an auxiliary n-dimensional
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Euclidean space, with an orthonormal basis e, ---, e, and define the linear
transformations Y, V from .#" to &2 and U: .4"— _# by
(48) Yei = .yi s Vei = ’l)i y Uei =u,.

Then our model equation becomes
(4.9) AY U —-C =V

where C: #"— _#"* is the constant transformation whose value is the point ¢
of the orthogonal complement _#Z* of _# which, of course, is a line going
through the origin and orthogonal to .#. Let 7" be the space of all linear
transformations Y: 47— 2, let .o/ be the (multiplicative) group of all bijective
linear transformations 4: &% — %, let Z/ be the additive group of all linear
transformations U: .#"— _#; and let & be the additive group of all constant
transformations C: .#"— _#Z*. The three groups of parameters .o, Z/ and
& can be considered as groups of operators acting on the sample space 7~ ac-
cording to the obvious composition laws (4, Y) — 4Y, (U,Y) —»Y — U and
(C,Y)—>Y — C. The groups 7/ and = are commutative and therefore uni-
modular, i.e., each of them has, up to an arbitrary scale factor, only one Haar
measure [16]. It is well known that, although the group .2/ is not commutative,
it is also unimodular. The Haar measures on the three groups of parameters
are then the unique measures which are naturally associated with these groups.
Therefore, for a person who does not have any additional knowledge concerning
the values of the parameters, it would be natural to choose as a joint prior
measure for the parameters 4, U and C, the product of the Haar measures on
the three groups. Clearly the Haar measure on the group 7/ has differential
form du, - - - du,, where du, is the differential form of the usual measure on ..
By Proposition 2.1 of [29], the Haar measure for 4 = I''O is the product of the
invariant measure ¢ for O and a right invariant Haar measure r* for I'. Thus,
the differential form of the prior measure for all parameters I', O, ¢, u;, - - -, 4, is

(4.10) +(dT)p(dO) de du, - - - du, .

We have to derive from (4.10) the corresponding prior measure for the former
parameters I', H®a, x, -+, x,. If h = H* is the line that goes through the
origin and is orthogonal to a hyperplane H € 57, and E is any measurable set
in &, we shall define

(4.11) . WH,E) = |k E™

where |k n E|® denotes the usual one-dimensional measure of # N E considered
as a subset of the line 2. For a fixed E, v(+, E) will denote the function defined
on ¥ whose value at H ¢ 57 is v(H, E). Similarly, for a fixed H € 27 v(H, +)
denotes the function defined on the g-algebra of measurable sets of &2 whose value
at the measurable set E is v(H, E). Clearly, for any measurable set E, (-, E) is
a measurable function in 57, and, for any H € 57, v(H, +) is a measure defined
on the g-algebra of measurable sets of <2, which is concentrated on the line
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h = H*. A function v of two arguments, which is a measurable function when
it is considered only as a function of one of them (for a fixed value of the other)
and is a measure when it is considered as a function of the second argument (for
a fixed value of the first), will be called, in this paper, a partial measure.

Consider the substitutions ¢ — @ = Oc, u; — %, = O(u; 4+ ¢). Then, clearly,
the prior measure for the parameters I', O, @, %,, - - -, %, will be

(4.12) oH(dT)p(dO)v(H, da)|dx,|7ee . . . |dx,|Te

where H is defined by (4.3), and, for a given H@® a4, |d%;|7®* denotes the dif-
ferential form of the usual measure on the hyperplane A @ a. Let X: 4 — 2
be the linear transformation defined by Xe, = %,. Then the prior measure (4.12)
can be written in a more compact notation as

(4.13) o+ (dT)p(dO)w(H, da)|d |75+

where |dX|7% = |dx,|7® . .. |d%, |7 .

Let ./ be the unit sphere in &2, that is, the set of all vectors & such that
||6]| = 1. For any measurable subset E of .~ let |[E|*~ denote the usual (p — 1)-
dimensional measure of E. Let .~ be the space of all lines / going through the
origin. Any set E in ¥ can be considered also in a natural way as a set in <2
(i.e., as the set of all points of all lines of E), and therefore it has an intersec-
tion E n . with >/ If this intersection is a measurable set, then we shall say
that E is measurable. We shall define a measure 4 in the projective space . by

_|En &~
- || -1 :

This measure is clearly normalized by (") = 1, and, since < isa (p — I)-
dimensional projective space, 4 may be called the normalized projective measure
in .#. Given a set E in .7, consider the set E* in .&” defined by

Et={l:1=H ,HeE}.

