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STRICT INEQUALITIES FOR THE TIME CONSTANT IN FIRST
PASSAGE PERCOLATION
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In this work we are interested in the variations of the asymptotic shape in
first passage percolation on Z

2 according to the passage time distribution.
Our main theorem extends a result proved by van den Berg and Kesten,
which says that the time constant strictly decreases when the distribution
of the passage time is modified in a certain manner (according to a convex
order extending stochastic comparison). Van den Berg and Kesten’s result
requires, when the minimum r of the support of the passage time distribution
is strictly positive, that the mass given to r is less than the critical threshold of
an embedded oriented percolation model. We get rid of this assumption in the
two-dimensional case, and to achieve this goal, we entirely determine the flat
edge occurring when the mass given to r is greater than the critical threshold,
as a functional of the asymptotic speed of the supercritical embedded oriented
percolation process, and we give a related upper bound for the time constant.

1. Introduction. First passage percolation was introduced in 1965 by Ham-
mersley and Welsh [9] as a stochastic model for a porous media. See [10] for
a review on this subject. In this paper, we consider the grid Z

2, included in the
plane R

2 endowed with the following norms:

∀ (x, y) ∈ R
2, ‖(x, y)‖1 = |x| + |y| and ‖(x, y)‖∞ = max{|x|, |y|}.

We denote by N = {0,1,2, . . .} the set of positive integers and by N
∗ the set

of strictly positive integers. Two vertices of Z
2 are said to be neighbors if their

distance for ‖ ·‖1 is equal to 1. The edges of the grid are the line segments between
neighbor sites of Z

2, and the set of all edges is denoted by E2. A path γ is a finite
sequence of sites (z0, z1, . . . , zl) where two successive points are neighbors. The
integer l is called the length of the path, and is denoted by |γ |. We now give to each
edge e ∈ E2 a random passage time t (e), by considering a family of independent
and identically distributed nonnegative random variables (t (e))e∈E2 , with common
distribution F . The travel time of a path γ is defined by t (γ ) = ∑

e∈γ t (e). The
travel time between two sites x and y in Z

2 is then the shortest travel time of all
the paths with extremities x and y:

t (x, y) = inf{t (γ ), γ path from x to y}.
The paths for which this infimum is reached are called optimal paths (or t-optimal
paths to underline the corresponding passage time). In the following, we are going
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to work on “the” optimal path, so we have to give a way to choose one of the
optimal paths if there exist several. We choose an order on the edges of Z

2, and we
call the optimal path from x to y the smallest optimal path for the lexicographic
order on the sequence of edges starting from x.

The definition of the passage time between two points can be extended to points
in R

2: If x and y are in R
2, we define t (x, y) = t (x̃, ỹ), where x̃ (resp., ỹ) is the

nearest neighbor of x (resp., y) in Z
2. Possible indetermination can be dropped

by choosing an order on the sites of Z
2 and taking the smallest nearest neighbor

for this order. First passage percolation studies in particular the evolution of the
random subset of the points in R

2 which are reached before time s, defined
by A(s) = {z ∈ R

2, t (0, z) ≤ s}. Subadditive ergodic techniques, developed by
Richardson [14] and deepened by Cox and Durrett [2] gave the existence of
a directed asymptotic speed,

∀ x ∈ R
2, ∃ µ(x) ∈ R

+ such that lim
n→+∞

t (0, nx)

n
= µ(x) in probability.(1)

Note that if F has finite mean, then this convergence is also a.s. and in L1.
Moreover, this limit µ(x) is equal to infn∈N∗ Et(0,nx)

n
. This constant, for x = (1,0),

is called the time constant, and is denoted by µ. The time constant µ is positive if
and only if F(0) is smaller than the critical percolation threshold pc for Bernoulli
percolation on the edges of Z

2 (pc = 1/2; see [6]). Under this assumption, x �→
µ(x) is a norm on R

2 (see [10]). The ball with radius 1 for this norm is denoted
by A and is called the asymptotic shape associated to F . It is a compact convex
deterministic set, with the same symmetries as the lattice and which describes the
evolution of the random set A(n). The following result is known as the asymptotic
shape theorem (Theorem 4 in [2]):

∀ ε > 0, P

(
for n large enough, (1 − ε)A ⊂ A(n)

n
⊂ (1 + ε)A

)
= 1.(2)

Consequently, the evolution of the random set is at the first order in n entirely
determined by the asymptotic shape A. The determination of A and µ as
functionals of F is thus a fundamental but difficult problem in first passage
percolation. Following van den Berg and Kesten in [17], we try in this paper to
compare µ and µ̃, the time constants respectively associated to two distributions F

and F̃ , when these distributions are comparable for the following order.

DEFINITION 1.1. Let F et F̃ be two distributions on R. We say that F̃ is more
variable than F , denoted by F̃ � F , if∫

�dF̃ ≤
∫

�dF

for every concave increasing function � : R → R for which the two integrals
converge absolutely. If, moreover, the two distributions are distinct, we say that F̃
is strictly more variable than F .
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EXAMPLES. (i) If t is a random variable with finite mean on a probability
space (�,F ,P ) and if G is a σ -field included in F , then the conditional
expectation E(t|G) of t with respect to G is less variable than t .

(ii) If F stochastically dominates F̃ then F̃ is more variable than F .

NOTATION. In the following, we consider two distributions F and F̃ on R
+;

t (resp., t̃) is a random variable with distribution F (resp., F̃ ), r (resp., r̃) is the
infimum of the support of F (resp., F̃ ), µ (resp., µ̃) is the time constant associated
to F or t (resp., F̃ or t̃) by the first passage percolation model on Z

2 and A

(resp., Ã) denotes the asymptotic shape associated to F or t (resp., F̃ or t̃ ) by
the first passage percolation model on Z

2.

This order is well adapted to the comparison of time constants. Theorem 2.9 in
[17] ensures that, when F and F̃ have finite means,

if F̃ � F then µ̃ ≤ µ and Ã ⊃ A.(3)

One can naturally wonder if a discrepancy between two comparable distribution
functions is transmitted to their respective time constants and our first result
answers exhaustively the question of the strict comparison in dimension 2:

THEOREM 1.2. Let F be a distribution on R
+ such that F(0) < pc . If F̃ is

a distribution on R
+ which is strictly more variable than F , then µ̃ < µ.

