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TRANSIENT MARKOV ARRIVAL PROCESSES
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and University of Melbourne

We define the family of transient Markov arrival processes (tran-
sient MAPs) which combine features of transient (or terminating) renewal
processes and of the well-known MAPs: transient MAPs are point processes
on the line, controlled by a finite Markov chain, which almost surely comprise
a finite number of points. We analyze their basic properties.

1. Introduction. Markov arrival processes (abbreviated MAPs) are counting
processes controlled by a discrete-time or continuous-time Markov chain. In
continuous time, a MAP is generated by a two-dimensional Markov chain
{(N(t), ϕ(t)) : t ∈ R

+} on the state space {(n, i) : n ∈ N, i ∈ {1, . . . ,m < ∞}}.
From a given state (n, i), the only possible one-step transitions are to the states

{(n, j) : 1 ≤ i �= j ≤ m} and to the states {(n + 1, j) : 1 ≤ j ≤ m}. The transition
rates from state (n, i) are independent of n. Thus, in continuous time, the rate
matrix has the structure

Q =




D∗
0 D∗

1 0 0

0 D∗
0 D∗

1 0
. . .

0 0 D∗
0 D∗

1
. . .

0 0 0 D∗
0

. . .

. . .
. . .

. . .
. . .




(1)

with (D∗
0)ij , i �= j , and (D∗

1)ij , respectively being the instantaneous transition
rates from (n, i) to (n, j) and from (n, i) to (n + 1, j). The diagonal entries of D∗

0
are strictly negative, with the row sums of Q equal to 0:

(D∗
0)ii = −

{ ∑
1≤j≤m

j �=i

(D∗
0)ij + ∑

1≤j≤m

(D∗
1 )ij

}

for 1 ≤ i ≤ m.
In discrete time, the transition probability matrix has the structure (1), where D∗

0
and D∗

1 are nonnegative and D∗
0 + D∗

1 is stochastic. The theory of discrete-time
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MAPs is similar to that of continuous-time MAPs and we restrict ourselves to the
latter in the present paper.

The component ϕ(t) is called the phase and {ϕ(t) : t ∈ R
+} is a Markov process

on the state space {1, . . . ,m} with rate matrix D∗ = D∗
0 +D∗

1 . The component N(t)

is called the level: If N(0) = 0, then N(t) is the number of events which occur in
the interval (0, t) and we refer to the process {N(t)} as a MAP. One may think
of {ϕ(t)} as driving the MAP. There are two kinds of transitions from phase i

to phase j , with and without an accompanying event, and the instantaneous rates
of such transitions are (D∗

1)ij and (D∗
0)ij , respectively. In addition, events may

happen even when the phase does not change. This occurs at the constant rate
(D∗

1)ii when the phase is i.
Special examples of MAPs are the Poisson process, which can be constructed by

taking m = 1, the Markov modulated Poisson process, for which D∗
1 is a diagonal

matrix, and the phase-type (PH) renewal process, for which D∗
1 is a matrix of

rank 1. Other examples abound in the literature. An extensive treatment may be
found in Neuts [(1989), Chapter 10], and also in Lucantoni, Meier-Hellstern and
Neuts (1990), Neuts (1979) and Pacheco and Prabhu (1995).

Given that N(0) = 0, the process is characterized by the distribution of ϕ(0) in
addition to D∗

0 and D∗
1 . We say that {N(t) : t ∈ R

+} is MAP(α,D∗
0 ,D∗

1 ), where
α is the row vector such that αi = P [ϕ(0) = i]. We use lowercase boldface letters
to denote vectors, both row and column.

In the previous literature, it has been assumed that D∗ is irreducible and so the
phase process {ϕ(t)} has a stationary distribution π which is the unique solution
of the system πD∗ = 0, π1 = 1. The process MAP(π,D∗

0 ,D∗
1 ) is called the

stationary version of the MAP generated by D∗
0 and D∗

1 . Its most interesting
property is that it has stationary increments, since {N(t) − N(t0) : t ≥ t0} is also
MAP(π ,D∗

0 ,D∗
1) for any given t0.