(4.14) A(E)

We shall say that the set E C .# is measurable if E+ is a measurable set, and
we shall define a measure ¢ on 2Z by
(4.15) w(E) = A(E“).
This measure in also normalized by x(57”) = 1, and may be called the normal-
ized projective measure in 27", By Proposition A1.3 of the Appendix, this mea-
sure is the only normalized measure in 52~ which is invariant under orthogonal
transformations. By Proposition A1.6 of the Appendix, there is a partial mea-
sure y(H, dO) such that
(4.16) o(dO) = p(dH)y(H, dO) .
Substituting in (4.13), and introducing H as an additional parameter, it follows
that the prior measure for all the parameters I, H a X, 0is

(4.17) oH(dD) p(dB (B, da)|dX|7ety(H, dO) .
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Let # X v be the measure in the product space %" x .»# whose differential
form is

(4.18) 1 X wWd(H, a)) = p(dH)«(H, da) .

Given a measure in the product space .7 x .2 a factorization like (4.18) is not
uniquely determined. In effect, if we do not require x# to be normalized, then
we can multiply x#(dH) by any factor f(H), where f is an arbitrary positive con-
tinuous function, provided that we divide v(H, da) by the same quantity. If we
require that # be normalized, then the function f must satisfy the condition

§ f(H)p(dH) = 1.

In the particular case considered, from the definition (4.11) it follows that, for
any He 27, w(H, .7) is infinite, and therefore there is no marginal measure on
<# and we may refer simply to the measure x as the prior measure in . 7.

Clearly the measure ¢ X v defined on the Cartesian product # x ..+ vanishes
on the complement of 7@ .#, and therefore it can be considered also as a
measure in .# @ ., or, equivalently, as a measure on the space of all hyper-
planes. As will be shown in the Appendix, this measure is, up to an arbitrary
scale factor, the only measure invariant under Euclidean displacements, and
was found by Blaschke [5] using different methods. When we consider g x v
as a measure on % @ .22 we shall write its differential form as p X v(d(H @ a)).
Thus, the prior measure for the parameters T', H® a, X, O becomes

(4.19) +(dT)p X w(d(H ® a))|dX|T®y(H, dO) .

Clearly, if it is known beforehand that the relation is homogeneous, then @ = 0
and the prior measure will be simply

(4.20) o+ (dT)pu(dH)|dX |7 y(H, dO) .

If the linear parameter I' is known, then the prior measure for the affine case
will be

(4.21) ¢ X Wd(H @ a))|dX| %y (H, dO)
and for the homogeneous case it will be, simply,
(4.22) p(dH)|dX|7y(H, dO) .
Let us define, for any measurable set £ C .77, the measure x by
(4.23) re(E) = ((TE) .
Similarly, let |dx|.”®* be the differential form of the measure defined, for any
measurable set £ C &2, by
|E|"% = [T(E n (H@ a))|*"

where the second member denotes the usual (p — 1)-dimensional measure of the
set ['(E N (H®a)). Let X: 47— 2% be the linear transformation defined by
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Xe, = x; and let |dX|."®* = |dx,|®* ... |dx,|7®*. Then the prior measure for
the old parameters I', H @ a, X, O will be, in the homogeneous case,

(4.24) tH(dD)pu(dH)|dX| "y (T'H, dO) .
Let us define also, for any measurable set £ C &Z”® &%, the measure (¢ X v); by
(4.25) (# X V)(E) = o X WTE).

Then the prior measure for the old parameters I', H® a, X, O in the affine case
will be

(4.26) HdT)(i X v)(d(H @ a))|dX]|"®y(TH, dO) .

5. Linear parameter known. In this Section we assume that the linear parameter
I' is known. The results obtained in this Section are valid also when no replica-
tions are available. They will also be valid for the case in which I' is unknown,
provided that they are interpreted only as properties of the conditional distribu-
tion of the remaining parameters given the value of I'.  We shall consider first
the case of an affine relation. Since I' is known, the likelihood is clearly given
by (3.3) and (3.4). As is well known, the likelihood is proportional to the pos-
terior density of the parameters H@® a, x, - - -, x,, O with respect to the prior
measure (4.21). Since the likelihood does not depend on O, it follows that the
parameter O, given the values of the remaining parameters, is unidentified. We
can integrate out O immediately, and it follows that (3.3) is also the posterior

density of the remaining parameters, H® a, x,, ---, x, with respect to the
measure
(5.1) (¢ X v)r(d(H @ a))|dx,| " ... |dx,| "o .

In this Section it will be convenient to use the I'-inner product of the space
“%,. The orthogonal projections will be different in the spaces . and %, and
they will be called, respectively, the projections and the I'-projections. The pro-
jection and the I'-projection of a point x on an affine subspace M will be denoted
by x¥ and x/. Let y/i® be the I'-projection of the point y;, on the hyperplane
H® a. Clearly

(5.2) [1x; — yille* = llx; — Y& + |lye, H D allc*,

where ||y;, H @ a||; is the distance from the point y; to the hyperplane H ® a in
the Euclidean space %%, and may be called briefly the I'-distance from y, to
H® a.