INTERPRETATION. Assume that t has unbounded support. Naïvely, one can
think that the optimal paths tend to use edges with small passage times, and a
natural question arises: Is there a threshold T > r such that optimal paths, at least
those with far enough away extremities, use only edges with passage time smaller
than T ? The continuity result of Cox and Kesten in [3] ensures that if µT is the time
constant associated to the truncated passage time tT = t ∧ T , then µT tends to µ

when T goes to infinity, but by Theorem 1.2, µT < µ for every T large enough.
Thus, it is more efficient for the model to use a certain proportion of edges with
large passage time than to try to avoid them.

Another way to illustrate this result is to consider a Bernoulli passage time of
the form t ∼ pδ1 + (1 −p)δM where p ∈ [0,1] and M > 1: even if p is close to 1
and M very large, an optimal path from 0 to (n,0) asymptotically uses, at least in
mean, a positive proportion of edges with passage time M .

REMARKS. (i) In [17], the distribution functions are supposed to have finite
mean. Here we get rid of this assumption.

(ii) The case inf suppF = 0 and F(0) < pc is treated on Z
d by van den Berg and

Kesten [17]. The requirement F(0) < pc cannot be dropped because if F(0) ≥ pc

then µ = 0 (see [10]). In the case inf suppF = r > 0 and F(r) < −→pc , where −→pc is
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the critical percolation threshold for oriented percolation on Z
d ; van den Berg and

Kesten proved this result for first passage percolation on Z
d , but the assumption

F(r) < −→pc, needed in their proof, is not a priori necessary. We get rid of this
assumption, but only in dimension 2, because of the large deviations results we
need for oriented percolation.

Thanks to the second remark, it only remains to prove Theorem 1.2 when
inf suppF = r > 0 and F(r) ≥ −→pc. Replacing F(x) by F(rx) (that means dividing
the passage time t by r), we can suppose that r = 1. In the following, we will
always work under these hypotheses:

inf suppF = 1 and F(1) = P (t = 1) ≥ −→pc.(4)

In this case, the passage time between two vertices x and y is greater or equal to
the minimal number of edges of a path with extremities x and y, which is ‖x−y‖1,
multiplied by the minimal accessible passage time, which is 1. Thus, by definition
of the time constant,

∀ x ∈ R
2, µ(x) ≥ ‖x‖1 and A ⊂ {

x ∈ R
2, ‖x‖1 ≤ 1

}
.

Now, if P (t = 1) ≥ −→pc, unlike the case treated by van den Berg and Kesten, it may
exist x ∈ Z

2 and infinitely many n ∈ N
∗ such that t (0, nx) = n‖x‖1, which implies

µ(x) = ‖x‖1. But for such an x, if F̃ is strictly more variable than F and verifies
r̃ = 1 and F̃ (1) = F(1), then µ̃(x) = µ(x) = ‖x‖1.

The first step of the proof of Theorem 1.2 is thus to determine, for a fixed
distribution F satisfying (4), the directions x such that µ(x) = ‖x‖1. Durrett and
Liggett [5] showed for Richardson’s model, a particular first passage percolation
model on the sites of Z

2, that under a similar condition the asymptotic shape
has a flat edge corresponding to these directions. Our next result characterizes
the flat edge occurring for the asymptotic shape in the general first passage
percolation model on the edges of Z

2 under hypotheses (4), as a functional of
the asymptotic speed of an endowed supercritical oriented percolation model. Let
us first introduce some notation: If p ≥ −→pc, αp denotes the asymptotic speed of
the supercritical oriented percolation on the edges of Z

2 with parameter p (see
Durrett [4] for a review of this percolation model, and Section 3 of this paper
for a reminder of its main notation and properties). Mp is the point in R

2 with
coordinates (1

2 + αp√
2
, 1

2 − αp√
2
), Np the one with coordinates (1

2 − αp√
2
, 1

2 + αp√
2
) and

[Mp,Np] denotes the segment line in R
2 with extremities Mp and Np. We can

now state our flat edge result (see Figure 1).

THEOREM 1.3. Let F be a distribution on R
+ satisfying (4), and let A be the

corresponding asymptotic shape obtained by first passage percolation on Z
2. We

set p = F(1).

(i) A ⊂ {x ∈ R
2,‖x‖1 ≤ 1}.
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FIG. 1. Aspect of the flat edge when inf suppF = 1 and F(1) = p > p→
c .

(ii) If p < −→pc, then A ⊂ {x ∈ R
2,‖x‖1 < 1}.

(iii) If p > −→pc, then A ∩ {x ∈ R
+ × R

+,‖x‖1 = 1} = [Mp,Np]. The segment
[Mp,Np] is what we call the flat edge of the asymptotic shape A.

(iv) If p = −→pc, then A∩ {x ∈ R
+ × R

+,‖x‖1 = 1} = {(1/2,1/2)}.

REMARK. Note that this implies that the equality µ = 1 cannot happen for the
time constant unless P (t = 1) = 1.

If we note βp = 1/2 + αp/
√

2, the convexity and symmetry of A imply that
1/µ ≥ βp . The next step is to prove that this inequality cannot be an equality.
Indeed, if 1/µ = βp, then µ only depends on the atom of F at 1, and for each F̃

such that r̃ = 1 and F̃ (1) = F(1), we would have that µ̃ = µ, even if F̃ is strictly
more variable than F .

THEOREM 1.4. Let F be a distribution on R
+ such that inf suppF = 1 and−→pc ≤ F(1) = p < 1. Then

1

µ
>

1

2
+ αp√

2
= βp.

REMARKS. (i) We do not know how to prove a similar result in higher
dimension because of the “crossing paths” argument we use for the proof in the
plane.

(ii) In [8], Häggström and Meester prove that any compact convex set whose
interior is not empty and which is symmetric with respect to the origin can occur as
the asymptotic shape for a first passage percolation model associated to stationary
passage times. Here we can see that the convex set obtained as the convex hull of
the two points Mp, Np and their images by the symmetries with respect to the axes
cannot be obtained as the asymptotic shape for a first passage percolation model
associated to independent and identically distributed passage times.
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(iii) Theorem 1.4 is a small step toward the proof of the strict convexity of
the asymptotic shape in the direction of the axes. This convexity is a fundamental
hypothesis to obtain estimations for shape fluctuations (see [11], [12] and [13]).