Our purpose in this paper is to define transient MAPs. These are MAPs for
which (almost surely) limt→∞ N(t) < ∞. In the next section we give a precise
definition of a transient MAP. The packet stream model defined in Ramaswami
and Latouche (1989), and analyzed in Neuts (1990) and Latouche and Ramaswami
(1992), is an example of a transient MAP. We give three other illustrative examples
in Section 2. In Section 3 we determine the distribution of the lifetime of a transient
MAP and in Section 4 we determine the distribution of the total number of events.
In Section 5, we extend the notion of a stationary version to a transient MAP. Some
concluding comments are made in Section 6.

Our definition of transient MAPs is motivated by that of PH random variables.
A random variable is said to be PH if it has the same distribution as the time
to absorption for a Markov process with finitely many transient states and one
absorbing state. It is characterized by the pair (τ , T ), where τ is the initial
probability vector and T is the matrix which describes the transitions among
the transient states. For further details, see Neuts (1981) and Latouche and
Ramaswami (1999).
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We shall deal with both continuous and discrete-time PH distributions. In order
to avoid any ambiguity, we use the notation PHc(·, ·) for the former and PHd(·, ·)
for the latter. The distribution function of a PHc(τ , T ) random variable is

F(x) = 1 − τ exp(T )1 for x in R+
and that of a PHd(τ , T ) random variable is

F(n) = 1 − τT n1 for n in N.

2. Transient MAPs. As mentioned above, it has previously been assumed
that D∗ is irreducible. Except in the trivial case where D∗

1 = 0, this implies
that, with probability one, there are infinitely many events in the MAP. The
same conclusion can be reached if D∗ is reducible and the subblocks of D∗

1
corresponding to the recurrent classes of D∗ are nonzero. However, if D∗ has
a recurrent class for which the corresponding subblock of D∗

1 is zero, then there
is a possibility that the corresponding MAP has only finitely many events. In this
paper we shall concentrate on the case where D∗ has precisely one absorbing state
and all other states are transient. The generalization to more complicated cases are
obvious.

Assume that there exists an absorbing phase 0 such that, for all j , (D∗
1)0j =

(D∗
0)0j = 0 and that, in the matrix D∗, there exists a path of positive rate from

all other phases to phase 0. Thus, if ϕ(t0) = 0 for some t0, then ϕ(t) = 0 and
N(t) = N(t0) for all t ≥ t0 and the process ceases to evolve once phase 0 is
reached. We shall say that a catastrophe occurs when the process moves into a
state of the form (n,0).

A transient MAP is the counting process {N(t)} generated by a two-dimensional
Markov process {(N(t), ϕ(t)) : t ∈ R

+} on the state space {(n, i) : n ∈ N,

i ∈ {0, . . . ,m}} with transition matrix of the form (1), where

D∗
0 =

[
0 0
d0 D0

]
and D∗

1 =
[

0 0
d1 D1

]

with D1 ≥ 0, d0,d1 ≥ 0, the off-diagonal entries of D0 are nonnegative and the
diagonal entries are strictly negative so that the row sums of Q are equal to zero,
that is,

D01 + D11 + d0 + d1 = 0.(2)

Thus, in addition to the traditional blocks D0 and D1, we introduce the rates d0
and d1 at which the catastrophe occurs. Clearly, every state of the form (n,0) is
absorbing.

The transient MAP is characterized by the 4-tuple (α,D0,D1,d0), where
α = (αi) is a vector of size m, with αi denoting the probability that ϕ(0) = i.
The probability α0 that ϕ(0) = 0 is implicitly defined by α0 = 1 − α1 and the
vector d1 is defined by (2).
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The epochs {Tn : n ∈ N} at which events of the MAP occur are defined by T0 = 0
and Tn = inf{t ≥ 0 : N(t) = n} if such a t exists, otherwise Tn = ∞.