We shall say that a random variable x has the (p — 1)-dimensional I'-standard
Gaussian distribution on a hyperplane H € 57 if it has the (p — 1)-dimensional
standard Gaussian distribution on H relative to the space ZZ.. We shall say that
a random variable x has a (p — 1)-dimensional Gaussian distribution on a hyper-
plane H ® a, with mean value y € H® a and linear parameter ', if x — y has
the (p — 1)-dimensional I'-standard Gaussian distribution on H.
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PROPOSITION 5.1. A posteriori, given H® a, the parameters x; are independent
random variables. The posterior distribution of x,, given H@® a, is a (p — 1)-di-
mensional Gaussian distribution on the hyperplane H ® a, which has linear parameter
[ and is centered at the I'-projection of the point y,.

Proor. By substitution of (5.2) in the posterior density (3.3) it follows that
a posteriori, given H @ a, the x,; are independent, and the conditional density
of x; with respect to the (p — 1)-dimensional I'-measure on H @ a is propor-
tional to

(5-3) exp —3{|x; — yi®|l*,
and the conclusion follows immediately.
Let
1
(5-4) Y. = W IS 2

be the baricenter of the points y,, and, if 4: 22— <2 is a linear transforma-
tion, let ||4||, be the norm of the restriction of A to the line & = H*.

PROPOSITION 5.2. The conditional posterior distribution of the parameter a, given
H, is a Gaussian distribution on the line h = H* which goes through the origin and
is orthogonal to H. The mean of this distribution is the projection of the baricenter
y. on the line h, and its variance is n=*||I"' V||,

Proor. Integrating out the parameters x,, - - -, x, it follows that the posterior
density of H @® a with respect to the measure (¢ X v); is proportional to
(5.5) exp —3Q(H @ a)
where
(3-6) O(H® a) = X[y HO all®

is the moment of inertia of the system of points y, with respect to the hyperplane
H @ a in the metric of 7., or, more briefly, is the I'-moment of inertia of the
points y, with respect to H @ a. As is well known, this is equal to the sum of
the I'-moment of inertia, with respect to H @ a, of a mass n placed at the bari-
center y, plus the I'-moment of inertia of the same system of points with respect
to the hyperplane H + y. Thus,

(5.7) Qr(H@a) = n||y, HD a||;* + Qn(H + y.),
where
(5-8) Or(H +y) = Dk lly H+ ylle.

On the other hand, by Proposition A3.3 of the Appendix, the measure (xz X v);
is equal to 1 X v, and by Proposition A3.4 of the Appendix, v, is proportional
to v. Therefore, the conditional posterior distribution of a, given H, is concen-
trated on the line # = H* and has a density proportional to

exp — 5 [ly. H® all*.



BAYESIAN INFERENCE IN LINEAR RELATIONS 1777

By Proposition A2.2 of the Appendix it follows that this density is propor-
tional to

— pAp
(5.9) exp — 2 lla =y,
2 (I

ProPOSITION 5.3 The marginal posterior density of H, with respect to the mea-
sure p is proportional to
(5.10) exp —3Q0:(H + 7)),
where Q. (H + y.) is given by (5.8).

Proor. We have to integrate out a from the joint density (5.5). By Proposi-
tion A3.4 of the Appendix, the integral of the conditional density (5.9) with

respect to the measure v .(H, ) does not depend on H and the conclusion follows
immediately.

REMARK. Since the space 7 of all hyperplanes going through the origin is
a projective space, the distribution (5.10) may be called a (p — 1)-dimensional
projective Gaussian distribution. Let us associate with each H € & a I'-unit vector
b I'-orthogonal to H (that is, a vector 4, which, relatively to &%, is a unit vector
orthogonal to H). Then, by (5.8),

Or(H +y) =X (Vi — )., b))
Define a transformation AY: _4"— 2%, by
(5.11) AYe; =y, — y..

Let AY': <%, — 4" be the adjoint of AY: _#"— .. The transformation AY"
will be called the T'-adjoint of AY to emphasize its dependence on the I'-inner
product. Clearly

QI‘(H +y) = 2ia(e AYPb)2
= ||AYTH|
= (b, AY AYTbd), .
Let 6,, - - -, 6, be a I'-orthonormal basis whose elements are eigenvectors of the
I'-selfadjoint transformation AY AYT, and let

b= 25 .Bjéi :
Then

(5.12) Ov(H +y) = 2517184

where the 7, are the eigenvalues corresponding to the eigenvectors 6;. For the
particular case p = 2, if we write B, = sin(f/2), then (5.10) is proportional to
(5.13) exp K cos ¢ —r < 0=~

where K = (8, — $,)/4. This is the well-known circular normal distribution, which

was introduced by von Mises (1918), tabulated by Gumbel, Greenwood and
Durand (1953) and generalized to higher dimensions [6]. Returning now to the
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general case, the vectors Ay, = y, — y.donot lie on any proper subspace because,
by assumption, the vectors y, do not lie on any single hyperplane. Therefore,
by Theorem 3.5 of [27], the transformation AY AYT is I'-positive definite and
its eigenvalues are all positive. We shall assume that the basis 4,, -- -, 6, has
been ordered in such a way that », = ... = 5, and we shall consider only the
case, which happens with probability 1, in which ,_, > 7,.