What can be said to compare two asymptotic shapes in other directions? Result 3
of van den Berg and Kesten on the time constant can immediately be extended
in every direction. In the case inf suppF = 1 and F(1) = p ≥ −→pc, denote by θp
the angle between the first coordinate axis and (OMp), and set µθ = µ(eiθ ) for
θ ∈ [0,2π [. The proof of Theorem 1.4 can be adapted to show that the radius
of the asymptotic shape in any direction θ ∈ [0, θp[ is strictly greater than the
projection of Mp on Reiθ along the supporting hyperplane of A in the direction θ .
Theorem 1.2 can then be extended in every direction which is not in the percolation
cone. To avoid intricate geometrical considerations, we restrict ourselves to the
proof in the first coordinate direction, but still give the following result (because
of the symmetries of A, we can restrict ourselves to θ ∈ [0, π/4]).

THEOREM 1.5. Let F be a distribution on R
+ such that F(0) < pc and F̃ be

a distribution on R
+ strictly more variable than F . We have:

(i) If r = 0, then ∀ θ ∈ [0, π/4], µ̃θ < µθ .
(ii) If r > 0 and F(r) < −→pc, then ∀ θ ∈ [0, π/4], µ̃θ < µθ .

(iii) If r > 0 and F(r) ≥ −→pc and r̃ < r , then ∀ θ ∈ [0, π/4], µ̃θ < µθ .
(iv) If r > 0 and F(r) ≥ −→pc and r̃ = r , then ∀ θ ∈ [0, θp[, µ̃θ < µθ and

∀ θ ∈ [θp,π/4], µ̃θ = µθ = 1
r
‖eiθ‖1.

EXAMPLE. The same results are still valid for first passage percolation on
sites of Z

2. We can then apply our results to Richardson’s model (see [14]).
Consider, for each p ∈ [0,1], a family (tp(z))z∈Z2 of independent and identically
distributed random variables such that for every k ∈ N

∗, P (tp = k) = p(1 − p)k .
Choose p and p′ in [0,1] such that p′ > p. Then, if −→p s

c denotes the critical
threshold for oriented site percolation on Z

2, we have:

(i) If p < −→p s
c , then ∀ θ ∈ [0, π/4], µ′

θ < µθ .
(ii) If p ≥ −→p s

c , then ∀ θ ∈ [0, θp[, µ′
θ < µθ and ∀ θ ∈ [θp,π/4], µ′

θ = µθ =
‖eiθ‖1.

In particular, the time constant is a strictly decreasing function of the
parameter p.

MAIN LINES OF THE PROOF OF THEOREM 1.2. Suppose that F satisfies (4),
and to simplify take F̃ stochastically smaller than F and distinct from F .
A coupling argument enables us to realize the passage times t and t̃ , with
respective distribution F and F̃ , on the same space (�,F ,P ), in a manner such
that almost surely t̃ ≤ t . As F̃ is distinct from F , we can find η > 0 such that

P (t̃ ≤ t − η) > 0.(5)
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Remember that the time constant µ is obtained as the limit of the ratio t (0, n)/n.
To compare µ and µ̃, we want to find, along the t-optimal path γn between 0 and n,
a number αn (with α > 0 small enough) of edge-disjoint portions γ i

n of γn such
that

t̃ (γ i
n) ≤ t (γ i

n) − η.(6)

Thus t̃ (0, n) ≤ t̃ (γn) ≤ t (0, n)− αηn. If we can obtain such an inequality on a set
with probability tending to 1 as n goes to ∞, we will obtain the desired strict
comparison.

Imagine now, to simplify, that r̃ = 1 and F̃ (1) = F(1). We are going to construct
the γ i

n as crossings by γn of some rectangular boxes of size N × 3N , where N

will be chosen large enough by a renormalization process. The question is now,
is it possible for γn to cross a box of width N using a passage time equal to
‖x − y‖1, where x and y are the extremities of the crossing? If “yes,” then
t̃ (x, y) = t (x, y) = ‖x − y‖1, which implies t̃ (γ i

n) = t (γ i
n), and thus it will indeed

be impossible to get (6).
By using large deviation results for supercritical oriented percolation, we will

prove that if the extremity y of the crossing of a box of width N is not in
the percolation cones issued from the other extremity x, then t (x, y) ≥ (1 + δ)

× ‖x − y‖1, with a probability tending to 1 when N , and thus ‖x − y‖1, goes
to infinity; this will be done in Proposition 3.1. The first application of this
proposition will be the proof of Theorem 1.3. The second will be to define
a coloring and to use a renormalization process to ensure that the overwhelming
majority of crossings along γn that are not “in a percolation cone” will verify
t (x, y) ≥ (1 + δ)‖x − y‖1, if x and y are the extremities of the crossing. On
this event, we will modify the passage times configuration in the box to force
a copy of γn to use an edge with passage times satisfying (5), and thus construct
a crossing γ i

n satisfying (6).
So it remains to prove that along γn, it is not possible to cross too many boxes

of width N inside the percolation cones, and this will be ensured by Theorem 1.4.

The rest of the paper is organized as follows. In Section 2, we give a renor-
malization lemma; in Section 3, we study the coupling of first passage percolation
and an embedded oriented percolation model and prove Proposition 3.1; in Sec-
tion 4, we prove the flat edge result (Theorem 1.3); in Section 5, we prove Theo-
rem 1.4. Section 6 is devoted to the coupling of two random variables t and t̃ with
respective distribution F and F̃ on the same space (�,F ,P ), when F̃ is more
variable than F , and we show that we can get rid of the integrability assumption
used in [17]. Section 7 gives the proof of Theorem 1.2 from an intermediate result,
Proposition 7.6; finally, in Section 8, we prove Proposition 7.6.

2. A renormalization lemma. In this section, we define a renormalization
grid and the main crossings of a path associated to this grid, and we give
a renormalization lemma we will use several times in the proofs of our results.
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FIG. 2. Elements of the renormalization grid for N = 5.

A renormalization grid. Let N be a strictly positive integer. We introduce the
following notations (see Figure 2).