Assume that the following conditions are satisfied.

CONDITION 2.1. The matrix D = D0 + D1 is nonsingular.

This condition implies that states of the form (n, i) with i �= 0 are transient and
that, almost surely, the process will enter one of the absorbing states (n,0) in finite
time. Indeed, the transition rate matrix of the process {ϕ(t)} is

D∗ =
[

0 0
d0 + d1 D

]
.

The phase 0 is clearly absorbing and the phases 1 to m are all transient if and only
if D is nonsingular [Latouche and Ramaswami (1999), Theorem 2.4.3].

Without loss of generality, we can also impose the following condition:

CONDITION 2.2. For every phase i �= 0 there exists at least one j such that
there is a path from (n, i) to (n + 1, j).

If this condition is not satisfied, then there are phases i �= 0 such that no more
points of the transient MAP are observed once the process moves into a state of the
form (n, i). An equivalent transient MAP can be defined by lumping these phases i

together with the absorbing phase 0.
We now give three examples of transient MAPs.

EXAMPLE 2.3. Our first example is a standard MAP {M(t)} with representa-
tion (β, S0, S1) observed during a random interval (0,W) which has a continuous
PHc(τ , T ) distribution. The points of {N(t)} are precisely the points of {M(t)}
that occur before time W .

Assume t < T . Then the Markov chain associated with W is in some phase ζ(t)

and the Markov chain associated with {M(t)} is in some phase ξ(t). To define the
transient MAP {N(t)}, we need to know both of these pieces of information, so we
define the phase associated with {N(t)} to be the ordered pair ϕ(t) = (ξ(t), ζ(t)).
The initial distribution of ϕ(t) is given by α = β ⊗ τ , where ⊗ denotes the
Kronecker product. Moreover, ϕ(t) can change because of a change in ξ(t) or
because of a change in ζ(t). These events occur independently, so the rate matrices
of {N(t)} are given by D0 = S0 ⊗ I + I ⊗ T and D1 = S1 ⊗ I . The matrix D0
contains rates of transitions between phases that are not associated with an event
of {M(t)} and the matrix D1 contains the rates of transitions that do generate an
event of {M(t)}.

At time point W , ζ(t) moves to the absorbing state corresponding to W . This
coincides with the catastrophe, when ϕ(t) moves to the state 0 and ceases to evolve
thereafter. Thus d0 = 1 ⊗ (−T 1). Almost surely, the catastrophe occurs at a time
which is not a point of {N(t)}, a property which is reflected in the fact that d1 = 0.
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EXAMPLE 2.4. A transient MAP can also be defined such that events stop
being counted on the basis of a circumstance related to the process itself.

Consider the M/M/1 queue and count the number of arrivals until the queue
size exceeds m for the first time. The phase ϕ(t) is the state of the queue at time t .
An event is recorded at every arrival and the catastrophe occurs when there is an
arrival with ϕ(t) = m.

In this process, the catastrophe is an event since it corresponds to an increase
of N(t).

EXAMPLE 2.5. As an example of a transient MAP in which the catastrophe
might or might not be an event, consider a model for the history {N(t)} of time
points at which claims are made by an individual against a health insurance policy.
Assume that claims occur at a rate which is dependent on the person’s “underlying
state of health,” which we denote by ϕ(t). This changes according to a continuous-
time Markov chain, and points at which changes occur might or might not be
associated with a claim against the policy. Rates of the former type are stored in
the matrix D1 and rates of the latter type are stored in the matrix D0.

The catastrophe occurs when the person ceases to be insured by the company.
This might happen at a time point where there is a claim, for example, a claim
associated with a fatal illness, or it might occur at a point when there is no claim,
for example, the person transferred to another health fund. The rates of these
transitions are stored in the vectors d1 and d0, respectively.