ProrosiTiON 5.4. If 9, = --+ = 9,_, > 0,, then there is one and only one hy-
perplane H which maximizes the posterior density (5.10). This hyperplane H, which
will be called the most likely hyperplane in 57, is the hyperplane that goes through
the origin and is T'-orthogonal to the eigenvector 6, corresponding to the smallest

eigenvalue 7, of the transformation AY AYT.

Proor. Maximizing the posterior density (5.10) is equivalent to minimizing
(5.12). Since }; 8> = 1, it follows that Q. (H + y.) is minimized when g, = 1
and all the other g; are equal to zero, i.e., when b = 4,.

REMARK. Note that A, the most likely hyperplane in 57 is also the maximum
likelihood estimate [24].

PROPOSITION 5.5. If it is known that the relation is homogeneous, i.e., thata = 0,
then:

(i) a posteriori, given H, the parameters x, are independent random variables and
have (p — 1)-dimensional Gaussian distributions on H, with linear parameter I' and
mean values equal to the I'-projections of the points y,;

(ii) the posterior density of H with respect to the measure p is proportional to

(5.14) exp —30c(H),
where
(5.15) Qn(H) = Kt ||y Hl|e*

Proor. The proof is entirely similar to the proof for the affine case and is
omitted.

REMARK. Let YT: 5%, — 7" be the I'-adjoint of Y. Since the vectors y, do
not lie on any proper subspace, it follows that the transformation YYT is I'-
positive definite. Let 4,, -- -, 6, be a I'-orthonormal basis whose elements are
eigenvectors of YYT. Let us associate with each hyperplane H € 57 a I'-unit
vector

b= 25..8,0;
which is I'-orthogonal to H. Then
(5.16) On(H) = Zi17,; 857
where »,, - - -, 5, are the eigenvalues of YYT.

6. Linear parameter unknown. In this section we shall consider the case in
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which the linear parameter is unknown. As before, we consider first an affine
linear relation H @ a. The results obtained in the previous section are still valid
in the case in which the linear parameter is unknown, provided that they are
interpreted only as properties of the conditional distribution of the remaining
parameters given I'.  We summarize these results in the following Proposi-
tion 6.1.

PRroPOSITION 6.1. (i) A posteriori, given I' and H® a, the x; are independent
random variables, which have (p — 1)-dimensional Gaussian distributions in H® a,
with linear parameter I' and mean values equal to the I'-projections of the points y;.

(ii) The conditional posterior distribution of a, given I' and H, is a Gaussian dis-
tribution on the line h = H*, with variance n~'||I""~||,* and with mean equal to the
projection of the baricenter y..

(iii) The conditional posterior distribution of H given I' is a projective Gaussian
distribution, whose density with respect to pr, is proportional to (5.10).

(iv) The marginal posterior joint density of the parameters I', H® a with respect
to the measure t+ X (¢ X v)p is proportional to

(6.1 IT|¥ exp —3(Qr(H @ a) + tr WI'T)

where Q.(H @ a) is given as before by (5.6).
(v) The marginal posterior joint density of I and H with respect to the measure
X pyp is proportional to

(6.2) IT|" exp —(Qr(H + y.) + tr WI'T) .
PROPOSITION 6.2. Let T be the positive upper triangular transformation defined by
(6.3) T'T = NW-',

Then the posterior density of H® a, with respect to the measure (yt X v), is propor-
tional to

(6.4) [N + Qu(H ® a)]-40v+

where Q,(H @ a) is obtained from (5.6) by substitution of T for I.
Proor. Let

6.5) Z=TT".

By Proposition A3.5 of the Appendix, applied separately to (¢ X v)r and (¢ X v);,
we get

Z7|(pt X v)(d(H @ a))

% V)(d(H @ a)) = | r

(1 X v)r(d(H © a)) [z

where £ is the line that goes through the origin and is T-orthogonal to H. The
posterior joint density of the parameters I' and H @ a, with respect to the mea-
sure v+ X (¢ X v), is therefore proportional to

o

6.6
(6-€) iz

exp —3(Qr(H® a) + tr WI'T).
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The posterior density of H @ a, with respect to the measure (¢ X v), is the in-
tegral of (6.6) with respect to the measure z*. In order to evaluate this integral,
we shall make the substitution (6.5). By Proposition A2.2 of the Appendix ap-
plied separately to Q(H @ a) and Q,(H @ a) we have

0:(H @ a) = 2 D)