CN is the cube [−1/2,N − 1/2]2. We call N -cubes the cubes CN(k) = kN +
CN obtained by translating CN according to Nk with k ∈ Z

2. The coordinates
of k are called the coordinates of the N -cube CN(k). Note that N -cubes induce
a partition of Z

2.
DN is the large cube [−N − 1/2,2N − 1/2]2, and the large cube DN(k) is

obtained by translating DN according to Nk with k ∈ Z
2. The boundary of DN(k),

denoted by ∂DN(k), is the set of sites outside DN(k) that have a neighbor in
DN(k).

BN is the rectangular box [−1/2,N − 1/2] × [−N − 1/2,2N − 1/2]. In
the large cube DN(k), the N -cube CN(k) is surrounded by the four following
N -boxes:

B1
N(k) = Nk + (N,0)+ BN ;

B2
N(k) = Nk + (N,N)+ ei(π/2)BN ;

B3
N(k) = Nk − (N,0)+ BN ;

B4
N(k) = Nk − (N,0)+ ei(π/2)BN .

An edge is said to be in a subset E of R
2 if at least one of its two extremities

is in E. We now define the inner and outer boundaries of a N -box associated to
a pair (CN(k),DN(k)) of cubes. Let us do this for B1

N(0) and extend the definition
to other boxes by rotation and translation:

∂outB
1
N(0) = {

(2N,y), y ∈ [−N, . . . ,2N − 1]},
∂inB

1
N(0) = {

(N,y), y ∈ [−N, . . . ,2N − 1]}.
Note that ∂DN(k) is the disjoint union of the sets (∂outB

i
N(k))1≤i≤4, and that a path

entering in CN(k) and getting out of DN(k) has to cross one of the four N -boxes
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surrounding CN(k) in DN(k), from its inner boundary to its outer boundary. We
can then define the crossing associated to a N -cube CN(k) (see Figure 2).

DEFINITION 2.1. Let γ = (x0, . . . , xl) be a path such that x0 ∈ CN(k) and
xl /∈ DN(k). We set jf = min{0 ≤ k ≤ l, xk ∈ ∂DN(k)}. There exists a unique i

such that xjf ∈ Bi
N(k). Let then j0 = max{0 ≤ k ≤ jf , xk /∈ Bi

N(k)}. The portion
(xj0+1, . . . , xjf ) of γ is the crossing of γ associated to CN(k).

Main crossings of a path. Let N be a strictly positive integer, x be a point in Z
2

and γ be a path without any double point from 0 to x. We want to associate to γ

a sequence of crossings of N -boxes (the main crossings of γ ), in a way that two
different crossings are edge-disjoint. Consider first the sequence σ0 = (k1, . . . , kτ0)

made of the coordinates of the N -cubes successively visited by γ . As the N -cubes
induce a partition of Z

2, this sequence is well defined, and has the following
properties:

(P0)

{
0 ∈ CN(k1), x ∈ CN(kτ0),

∀ 1 ≤ i ≤ τ0 − 1, ‖ki+1 − ki‖1 = 1.

But σ0 can have double points; we remove them by the classical loop-removal
process described in [7]. We thus obtain a sequence σ1 = (kφ1(1), . . . , kφ1(τ1))

extracted from σ0, with the following properties:

(P1)




0 ∈ CN(kφ1(1)), x ∈ CN(kφ1(τ1)),

∀ 1 ≤ i ≤ τ1 − 1, ‖kφ1(i+1) − kφ1(i)‖1 = 1,
σ1 has no double point.

To every cube CN(k) in this sequence such that γ gets out of DN(k), that means
for every N -cube in σ1 with the possible exception of the seven last, we associate
a crossing of a N -box in the following way: let z be the first point of γ to be in
CN(k), and let z2 be the first point of γ after z to be in ∂DN(k). Then the crossing
associated to the N -cube CN(k) is the crossing of the portion of γ between z

and z2 associated to CN(k) in Definition 2.1.
The problem now is that two distinct cubes in σ1 can have the same associated

crossing. We have to extract a subsequence once again in order to obtain edge-
disjoint crossings. Set φ2(1) = 1, and define φ2 by induction,

φ2(i + 1) = inf
{
j > φ2(i) such that ‖kφ1(j ) − kφ1◦φ2(i)‖∞ > 1

}− 1

if the infimum exists, and let τ be the smallest index i for which φ2(i + 1) is not
defined. Set φ = φ1 ◦ φ2; the elements of σ = (kφ(i))1≤i≤τ are called the main
cubes of γ , and their associated crossings the main crossings of γ . This sequence
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has the following properties:

(P )




0 ∈ CN(kφ(1)),

‖kφ(τ) − kτ0‖∞ ≤ 1,
∀ 1 ≤ i ≤ τ − 1, ‖kφ(i+1) − kφ(i)‖∞ = 1,
the main crossings of γ are edge-disjoint.

Indeed, the first three properties are directly obtained from (P1) and the
construction of φ2. Let us verify now that the main crossings of a path γ are
edge-disjoint. Call, respectively, z, z1 and z2 the first point of γ in CN(kφ(i)) and
the extremities of the crossing associated to this N -cube. The index φ(i + 1) is
the index of the coordinates in Z

2 of the N -cube containing z2; thus, the crossing
associated to CN(kφ(i+1)) is a portion of γ which appears after z2 in γ . As γ has no
double point, the crossings associated to two adjacent cubes in σ are edge-disjoint.
As the main crossings of γ appear along γ in the same order as the N -cubes they
are associated to appear in σ , and as the path γ has no double points, the main
crossings of γ are edge-disjoint.

From properties (P ) we can deduce that for every x in R
2, the number τ of

main N -cubes of a path with no double point from 0 to x satisfies the following
inequality:

τ ≥ ‖x‖∞
N

.(7)

A renormalization lemma. Let (�,F ,P ) be a probability space and (t (e))e∈E2

be a family of independent, identically distributed and nonnegative random vari-
ables. The following lemma is an adaptation of Lemma (5.2) in [17], and its proof
is a standard Peierl’s argument (see proof of (3.12) in [7]). We will thus not give
any proof of it.

LEMMA 2.2. For each N ∈ N
∗, we give to the N -cubes a random color, black

or white, according to the values of the passage times in the initial model, such
that:

(i) For each N ∈ N
∗, the colors of the N -cubes are identically distributed.

(ii) For each N ∈ N
∗, for each k ∈ Z

2, the color of the N -cube CN(k) depends
only on the passage times of the edges in DN(k).

(iii) limN→+∞ P (CN(k) is black) = 1.