3. Lifetime distributions. For a transient MAP, three random variables of
basic interest are the lifetime L of the process, the time V until the catastrophe
occurs and the total number K of events. These are defined as

L = TK = sup
{
Tn : Tn < ∞}

,

V = inf
{
t ≥ 0 : ϕ(t) = 0

}
,

K = lim
t→∞ N(t).

We derive the distribution of the first two of these in this section. The derivation of
the distribution of K is deferred until the next section.

If d0 = 0, then L = V since the process can enter the absorbing phase only at
a time of increase of N(t). Otherwise, L and V have different distributions and
L ≤ V . We may then think of L as the last time that the process is “externally”
observed to be alive.

By (1), {ϕ(t)} is a Markov process on {0,1, . . . ,m} with transition rate matrix
D∗ = D∗

0 + D∗
1 and we readily conclude that V has a phase-type distribution. We

state this as a lemma for future reference.

LEMMA 3.1. For a transient MAP(α,D0,D1,d0) such that Condition 2.1
holds, the time V until the catastrophe has a PHc(α,D) distribution.
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The lifetime and the total number of events also have phase-type distributions
as we show in Theorems 3.2 and 4.1. Before proving these, however, we need to
establish a technical property.

Let us consider the process embedded at the epochs {V } ∪ {Tk : k ≥ 0}. This
embedded process is a discrete-time Markov chain with possible transitions from
(n, i) to (n,0) or (n + 1, j), so that the transition matrix has the form

P =




H0 H1 0 0

0 H0 H1 0
. . .

0 H0 H1
. . .

0 H0
. . .

. . .
. . .




(3)

with

H0 =
[

1 0
f 0 0

]
and H1 =

[
1 0
f 1 F

]
.

By Gaver, Jacobs and Latouche [(1984), Lemma 1], we have that

F = (−D0)
−1D1,(4)

f 0 = (−D0)
−1d0(5)

and

f 1 = (−D0)
−1d1.(6)

Note that

F1 + f 0 + f 1 = 1.(7)

It is immediate that Condition 2.2 is satisfied if and only if, for all i, (f 0)i < 1.
This follows because (f 0)i is the probability that, starting from a state of the form
(n, i) with i �= 0, the process enters (n,0) at some future time. There exists a path
from (n, i) to the next level, or equivalently Condition 2.2 is satisfied, if and only
if this probability is strictly less than 1.

Let f + = 1 − f 0 and � = diag(f +). The above observation guarantees that �

is nonsingular.

THEOREM 3.2. Consider a transient MAP(α,D0,D1,d0) such that Condi-
tion 2.2 holds. The lifetime L of the process has a PHc(α�,�−1D�) distribution.
If d0 = 0, then L is identical to V and has a PHc(α,D) distribution.

PROOF. The second claim is obvious and we concentrate on the first.
The lifetime L is equal to 0 if and only if either ϕ(0) = 0 or 1 ≤ ϕ(0) ≤ m and

the Markov process is absorbed in (0,0) before it visits level 1. Thus,

P [L = 0] = 1 − α1 + αf 0 = 1 − αf +.(8)
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For x > 0, the event [L > x] occurs if and only if at time x the process is in one of
the transient phases, with distribution given by α exp(Dx), and an event occurs in
the future with probability f +. Thus, P [L > x] = α exp(Dx)f + and

P [L ≤ x] = 1 − α exp(Dx)f +.(9)

It is a simple matter to verify that

α exp(Dx)f + = α� exp[�−1D�x]1
so that the proof of the theorem is complete once we show that α� is a (possibly
defective) probability density on {1, . . . ,m} and �−1D� is a generator.