R
Then we have to integrate
(6.7) _lzr exp 1 [%ﬁ_@_@ + Ntr Z'Z_J ,
|27 -z3 2 L |25

considered as a function of Z, with respect to the measure z*. When carrying
out this integration, H is considered as a constant. Let 6, ---, 6, be a new
orthonormal basis in 2 such that ¢, is parallel to Th. It is well known that
there is a unique decomposition
(6.8) Z =027
where O is an orthogonal transformation and Z is a positive upper triangular
transformation with respect to the new basis 6,, - -+, 6,. The transformations
O and Z are well-defined functions of Z. The matrices {z,;} and {z//'} of Z and
Z-' with respect to the new basis are positive upper triangular and the diagonal
elements are related by 299 = z;}!. Clearly
(6-9) 1Z| = 12| = 131255
(6.10) tr2’Z=tww2'2 = Zj’zj Zﬁj/ .
We also have
Z'"' = 02!
215, = 276,

and therefore

(6.11) 12" er = 112" lei = 255 -
Substituting in (6.7) we have
(6.12) 2 5 25 exp —3{Q(H @ @)z}, + N Xjez; 2550] -

By Proposition A3.7 of the Appendix, the corresponding measure for Z is again
the right Haar measure ¢+. Therefore, in order to find the posterior density of
H ® a, we have to integrate (6.12) with respect to the measure ¢* whose dif-
ferential form is (see [8] page 209)

(6.13) Mz.%7 dZ.

The variables z;;, different from z,, can be integrated out immediately, and in
order to integrate out z,, we have to integrate

eryp eXp _%[N + QT(H@ a)]zip
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as a function of z,,. The conclusion follows immediately by the substitution
z,,—>t=(N+ Q.(H®a))tz;,.
PROPOSITION 6.3. The posterior density of H with respect to the measure p, is
proportional to
(6.14) (N + Qn(H + y))~*"
where Q (H + y.) is obtained from (5.8) by substitution of T for I.

Proor. We have to integrate out I' from the joint posterior distribution of
I' and H, given by Proposition 6.1. By Proposition A3.2 of the Appendix,
applied, separately to p and p,

_ 127 pa(dH)

pr(dH) ;
' 1Z""|2s

where, as before, Z is defined by (6.5) and h is the line that goes through the
origin and is T-orthogonal to H. It follows that the posterior joint density of
the parameters I' and H, with respect to the measure * X g, is proportional to

o
12" 175
The remaining part of the proof is similar to the corresponding part of the proof
of Proposition 6.2 and is omitted.

(6.15) exp —HQr(H + y.) + tr WI'T").

ProOPOSITION 6.4. If it is known that the relation is homogeneous, i.e., that
a =0, then

(i) a posteriori given I and H, the x; are independent random variables, which
have (p — 1)-dimensional Gaussian distribution in H, with linear parameter I' and
mean values equal to the I'-projections of the points y;;

(ii) the conditional posterior distribution of H given I' is a projective Gaussian
distribution, whose density, with respect to iy, is proportional to (5.14);

(iii) the posterior density of H with respect to the measure i, is proportional to

(6.16) (N + Q(H) ™
where Q,(H) is obtained from (5.15) by substituting T for I'.
Proor. It is omitted.

7. No replications available. When no replications are available and we use
the same prior representing ignorance, we have, instead of (6.12),

(7.1) 253 13- 257 exp —3Q:(H ® a)23,
and therefore we cannot integrate out the variables z;;. However, we can assume
that we have an additional prior knowledge, equivalent to the knowledge ob-

tained from the observation of a Wishart transformation W. More precisely,
the prior measure in the affine case will be, instead of (4.26), the product of

(7.2) |IT|7exp —% tr WI'D
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and (4.26), and, in the homogeneous case, it will be, instead of (4.24), the product
of (7.2) and (4.24). Clearly, then, the corresponding posterior distributions,
when replications are not available, will be exactly the same as before, i.e.,
they will be the same as if a Wishart distribution W had really been observed
and no additional prior knowledge was available.

APPENDIX

Al. Invariant measures in homogeneous spaces. We say that a group & operates
(to the left) on a space &7, or is a group of (left) operators of 57, if for any A e &
and any x € & there is an element Ax e 57 such that

(i) if 4, Be & then for any x € 57 we have (AB)x = A(Bx);
(ii) if I is the unit element of &7, then for every x ¢ 57, Ix = x.

Then, clearly, any element 4 ¢ & induces a bijective (i.e., one-to-one) trans-
formation of &#. If ¥ is a group of operators on a space 57, we say that &
operates transitively on 27 if for any two points x, y € 5% there is at least one
A e & such that y = Ax. If a topological group ¥ is a group of operators of a
topological space 77, then we shall say that & operates continuously on 57, if
the mapping (4, x) — Ax of & x 2 into 5 is continuous. Finally, we shall
say that a topological space 27 is an homogeneous (topological) space with respect
to a topological group of operators & if & operates continuously and transi-
tively on &7, and for any x € 57, the transformation 4 — Ax from ¥ into 5%
transforms any neighborhood of the unit element in & into a neighborhood of
x. We shall say that a measure ¢ on a (measurable) space 57 is invariant under
a group of (measurable) operators &, if for any 4 € & we have

(A1.1) Ap = p,
where Ay is the measure defined, for any measurable set E C 5Z by
(A1.2) Ap(E) = p(AE) .

ProrosiTiON Al.1. If the lacally compact space SZ is homogeneous under the
locally compact group <&, then, up to an arbitrary scale factor, there is at most one
measure p on ¢ which is invariant under <.