Then for every ρ ∈]0,1[, there exists Nρ such that for all N ≥ Nρ , there exist two
strictly positive constants A and B such that for every x ∈ R

2,

P

(
There exists a path γ from 0 to x that, among

its τ main N -cubes, has less than ρτ black cubes

)
≤ A exp(−B‖x‖∞).(8)
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EXAMPLE. Let F be a distribution on R
+. Note r = inf suppF and suppose

that r > 0 and F(r) < 1. The time constant µ is clearly greater or equal to r .
Durrett and Liggett [5] prove that for Richardson’s model, the time constant is
strictly greater than 1 by comparing this model with a branching random walk.
The analogous result for first passage percolation can be obtained as a consequence
of Theorem 1.3. By using the renormalization lemma, we can here prove directly
that µ > r. Indeed, take 0 < δ < r such that F(r + δ) < 1 and color the N -boxes
in the following way. BN is black if ∀y ∈ [−N, . . . ,2N − 1], there exists x ∈
[0, . . . ,N − 1] such that the passage time of the edge with extremities (x, y)

and (x + 1, y) is greater or equal to r + δ, and white otherwise. By rotation and
translation, we extend this coloring to each N -box. The N -cube CN(k) is black if
its four surrounding boxes in DN(k) are black, and white otherwise. This coloring
clearly satisfies the hypotheses of the lemma. Choose ρ ∈]0,1[ and N given by the
renormalization lemma, apply the renormalization lemma and (7) and conclude by
noting that the passage time of a main crossing associated to a black N -cube is
at least Nr + δ. Thus P (t (0, n) < nr + δρn/N) ≤ A exp(−Bn), and by dividing
by n and taking the limit when n goes to ∞, we get that µ(F ) ≥ r + δρ/N > r .

3. Coupling with oriented percolation. In this section, we couple our first
passage percolation model with an embedded oriented percolation model. Let us
first introduce the oriented percolation model and some notations. Our reference
here is the paper of Durrett [4]; our notation and constants, in order to fit with our
context, are slightly different from his. Consider the lattice Z

2 and a parameter
p ∈ [0,1]. Each vertex z of Z

2 has two oriented edges giving, respectively, access
when they are open to z + (1,0) and z + (0,1). The edges can only be used in the
way allowed by their orientation. We give to the set E

→
2 of these oriented edges

a family (η(e))e∈E
→
2

of independent and identically distributed random variables
with law pδ1 + (1 − p)δ0 on a probability space (�,F ,Pp), where δx is Dirac’s
measure on x. The edge e is said to be open in η if η(e) = 1, and closed otherwise.
Let us now introduce the following notation:

1. z1 → z2 denotes the existence of an (oriented) open path between z1 and z2. For
every n ∈ N, ξn is the set of (x, y) in N

2 such that x + y = n and 0 → (x, y).
We define rn as the signed Euclidean distance between (n2 ,

n
2 ) and the point in

ξn with the largest first coordinate; the sign of rn is chosen to be the same as
the sign of the difference between the first coordinate of this point and n

2 ; rn is
only defined when ξn �= ∅.

2. For every n ∈ N, ξ̄n is the set of (x, y) in Z
2 such that x + y = n and such that

there exists z ∈ N with (−z, z) → (x, y). We define r̄n as the signed Euclidean
distance between (n2 ,

n
2 ) and the point in ξ̄n with the largest first coordinate,

with the same convention for the sign.
3. �∞ is the event that for each n, ξn is not empty.



1012 R. MARCHAND

There exists a critical threshold −→pc ∈]0,1[ such that if p ≤ −→pc then
P (�∞) = 0 and if p > −→pc then P (�∞) > 0. In the case p ≥ −→pc we are interested
in, there exists a constant αp ∈ [0, 1√

2
] called the asymptotic speed such that

lim
n→+∞

rn1�∞
n

= αp1�∞, Pp-a.s and in L1(Pp).(9)

Define then βp = 1
2 + αp√

2
; call Mp the point with coordinates (βp,1 − βp) and

Np the point with coordinates (1 − βp,βp). Call θp the angle between the first
axis and (OMp). The cone generated by the half-lines [OMp) and [ONp) is called
the percolation cone issued of 0 (see Figure 1). The next proposition gives a lower
bound for the passage time between 0 and a point “outside” the percolation cone.
It will be used for the proofs of the flat edge result and the comparison theorem,
where it will play the role of Lemma (5.5) in [17].

PROPOSITION 3.1. Let F be a distribution on R
+ such that inf suppF = 1

and −→pc ≤ F(1) = p < 1. For every ε > 0, there exist three strictly positive
constants A, B and δ such that:

∀ x ∈ N
∗,∀ y ∈ N such that

y

x
≤ 1 − βp − ε

βp + ε
,

P
(
t
(
0, (x, y)

) ≤ (1 + δ)(x + y)
) ≤ A exp(−Bx).

PROOF. Let F be a distribution satisfying the hypotheses of Proposition 3.1
and let (t (e))e∈E2 be a family of independent and identically distributed random
variables with distribution F on a probability space (�,F ,P ). Choose ε > 0 and
choose now the four following parameters p1, δ1, ε1 and ρ1. We have to distinguish
between two cases to choose first p1 and δ1.

(i) Suppose there exists η > 0 such that F(1+η) = F(1). Choose then p1 = p

and δ1 > 0 such that δ1 < min{η,1}.
(ii) Otherwise, there exists η > 0 such that F is strictly increasing and

continuous on [1,1 + η[. By maybe decreasing η, suppose η < 1. Choose then
p1 ∈]p,F (1 +η)[ such that βp1 < βp + ε; this is possible thanks to the continuity
of p �→ βp on [−→pc,1]. Set 1 + δ1 = inf{x,F (x) ≥ p1}, thus F(1 + δ1) = p1 and
0 < δ1 < 1.

In both cases, we have

βp1 < βp + ε,(10)

0 < δ1 < 1 and F(1 + δ1) = p1.(11)

We can then choose ε1 and ρ1 such that

ε1 > 0 and βp1 + ε1 < βp + ε,(12)

ρ1 < 1 and ρ1 >

(
βp1 + ε1

1 − βp1 − ε1

)(
1 − βp − ε

βp + ε

)
.(13)
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Now build a family of independent and identically distributed random variables
(η(e))e∈E

→
2

by setting η(e) = 1 if t (e) ≤ 1 + δ1, and η(e) = 0 otherwise. Our first
passage percolation model is thus coupled with an oriented percolation model with
parameter p1. Fix a pair of integers (x, y) such that x > 0, y ≥ 0 and y

x
≤ 1−βp−ε

βp+ε
.