The first of these follows easily because 0 ≤ α� ≤ α and α is a probability
density on {1, . . . ,m}. To get the second, observe that the off-diagonal entries
clearly are nonnegative and, since

D�1 = Df + = −d0 − d1 − D(−D0)
−1d0 = −d1 − D1(−D0)

−1d0

= −d1 − D1f 0,

the row sums are negative or zero. �

4. Number of events. In this section, we determine the distribution of the
total number K of events of a transient MAP.

THEOREM 4.1. Consider a transient MAP(α,D0,D1,d0) such that Condi-
tion 2.2 holds. The number K of events has a PHd(α�,�−1F�) distribution. If
d0 = 0, then K is PHd(α,F ); if d1 = 0, then K is PHd(αF,F ).

PROOF. To determine the distribution of K , we use the discrete-time Markov
chain with transition matrix (3).

Since K = 0 if and only if L = 0, we have by (8) that

P [K = 0] = 1 − αf +.(10)

For k ≥ 1, we have K = k in one of two cases: either the Markov chain (3) reaches
the level k − 1 and is absorbed in (k,0) immediately upon leaving that level or
it enters one of the states (k, i) with i �= 0 from which it moves to (k,0) without
visiting the level k + 1. This decomposition gives us

P [K = k] = αFk−1f 1 + αFkf 0,

which is easily seen to be equivalent to

P [K = k] = αFk−1(I − F)f +.(11)

If d0 = 0, then f + = 1 and K is obviously PHd(α,F ). If d1 = 0, then f + = F1
and K is PHd(αF,F ), which proves the last statement in the theorem.
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When we do not have either d0 = 0 or d1 = 0, it takes more effort to
recognize in (10) and (11) the PHd(α�,�−1F�) distribution. We construct this
representation by adapting a procedure used, in a slightly different context, by
Maier and O’Cinneide [(1992), Theorem 4.1].

First, the argument that we used in the proof of Theorem 3.2 shows that α� is
a probability density on {1, . . . ,m}. Then, simple algebraic manipulations yield

α�[�−1F�]k−1[I − �−1F�]1 = αFk−1�[I − �−1F�]1
= αFk−1[I − F ]�1

= αFk−1[I − F ]f + = P [K = k]
for all k ≥ 1. Finally, �−1F� is a substochastic matrix since it is nonnegative and

�−1F�1 = �−1�1 − �−1(I − F)�1

= 1 − �−1(I − F)f +
= 1 − �−1(1 − Ff + + Ff 0)

= 1 − �−1(f 1 + Ff 0)

≤ 1,

which completes the proof. �

The representation (10) and (11) has an easy interpretation since the ith
component of the vector (I −F)(f +) = f 1 +Ff 0 is the probability that, starting
from phase i, exactly one more event will be recorded before the catastrophe.

To analyze the number of events in a finite interval, one may follow the same
approach as for traditional nontransient MAPs [Latouche and Ramaswami (1999),
Chapter 3; Narayana and Neuts (1992); Neuts (1989), Chapter 10]. Defining N(x)

to be the number of events in the interval (0, x], and P ∗(z, x) to be the matrix of
generating functions

P ∗
ij (z, x) = ∑

n≥0

Pr[N(x) = n and ϕ(x) = j |ϕ(0) = i]zn,

we have P ∗(z, x) = exp[(D∗
0 + zD∗

1)x], which, after simple manipulations, may
be written as

P ∗(z, x) =
[

1 0
{exp[D(z)x] − I }D(z)−1d(z) exp[D(z)x]

]

with d(z) = d0 + zd1 and D(z) = D0 + zD1. We premultiply the matrix P ∗(z, x)

by the vector (1−α1,α), postmultiply it by 1 and find that the generating function
φ(z, x) of N(x) is given by

φ(z, x) = 1 + α{exp[D(z)x] − I }{1 + D(z)−1d(z)}.(12)
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From this expression, one may determine various moments by differentiation and
one may use the algorithmic procedures developed in Narayana and Neuts (1992)
and Remiche (1999, 2000a).