Proor. This Proposition is an immediate consequence of Theorem 1, page
138 of [16].

ProrosiTION Al.2. If a locally compact space S is homogeneous under the
compact group <, then there is one and only one (up to an arbitrary scale factor)
measure pt on 5¢ which is invariant under <.

Proor. See the remark on page 140 to [16].

CoroLLARY Al.l. If a compact space 57 is homogeneous under a compact group
&, then there is one and only one measure p on 2% which is invariant under & and
is normalized by u(#") = 1.
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PROPOSITION Al1.3. There is only one normalized measure y on the space 52 of
all m-dimensional subspaces of %, which is invariant under the group & of orthogonal
transformations.

Proof. The Grassmann manifold 57 is an homogeneous space under the group
of orthogonal transformation ¢ (see [16] page 131, Example 7 and page 143,
Example 5), and since both 7 and 5 are compact, by Corollary Al.1 the con-
clusion follows immediately. The definition of a measure ¢ X v on the space of
all hyperplanes, made in Section 4, can be generalized in a natural way to the
space of m-dimensional flats. If # = H*' is the (p — m)-dimensional orthogonal
complement of an m-dimensional subspace H € 57, and E is any measurable set
in ., then we shall define the partial measure v by

(A1.3) v(H, E) = |h n E|®—™),
where | n E|»~™ denotes the (p — m)-dimensional Euclidean measure of # N E
considered as a subset of 4.

The measure ¢ X v was obtained, using different methods, by Blaschke [5],
who proved that it is, up to an arbitrary scale factor, the only invariant measure
with respect to Euclidean displacements (see Proposition A1.5 below). Similar

problems have been considered for a long time as problems of Integral Geometry
[20].

LemMA Al.1. The measure 1 X v on the space of m-dimensional flats is invariant
with respect to translations.

Proor. Given an m-dimensional subspace H e 57, let h be the orthogonal
complement, and let IT,: &2 — &2 be the projection on k. Define a transfor-
mation Il : 577 x 2 — 57 x 2 by

(h, x) = HO I, x.

If te &2, then the translation x — x 4 ¢ induces in 57 x % a transformation
T defined by
T(H, x) = (H, x + 1),

and it induces in 2@ .72 a translation IIT defined by
OT(H®a) = HO M(a + 1) .
Let =% be the family of Borel sets in &7 x .. Then the family
Iz = {II7'E: Ee &%}

is a g-algebra of sets in 2" x 2 which is closed under translations. Let II-
¢ X v be the measure on the s-algebra I1.<# defined for any E c 12 by

Iy X WE) = p X W(IIE) .

Clearly the measure II-'x X v is invariant with respect to translations and the
conclusion follows immediately.
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PROPOSITION Al.4. The measure ut X v on the space of m-dimensional affine sub-
spaces is invariant with respect to the group 7 of Euclidean displacements.

Proor. The partial measure v is invariant with respect to the group & of
orthogonal transformations in the sense that

v(H, E) = v(OH, OE)

for any O € 7. Since p is invariant with respect to 7, it follows that g X v is
invariant with respect to <7, and therefore, by Proposition Al.3, the conclusion
follows immediately.

PRrOPOSITION A1.5. The measure y X v on the space of m-dimensional affine sub-
spaces is, up to an arbitrary scale factor, the only invariant measure with respect to
the group Z of Euclidean displacements.

Proor. The conclusion follows immediately from Propositions A1.1 and A1.5
because the space of m-dimensional affine subspaces is an homogeneous space
under <.

Let M be an m-dimensional subspace of .22 and let & be the group of or-
thogonal transformations in .22 which leave M invariant. Let H be another m-
dimensional subspace of .% and let O, be an orthogonal transformation such
that

(Al.4) o,M=H.

The set of all orthogonal transformations which have the same property is the
left coset 0%. Thus there is a natural correspondence between left cosets of
&, that is, elements of the homogeneous space ¢7/ <, and m-dimensional sub-
spaces, which is an isomorphism with respect to the group of operators 7. Since
the groups ¢ and & are compact, they are unimodular, that is, they have, up
to an arbitrary scale factor, only one Haar measure. Let 7 be the space of
all m-dimensional subspaces and let <7, be the s-algebra of Borel sets in 7. Define
a partial measure y in 5 X &, by

(AL.5) 1(H, E) = ¢[(0,7'E) n ]

where 0, is any orthogonal transformation satisfying the condition (A1.4), and
¢ is the unique normalized invariant measure on . Clearly, then, y is also
normalized in the sense that y(H, ©7) = 1 for every H € 5#. Notice that since
¢ is an invariant measure on &, the definition (A1.5) is independent of the choice
of the orthogonal transformation O,. Clearly the partial measure y is invariant
with respect to O in the sense that, for any O € 7,

2(OH, OE) = y(H, E) .