Choose an optimal path γx,y . The proof is now in two steps.

Step 1 (Renormalization). For every strictly positive integer N , we give to the
N -boxes Bi

N(k), defined in the previous section, a random color in the following
way:

DEFINITION 3.2. The box B1
N(k), with k ∈ Z

2, is said to be black if

∀ y = (y1, y2) ∈ ∂inB
1
N(k), ∀ z = (z1, z2) ∈ ∂outB

1
N(k)

such that
∣∣∣∣z2 − y2

z1 − y1

∣∣∣∣ ≤ 1 − βp1 − ε1

βp1 + ε1

every path γ from y to z, included in B1
N(k), verifies

t (γ ) ≥ ‖z − y‖1 + δ1;
it is said to be white otherwise.

Using rotations and translations, we extend this coloring to all N -boxes. If the
extremities y and z of the path γ satisfy the inequality of the definition, it is said
to get out of the N -box between the percolation cones (see Figure 3).

A N -cube CN(k), with k ∈ Z
2, is then said to be black if its four surrounding

N -boxes B
j
N(k), with j ∈ {1,2,3,4}, are black, and white otherwise. Let us check

that this random coloring verifies the hypotheses of renormalization Lemma 2.2.
The colors of the N -cubes are, as the colors of the N -boxes, clearly identically
distributed, and by definition the color of CN(k) only depends on the passage

FIG. 3. Percolation cones issued from a point y.
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times of the edges in DN(k). Let us now estimate the probability pN that CN(0)
is white and prove that

lim
N→+∞pN = 0.(14)

It is clear that pN ≤ 4P (B1
N(0) is white). Using translation invariance for our

first passage percolation model, and noting that the number of vertices in ∂inB
1
N(0)

is equal to 3N , we get

pN ≤ 12NP


 there exists z ∈

[
−N

(
1 − βp1 − ε1

βp1 + ε1

)
, . . . ,N

(
1 − βp1 − ε1

βp1 + ε1

)]
such that t (0, (N, z)) < N + |z| + δ1


 .

Now, if t (0, (N, z)) < N + |z| + δ1, as δ1 < 1, the number of edges of an optimal
path from 0 to (N, z) must be equal to N +|z|. Moreover, the passage time of each
of its edges must be less than 1 + δ1. This implies that there exists, in the coupled
oriented percolation model with parameter p1, an open (oriented) path from 0 to
(N, z). Considering the sign of z, there are two possible orientations of the edges
(to the right/to the top if z ≥ 0 or to the right/to the bottom if z ≤ 0); thus

pN ≤ 24NP

(
∃ z ∈

[
0, . . . ,N

(
1 − βp1 − ε1

βp1 + ε1

)]
, (N, z) ∈ ξN+z

)

≤ 24NP

(
∃ z ∈

[
0, . . . ,N

(
1 − βp1 − ε1

βp1 + ε1

)]
, rN+z ≥ √

2
(
N − z

2

))
.

But N + z ≤ N
βp1+ε1

and N − z ≥ N(
2(βp1+ε1)−1

βp1+ε1
) and so N−z

N+z
≥ 2(βp1 + ε1)−1 =√

2αp + 2ε1. Therefore we have

pN ≤ 24NP

(
∃ z ∈

[
0, . . . ,N

(
1 − βp1 − ε1

βp1 + ε1

)]
,
rN+z

N + z
≥ αp1 + √

2ε1

)
.

By large deviation results for oriented percolation (see [4]), there exist two strictly
positive constants A and B such that

pN ≤ 24N
(

1 − βp1 − ε1

βp1 + ε1

)
A exp(−BN).

This concludes the proof of (14).
We can then apply the renormalization Lemma 2.2 with the parameter ρ1 we

chose in (13). Let thus N be large enough to have estimation (8) with two strictly
positive constants A and B . Choose finally δ > 0 small enough to have(

βp1 + ε1

1 − βp1 − ε1

)(
1 − βp − ε

βp + ε

)
+ 2δ

(
βp1 + ε1

1 − βp1 − ε1
+ N

δ1

)
< ρ1.(15)

The choice (13) we made for ρ1 allows us to take such a δ. Let now σx,y =
(k1, . . . , kτx,y ) be the sequence of the main N -cubes of the optimal path γx,y
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defined in Section 2. Denote by Ax,y the event that among the τx,y main N -cubes
of γx,y , at most ρ1τx,y cubes are black. Renormalization Lemma 2.2 ensures then
that

P (Ax,y) ≤ A exp(−Bx).(16)

Step 2 (Estimation of the number of main crossings associated to a black cube,
end of the proof). To each main N -cube of γx,y , with the possible exception of
the last seven, a main crossing is associated. For each i ∈ I = [1, . . . , τx,y − 7],
denote by γ i

x,y the main crossing associated to the N -cube CN(ki), and denote by
ai , bi its extremities in the order they appear along γx,y ; let πi

x,y be the portion of
γx,y between bi and ai+1, with aτx,y−6 = (x, y). Set finally

I b
x,y =

{
i ∈ I such that CN(ki) is black

and γ i
x,y gets out of its N -box between the percolation cones

}
,

I c
x,y = {

i ∈ I such that CN(ki) is black and i /∈ I b
x,y

}
.

We are going to prove that if t (0, (x, y)) ≤ (1 + δ)(x + y) then

|I b
x,y | + |I c

x,y | < ρ1τx,y.(17)

We omit the indices for the proof. Let us estimate first |I c|. Note that if i ∈ I c,
then γ i has at least N

βp1+ε1
edges. The other portions γ i with i /∈ I c cross a N -box

and admit at least N edges. Thus, we get

(1 + δ)(x + y) ≥ t
(
0, (x, y)

) ≥ |I c| N

βp1 + ε1
+ (τ − |I c|)N.