Due to the fact that the total number of events is finite, the first moment of N(x)

can also be obtained by a direct argument. Let K(x) denote the total number of
events in (x,∞). Whereas the probability distribution of the transient phases at
time x is

α(x) = α exp(Dx),(13)

we conclude from Theorem 4.1 that K(x) has a PH distribution with representation
(α(x)�,�−1F�). Thus, K(x) has the same structure as K . The only difference
is in the initial distribution.

Since N(x) = K − K(x) and since the first moment of a PHd(τ , T ) random
variable is τ (I − T )−11 [Latouche and Ramaswami (1999), Section 2.5], we have
by Theorem 4.1 that

E[N(x)] = (
α − α(x)

)
�(I − �−1F�)−11

= α[I − exp(Dx)](I − F)−1f +.
(14)

The second moment can be determined as

E[N2(x)] = E[K2] + E[K2(x)] − 2E[KK(x)]
= E[K2] − E[K2(x)] − 2E[N(x)K(x)]
= α[I − exp(Dx)](I + F)(I − F)−2f + − 2E[N(x)K(x)]

since the second moment of a random variable with PHd(τ , T ) distribution is
τ (I + T )(I − T )−21. By conditioning on the phase at time x, we find that

E[N(x)K(x)] = ∑
1≤i,j≤m

αiE[N(x)I{ϕ(x) = j}|ϕ(0) = i]E[K(x)|ϕ(x) = j ],

where I{·} is the indicator function. As E[N(x)I{ϕ(x) = j}|ϕ(0) = i] is given
by the (i, j)th entry of ∂/∂z exp[D(z)x]|z=1 and E[K(x)|ϕ(x) = j ] =
((I − F)−1f +)j , we finally obtain that

E[N2(x)] = α[I − exp(Dx)](I + F)(I − F)−2f +
− 2α

[
∂/∂z exp[D(z)x]]z=1(I − F)−1f +.

(15)

Thus, the second moment of N(x) may be obtained with just one differentiation of
exp[D(z)x] instead of the two we would need if we used (12). As we shall see in
the next section, further simplifications occur for certain choices of α; otherwise,
the matrix ∂/∂z exp[D(z)x]|z=1 must be evaluated by one of the procedures
described in Narayana and Neuts (1992) and Remiche (1999, 2000a).

More generally, the generating function and moments of the number of events
in the finite interval (t, t + x] are given by the expressions (12), (14) and (15),
where the initial vector α is replaced by α exp(Dt).
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5. Quasistationary versions. As stated earlier, Condition 2.1 implies that
phases 1 to m are transient, so that the state probability vector α(x) tends to
0 as x tends to infinity. The normalized vector (α(x)1)−1α(x), however, tends
to a nonzero limit, which is a limiting-conditional or quasistationary distribution
of {ϕ(x)}. We refer the reader to Anderson [(1991), Section 5.2] for a general
discussion of quasistationary distributions. Here, we note only that quasistationary
distributions are nonnegative solutions of systems of the form

δD = −ηδ, δ1 = 1,(16)

where −η is a real, strictly negative eigenvalue of D. There is always at least one
such pair (η, δ) and if the matrix D is irreducible, then the pair is unique. In this
case, −η is the eigenvalue of D of maximal real part and δ is the corresponding
eigenvector, appropriately normalized. We have

δ = lim
x→∞

(
α exp(Dx)1

)−1
α exp(Dx),(17)

independently of α.
The assumption that D is irreducible is, however, somewhat restrictive. For

example, it is not satisfied in Example 2.3 if W has an Erlang distribution.
The transient MAP(δ,D0,D1,d0) is said to be quasistationary if δ is a

nonnegative solution of (16) for some η. A quasistationary transient MAP has the
property that the conditional phase distribution at time x, given that the process
has not been absorbed yet, is δ. This follows since

δ exp(Dx) = e−ηxδ(18)

for all x ≥ 0.
The following properties are immediate.

LEMMA 5.1. If the transient MAP(δ,D0,D1,d0) is quasistationary, then:

• The time V until the catastrophe has an exponential distribution with
parameter η;

• The distribution function of the lifetime L is

P [L ≤ x] = 1 − (1 − δf 0)e
−ηx.