PROPOSITION Al1.6. Let & be the subgroup of the orthogonal transformations
which leave invariant an m-dimensional subspace M, let ¢ be the normalized Haar
measure on &, and let y be the normalized partial measure defined by (A1.5). If p
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is the normalized measure in 57 which is invariant with respect to the group of or-
thogonal transformations 7, then the normalized Haar measure ¢ on  is given by

(AL.6) ¢(E) = § x(H, E)p(dH) ,
and we shall write symbolically the differential form ¢(dO) as in (4.16).

Proor. Since the measure defined by the second member of (Al1.6) is nor-
malized, we have to prove only that ¢(E) = ¢(OE) for any O € 2. Since y is
invariant,

¢(OF) = § y(07'H, E)p(dH)

and by the substitution H — H = O~'H the conclusion follows immediately.

A2. Transport of inner products. Let 5% be as before a p-dimensional vector
space which has been equipped with an arbitrarily chosen inner product z. Let
A: 9P — 2 be a bijective (i.e., one-to-one) linear transformation. Then we
can define a new inner product Ar by

(A2.1) An(x, y) = n(47x, A1) .

The same vector space &2 equipped with this new inner product is a new
Euclidean space 4.2, and the transformation 4: &% — 457 is an isometry. We
shall say that Az is the inner product transported by 4 from 2 into A%. The
A-inner product defined by (3.1) is the inner product transported by 4~ and
the Euclidean space .22, (equipped with the A-inner product) is equal to 4~*Z.
The orthogonality relations in &2, are, of course, different, in general, from
those in .77, and therefore the orthogonal complements, in &2 and in &2, of
the same subspace M are, in general, different subspaces M+, M,*. We shall
say that M,* is the 4-orthogonal complement of M, and, in general, we shall
say that two vectors x, y are A-orthogonal if (x, y), = 0. A subspace M is the
set of all points x such that (x, y), = 0forall ye M,*. Equivalently, a subspace
M is the set of all points x such that (x, A'Ay) = O for all ye M,*. Then clearly,

(A2.2) M = A'AM,* .
Since A: 52, — 2 is an isometry, it follows that AM,* is the orthogonal com-
plement of AM, or, in symbols,
AM b = (AM)*
and, by (A2.2),
(A2.3) (AH): = A'-'H* .
Therefore, if 4 is a unit vector orthogonal to H, then A4'~'b is orthogonal to
AH, ||A"Y|, = ||A'~8|| is the norm of the restriction of A4 to #, and

(A2.4) h = H:

is a unit vector orthogonal to 4H.
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PROPOSITION A2.1. The image of a hyperplane H @ x under a linear transfor-
mation A: B — R is the hyperplane AH ® A,x, where A, : % — 7 is the linear
transformation defined by

A'lx
A2.5 Apx = = = | h=H".
(4% 7

ProOF. Let A(H® x) = H® %. Clearly H = AH, and, by (A2.4), for some
scalar 1, ¥ = A4'~'x. Since A% e H @ x, it follows that 2(4'4)"'x € H® x and
therefore ‘

Il = (A" A) 7%, x) = A AP, 2= (477

REMARK. The transformation 4: 5@ 2 — 57 ® & induced by 4: % — F
may be extended to a transformation A: 5" x F%— 7 x % defined by A(H, x) =
(AH, A,x) which is clearly bijective. .

PrOPOSITION A2.2. The distance from a point x to a hyperplane H® y in the
metric of ,, also called the A-distance from x to H Dy, is

e, H@ yll, = XL h=He
1471,

Proor. Clearly
llx, H® ylla = llx =y, Hlla = [|A(x — y), 4H]|]
= (A(x — ), b)
where b is a unit vector orthogonal to AH. By (A2.4)

-1
I, H® ||, = (A& = 0. A7)
E&R

and the conclusion follows immediately

A3. Transport of measures. Given a measure ¢ defined on a measurable space
57, and a measurable transformation T from 57 into another measurable space
%, we can define a measure Ty on %~ by

(A3.1) Tu(E) = 1(T-'E)

where E is any measurable set in .72 The measure Ty is called the measure
transported to .27 "by T. The measure p, defined by (4.23) is the measure trans-
ported to &Z, by '

LEMMA A3.1. Let 2 be the measure on the (p — 1)-dimensional projective space
7 defined by (4.14). If A: % — 2% is a bijective linear transformation then, for
any measurable E C 7%

(A3.2) [4E| = § 2,(dl) § || Ax][""0.4(0, dx)
where the first integral is over £, 2, is the measure transported by A~', and p, is
the partial measure defined by

(A3.3) 0., E) = |A(l 0 E)|™
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ProoF. As in a substitution of polar coordinates we have
[4E| = § 4(dl) §.4z |5~ *0(l, d%)
where p is the partial measure obtained from (A3.3) by substituting the identity
transformation 7 for 4. The conclusion follows immediately by the substitution
X > %= Ax, | > 1= Al
PrROPOSITION A3.1. The density of the transported measure 2, with respect to the

measure 2 is
(A3.4) iy _ 14
dr |4l
Proor. Let B be a measurable set in &7, let C ={x: 1 < ||x|]| £ 1 + Ar},

where Ar is an arbitrary positive number, and let E = B n C. Then, by Lemma
A3.1,

|AE| = § 5 24(dl) §o | Ax|[P70,4(s dx) -
From the definition of p, it follows that the density of p, with respect to p is
[|4]|,. Therefore

|AE| = § 5 (1]l 24(dl) §¢ || Ax[[""*o(l, dx)
and

. AE
(A3'5) hmAr—»ol rl = SB ||A||l7’,2A(dl) .