This can be written in the following manner:

N |I c|
(

1

βp1 + ε1
− 1

)
≤ (1 + δ)x

(
1 + y

x

)
− τN but x ≤ τN, so

≤ τN

(
(1 + δ)

(
1 + y

x

)
− 1

)
but

y

x
≤ 1, so

≤ τN

(
2δ + y

x

)

≤ τN

(
2δ + 1 − βp − ε

βp + ε

)
.

We finally have

|I c| ≤ τ

((
βp1 + ε1

1 − βp1 − ε1

)(
1 − βp − ε

βp + ε

)
+ 2δ

(
βp1 + ε

1 − βp1 − ε

))
.
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Let us estimate now |I b|. By the choice we made for the coloring, if i ∈ I b, then
t (γ i) ≥ |γ i| + δ1. Thus we have the two following inequalities, in time and in first
coordinate:

(1 + δ)(x + y) ≥ δ1|I b| +∑
i∈I

(|γ i| + |πi |) and x + y ≤ ∑
i∈I

(|γ i | + |πi|).

By subtraction, we obtain that 2δτN ≥ δ(x + y) ≥ δ1|I b|, which means |I b| ≤
2δτN/δ1. The choice we made for δ in (15) gives then the desired estimation (17).

To conclude, note that we have just proved that{
t
(
0, (x, y)

) ≤ (1 + δ)(x + y)
} ⊂ Ax,y,

where Ax,y is the set introduced at the end of the first step. Equation (16) then
gives two strictly positive constants A and B such that

P
(
t
(
0, (x, y)

) ≤ (1 + δ)(x + y)
) ≤ P (Ax,y) ≤ A exp(−Bx).

This ends the proof of Proposition 3.1. �

4. Proof of the flat edge result. In this section we prove Theorem 1.3. Let
(�,F ,P ) be a probability space with a family (t (e))e∈E2 of independent and iden-
tically distributed random variables, with distribution F . Suppose inf suppF = 1
and F(1) = p ≥ −→pc. Let A denote the asymptotic shape associated to F by first
passage percolation.

Note that the first point of Theorem 1.3 is clear with the assumption
inf supp F = 1. The second point is ensured by van den Berg and Kesten’s
comparison result in [17].

Let us prove that when p ≥ −→pc, the segment line [Mp,Np] is included in A.
In the case p > −→pc , this result is Lemma 6.13 in [10]. To deal with the case
p = −→pc, note that van den Berg and Kesten’s result ensures that if p < −→pc , then
the asymptotic shape is included in the open unit ball for ‖ · ‖1. The continuity
of the asymptotic shape (see [1] and [2]) and the result for p > −→pc ensures that
(1/2,1/2) is in the asymptotic shape in the case p = −→pc.

It remains now to prove that the flat edge of A in the first quadrant is exactly
[Mp,Np]. The symmetry and convexity of A ensure that it is enough to prove

∀ (x, y) ∈ N
2 such that x > y and

(x, y)

x + y
/∈ [Mp,Np], µ

(
(x, y)

)
> x + y.

If (x, y) ∈ N
2 and y < x, note that (x,y)

x+y
/∈ [Mp,Np] ⇔ y

x
<

1−βp

βp
. Now choose

ε > 0 such that 1−βp−ε

βp+ε
− y

x
> 0. Proposition 3.1 says then that there exist three

strictly positive constants A, B , and δ such that for each integer n,

P
(
t
(
0, n(x, y)

) ≤ n(1 + δ)(x + y)
) ≤ A exp(−Bnx).
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Let then η > 0 be such that η < δ(x + y), and let n be large enough to have
A exp(−Bnx) < 1

2 and P (t (0, n(x, y)) > n(µ((x, y)) + η)) < 1
2 . Then, on the

intersection of the complementary sets of these two events (that has a strictly
positive probability) we have

µ
(
(x, y)

)+ η ≥ t (0, n(x, y))

n
≥ (1 + δ)(x + y);

this means µ((x, y)) ≥ (x + y) + (δ(x + y) − η) > (x + y). This concludes the
proof of Theorem 1.3. �

5. Strict comparison between the time constant and 1/βp. This section
is devoted to the proof of Theorem 1.4. We will once again need the embedded
oriented percolation model we introduced in Section 3. Let us give some further
notation:

1. Z̃ = {(−k, k), k ∈ Z}, Ñ = {(−k, k), k ∈ N} and S0 = {(1,−1), (2,−2)}.
2. If S is a subset of Z̃, for every n ∈ N, ξn(S) is the set of vertices (x, y) in Z

2

such that x + y = n and such that there exists s ∈ S with s → (x, y).
3. If S is a subset of Z̃, for every n ∈ N, rn(S) is the signed Euclidean distance

between (n2 ,
n
2 ) and the point in ξn(S) with the largest first coordinate, with the

same sign convention as previously. If ξn(S) = ∅ we set rn(S) = −∞.

The proof of Theorem 1.4 is somewhat similar to the one of the strict increasing
of the asymptotic speed in oriented percolation (see [4]). Thus, this proof is only
valid in dimension 2. The idea is to use the monotony of S �→ ξn(S) and the
Markovian properties of (ξn)n∈N to construct nonoriented bypasses, which use
more edges than an oriented path but are, however, faster. We begin with the case
p > −→pc.

PROOF OF THEOREM 1.4 WHEN p > −→pc. Let (�,F ,P ) be a probability
space with a family (t (e))e∈E2 of independent and identically distributed random
variables with distribution F . Suppose that inf suppF = 1 and 1 > F(1) = p >−→pc. Build, as before, the family (η(e))e∈E

→
2

by setting η(e) = 1 if t (e) = 1, and
η(e) = 0 otherwise, in order to couple our first passage percolation model with
oriented percolation with parameter p.

Step 1 (Construction of the first stopping time and the first bypasses). Set
ξ0
n = ξn(Ñ), and note that almost surely for every n, ξ0

n �= ∅; set r0
n = rn(Ñ) and let

M0
n be the point in R

2 with coordinates (n2 + r0
n√
2
, n

2 − r0
n√
2
). Let τ1 be the smallest

n such that we have the following (C)-configuration around M0
2n−2 (see Figure 4).

DEFINITION 5.1. We say that there is the (C)-configuration around the vertex
(x, y) in Z

2 if the edges between (x, y) and (x+1, y), (x+1, y) and (x+1, y−1),
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FIG. 4. (C)-configuration around M0
2τ1−2.