• The expected number of events in (0, x) is

E[N(x)] = (1 − e−ηx)δ(I − F)−1f +.

PROOF. These statements are direct consequences of (18), Lemma 3.1 and
equations (9) and (14), respectively. The lifetime distribution is thus the mixture
of an atom at 0 (with mass δf 0) and an exponential distribution with parameter η.

�

We can also derive the following expression for the second moment of N(x).
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LEMMA 5.2. If the eigenvalue −η of D given by (16) has algebraic
multiplicity 1, then

E[N2(x)] = (1 − e−ηx)δ(I + F)(I − F)−2f +
+ 2η−1e−ηxδD1{I − exp[(I − M)ηx]}R(I − F)−1f +
− 2xE[K(x)](δD1v),

(19)

where v is the right eigenvector of D for to the eigenvalue −η, normalized by
δv = 1, M = −η−1D and R = (I − M + vδ)−1.

PROOF. The first term in (19) is easily seen to be equal to the first term in (15),
so we concentrate on the evaluation of the second term. Since

∂/∂z exp[D(z)x]|z=1 = ∑
n≥1

xn/n! ∑
0≤ν≤n−1

DνD1D
n−1−ν,

we obtain by (16) that

δ∂/∂z exp[D(z)x]|z=1 = δD1
∑
n≥1

xn/n! ∑
0≤ν≤n−1

(−η)νDn−1−ν

= δD1
∑
n≥1

xn/n!(−η)n−1
∑

0≤ν≤n−1

Mn−1−ν

with M = −η−1D having an eigenvalue equal to 1, and the corresponding
eigenvectors being δ and v.

By our assumption, the eigenvalue 1 has multiplicity 1, so that the matrix
I − M + vδ is nonsingular. One directly verifies that∑

0≤ν≤n−1

Mn−1−ν = (I − Mn)R + nvδ

by postmultiplying the two sides of this equation by I − M + vδ.
The statement is now proved after simple, albeit tedious, algebraic manipula-

tions. Note that E[K(x)] = e−ηxδ(I − F)−1f +. �

It is worth noting that there exist initial distributions for the phase such that the
distribution of the total number of events has a modified geometric distribution:
Take ξ to be a quasistationary distribution for the transition matrix F defined in (4);
that is, ξ is a quasistationary distribution for the phase process embedded at epochs
of events. This distribution is such that ξF = pξ for some p < 1. One immediately
concludes from (11) that for the transient MAP(ξ ,D0,D1,d0), the distribution of
K is given by

P [K = k] = (1 − ξf 0)(1 − p)pk−1

for all k ≥ 1.
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6. Conclusion. In this paper, we have generalized the traditional Markovian
arrival process, which almost surely has infinitely many events, to the transient
case in which the number of events is almost surely finite. In Section 3 we
gave expressions for the distribution of the time until such a process reaches its
absorbing state and for the time until the last observed event, while in Section 4
we concentrated on the number of events in given intervals. Specifically, we gave
expressions for the distribution of the total number of events and for the generating
function and moments of the number of events occurring in bounded intervals.

There are many possible applications of our results. One in particular occurs
when we use a transient MAP to generate a PH-type point process in the plane
according to the procedure outlined in Latouche and Ramaswami (1997). To
derive measures of such a planar process, such as the distribution of the total
number of points in a region of the plane, it is necessary to discard or keep the
events of a transient MAP with a probability which depends on their location; see
Remiche (2000b) for details. Thus we are motivated to study a marked version of a
transient MAP in which a nonnegative random variable Zn is associated with each
event Tn. We shall defer this study to a later paper.

REFERENCES

ANDERSON, W. J. (1991). Continuous-Time Markov Chains: An Applications-Oriented Approach.
Springer, New York.