Substituting the identity 7 for 4,
. E
lim,,_, % = A(B) .

Since |AE| = |A4||E|, we have

|AE]

A3.6 lim,,_, = |A|A(B) .
(A3.6) im,, o 191 = | 412(B)

The conclusion follows immediately by a comparison of (A3.5) and (A3.6).
PROPOSITION A3.2. The density of the transported measure p, with respect to the

projective measure p on the space 2 is

(A3.7) s — | 41|, I=H.
dp
Proor. Since
pi(dH) = 2(A'~dl)
by Proposition A3.1 we have

ru(dH) = u(dH) .

|A"1| Ay = |A"1|
1411 141

PRrOPOSITION A3.3. Let v, be the partial measure defined by

(A3.8) v,(H, E) = v(AH, A,E)
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where Ay is the linear transformation (A2.5). If pr X v is the measure on 57 x 7
defined by (4.18), then the transported measure (11 X v), has differential form

(A3.9) (1t X ¥)u(d(H, X)) = gt (dH)w (H, dx) .
Proor. We have to prove that, for any measurable set £ ¢ 57 x %,
(1t X V)u(E) = §p pa(dH)v ,(H, dx) .
It will be sufficient to prove this for sets E = 4B x C) where B — 5% and
C c &2 are arbitrary measurable sets. Then
(X ¥)u(E) = ¢t X W(B X C) = §, u(dBW(H, C) .
Making the substitution H — H = AH,
(2 X V)AE) = § 415 pa(dH)v (H, 4,7C)
= $a-1mxo) pa(dH )y (H, dx) .
PROPOSITION A3.4. The density with respect to v of the partial measure v, de-
fined by (A3.8), is
(A3.10) %”_4 (H, x) 1 h=H .
v

S
ProoF. Since A,h = (AH)*, by the definition (A3.8) we have
vu(H, E) = |Ay(h 0 E)|®
= [[Apll(H,E) -

By the definition (A2.5)
1

Aullh = =i

14" ],
and the conclusion follows immediately

PROPOSITION A3.5. The density of the measure (1 X v), with respect to the mea-
sure pp X v is

1 , h = H'.
| A] || A"[2+

Proor. It follows immediately from Propositions A3.2, A3.3, and A3.4.

ProposITION A3.6. The differential form of the A-measure on a hyperplane
He2Z is
(A3.11) |dx| 7 = |A| || A" 7Y ].|dx|" , h=H',
where |dx|" is the differential form of the usual measure on H.

Proor. Let B be an arbitrary measurable set in H, let b be a unit vector or-
thogonal to H, and let E be the set

E={x+2:xeB, 0211},
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Clearly
|E| = |B|"
|E|A = |B|AH(Ab’ B)
where b is a unit vector orthogonal to AH. By (3.2)

—_ A H
(4, b) 181

|Bl.,"

and by (A2.4) the conclusion follows immediately.

PROPOSITION A3.7. Let 2 be the group of linear transformations Z: % — #
which are positive upper triangular with respect to a basis o,, - - -, 0, and let Z be
the group of linear transformations Z: 2 — 2 which are positive upper triangular
with respect to another basis 6, - -+, 0,. Let ¢: % — % be the measurable (but not
necessarily linear) transformation defined by

(A3.12) Z = 0¢Z

where O is an orthogonal transformation which depends on Z. Let t be a right in-
variant Haar measure on % . Then the transported measure

(A3.13) = ¢t
is a right invariant Haar measure on Z.

Proor. Let.o7 be the group of all bijective linear transformations 4 : 57— 2.
Let¢: % — 2 and §: % — % be the measurable (but not necessarily linear)
transformations defined by

(A3.14) A= 094, A= 0¢A

where O and O are orthogonal transformations which depend on 4. According
to (A3.12) we have

(A3.15) GA = 0*¢pA

where O* is an orthogonal transformation depending on ¢4, and by the first of
the equations (A3.14),

(A3.16) A= 00*¢gA.

Since OO* is an orthogonal transformation a comparison of (A3.16) and the
second of the equations (A3.14) shows that

(A3.17) § = ¢¢ .

Let 2 be an invariant Haar measure in .%. Then, by Proposition 2.1 of [29]
the transported measures ¢4 and 2 are right Haar measures and therefore

ke = g1 ke = g
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where k and k are positive scalars. Then by (A3.17)

kt = ¢pPp2 = kot

and the conclusion follows immediately.
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