GAVER, D. P., JACOBS, P. A. and LATOUCHE, G. (1984). Finite birth-and-death models in randomly
changing environments. Adv. in Appl. Probab. 16 715–731.

LATOUCHE, G. and RAMASWAMI, V. (1992). A unified stochastic model for the arrival of packets
from periodic sources. Performance Evaluation 14 103–121.

LATOUCHE, G. and RAMASWAMI, V. (1997). Spatial point processes of phase type. In Teletraffic
Contributions for the Information Age. Proceedings of the 15th International Teletraffic
Congress (V. Ramaswami and P. Wirth, eds.) 381–390. North-Holland, Amsterdam.

LATOUCHE, G. and RAMASWAMI, V. (1999). Introduction to Matrix Analytic Methods in Stochastic
Modeling. SIAM, Philadelphia.

LUCANTONI, D. M., MEIER-HELLSTERN, K. S. and NEUTS, M. F. (1990). A single-server queue
with server vacations and a class of non-renewal arrival processes. Adv. in Appl. Probab.
22 676–705.

MAIER, R. S. and O’CINNEIDE, C. A. (1992). A closure characterisation of phase-type distributions.
J. Appl. Probab. 29 92–103.

NARAYANA, S. and NEUTS, M. F. (1992). The first two moment matrices of the counts for the
Markovian arrival process. Comm. Statist. Stochastic Models 8 459–477.

NEUTS, M. F. (1979). A versatile Markovian point process. J. Appl. Probab. 16 764–779.
NEUTS, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach.

Johns Hopkins Univ. Press.
NEUTS, M. F. (1989). Structured Stochastic Matrices of M/G/1 Type and Their Applications. Dekker,

New York.
NEUTS, M. F. (1990). On the packet stream generated by a random flow of messages of random

durations. Comm. Statist. Stochastic Models 6 445–470.
PACHECO, A. and PRABHU, N. U. (1995). Markov-additive processes of arrivals. In Advances in

Queueing: Theory, Methods, and Open Problems (J. H. Dshalalow, ed.) 167–194. CRC
Press, Boca Raton, FL.



640 G. LATOUCHE, M.-A. REMICHE AND P. TAYLOR

RAMASWAMI, V. and LATOUCHE, G. (1989). Modeling packet arrivals from asynchronous input
lines. In Teletraffic Science for New Cost-Effective Systems, Networks and Services.
Proceedings of the 12th International Teletraffic Congress (M. Bonatti, ed.) 721–727.
North-Holland, Amsterdam.

REMICHE, M.-A. (1999). Efficiency of an IPhP3 illustrated through a model in cellular networks.
In Numerical Solution of Markov Chains (NSMC’99): 3rd International Workshop
(B. Plateau, W. J. Stewart and M. Silva, eds.) 296–311. Prensas Univ., Zaragoza, Spain.

REMICHE, M.-A. (2000a). On the exact distribution of the isotropic planar point processes of phase-
type. J. Comput. Appl. Math. 116 77–91.

REMICHE, M.-A. (2000b). Towards an extension of Campbell’s theorem. Technical report, Aachen-
RWTH.

G. LATOUCHE

DÉPARTEMENT D’INFORMATIQUE

UNIVERSITÉ LIBRE DE BRUXELLES

CP 212, BOULEVARD DU TRIOMPHE

1050 BRUXELLES

BELGIUM

E-MAIL: guy.latouche@ulb.ac.be

M.-A. REMICHE

FACULTÉ DES SCIENCES APPLIQUÉES

UNIVERSITÉ LIBRE DE BRUXELLES

CP 165/15, AVENUE F.D. ROOSEVELT

1050 BRUXELLES

BELGIUM

E-MAIL: mremiche@ulb.ac.be

P. TAYLOR

DEPARTMENT OF MATHEMATICS AND STATISTICS

UNIVERSITY OF MELBOURNE

VICTORIA 3010
AUSTRALIA

E-MAIL: p.taylor@ms.unimelb.edu.au