(x + 1, y − 1) and (x + 2, y − 1), (x + 2, y − 1) and (x + 3, y − 1), (x + 2, y − 1)
and (x+2, y) have passage time 1 and if the edge between (x+1, y) and (x+2, y)
has a passage time strictly greater than 1.

Note that the probabilities that there is the (C)-configuration around the vertices
(x, y) are all equal to ρ = p5(1 − p) > 0.

Look at what happens on the line y = 2τ1 − x. Points in ξ0
2τ1

are linked to 0 by
a path with 2τ1 (oriented) edges, each of these edges having a passage time of 1.
On the other hand, the two points M0

2τ1−2 + (2,0) and M0
2τ1−2 + (3,−1) are also

on this line, and are linked to 0 by a path with 2τ1 +2 (nonoriented) edges, each of
these edges having a passage time of 1. We restart the process ξ0

n from the time 2τ1

by adding to ξ0
2τ1

the set S0
2τ1

composed of M0
2τ1−2 + (2,0) and M0

2τ1−2 + (3,−1).

The open paths from M2τ1−2 to the two points in set S0
2τ1

are what we call the two
first bypasses. We set

ξ1
n =

{
ξ0
n , if n ≤ 2τ1 − 1,
ξn−2τ1(ξ

0
2τ1

∪ S0
2τ1

), if n ≥ 2τ1.

As before, let r1
n be the signed Euclidean distance between (n2 ,

n
2 ) and the point in

ξ1
n with the largest first coordinate (same sign convention), and let M1

n be the point

with coordinates (n2 + r1
n√
2
, n

2 − r1
n√
2
).

We want now to estimate the difference between Er1
2n and Er0

2n:

Er1
2n − Er0

2n ≥ 2
√

2P (τ1 ≤ n).(18)

The idea is to use the translation invariance of the model, and the monotony of
B �→ ξn(B). We admit here the following result, analogous to (13) in [4]: If A

and B are two infinite sets in Ñ such that B ⊂ A, then for every integer n we have

E
(
rn(B ∪ S0)− rn(B)

) ≥ E
(
rn(A∪ S0)− rn(A)

) ≥ 2
√

2.



INCREASING OF THE TIME CONSTANT 1019

Now, by definition of ξ1
n and τ1, we have

Er1
2n − Er0

2n = E
(
(r1

2n − r0
2n)1τ1≤n

)
= E

((
r2n−2τ1(ξ

0
2τ1

∪ S2τ1) − r2n−2τ1(ξ
0
2τ1

)
)
1τ1≤n

)
.

The Markov property and the previous inequality give then the desired inequal-
ity (18).

Step 2 (Iteration of the construction). We define in the same manner a se-
quence of stopping times (τk)k∈N∗ by letting τk+1 be the smallest n ≥ τk + 1 such
that there is the (C)-configuration from Mk

2n−2. We call Sk
2τk+1

the subset of Z̃

composed of the two points Mk
2τk+1−2 + (2,0) and Mk

2τk+1−2 + (3,−1)). Set

ξk+1
n =

{
ξk
n , if n ≤ 2τk+1 − 1,
ξn−2τk+1

(
ξ0

2τk+1
∪ Sk

2τk+1

)
, if n ≥ 2τk+1.

As before, rk+1
n is the signed Euclidean distance between (n2 ,

n
2 ) and the point

in ξk+1
n with the largest first coordinate (same sign convention), and Mk+1

n is the

point with coordinates (n2 + rk+1
n√

2
, n

2 − rk+1
n√

2
). Call Nn the number of k such that

τk ≤ n. Then, an iteration of the previous step gives us

ErN2n
2n − Er0

2n ≥ 2
√

2EN2n.(19)

Indeed, note that N2n ≤ n; we have then ErN2n
2n − Er0

2n = Ern2n − Er0
2n =∑n

k=1 E(rk2n − rk−1
2n ). Using (18), we get ErN2n

2n − Er0
2n ≥ ∑n

k=1 2
√

2P (τk ≤ 2n) ≥
2
√

2EN2n. This ends the proof of (19).

Step 3 (Comparison of the modified process r
N2n
2n and the first passage

percolation model). Note that M
N2n
2n is linked to a point in Ñ by a path with

exactly 2n + 2N2n edges with passage time 1. Denote by 0 → D2n the event
that there exists on open (oriented) path from the origin to a point in the line
D2n = {(x, y) ∈ Z

2, x + y = 2n}. On this event, the point M
N2n
2n is linked to the

origin by a path with at most 2n + 2N2n edges with passage time 1 (because we
work in dimension 2). Let b(x0) be the first time any point in the line {x = x0}
is reached by first passage percolation beginning at the origin. We can obtain the
time constant µ as the following limit (Theorem 6 in [2]):

b(n)

n
→ µ, P -a.s. as n → +∞.(20)

The previous remark leads us to

1{0→D2n}b
(
n + r

N2n
2n√

2

)
≤ 1{0→D2n}(2n+ 2N2n),(21)
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This can also be written: a.s. for n large enough,

1{0→D2n}
n+ r

N2n
2n /

√
2

2n
≤ 1{0→D2n}

(
1 + N2n

n

)
n+ r

N2n
2n /

√
2

b(n+ r
N2n
2n /

√
2)

.(22)

Remember that p > −→pc, and thus r0
2n goes almost surely to infinity with n. Let us

now study the means of the two sides of (22).
First, as N2n is the number of successes among n independent trials with

probability of success ρ, we have

N2n

n
≤ 1 and

N2n

n
→ ρ a.s. and in L1.(23)

Then, by definition, b(x0) ≥ (inf suppF) · x0 = x0. Note then that r
N2n
2n ≥ r0

2n;
by using (9), composed limits and (20), we get

n+ r
N2n
2n /

√
2

b(n+ r
N2n
2n /

√
2)

≤ 1 and its a.s. limit is
1

µ
.(24)

Let us now look at the convergence of the mean of the right-hand side in (22).
1{0→D2n} tends almost surely to the indicator function of the event “the cluster
containing 0 in the endowed oriented percolation model is infinite”; this event is
denoted by {0 → ∞}. Then (23), (24) and the dominated convergence theorem
lead to

the mean of the right-hand side in (22) tends to
1 + ρ

µ
P (0 → ∞).(25)

We are going now to give a lower bound for the expectation of the left member
in (22). On [1,+∞)Z

2
, the maps 1{0→D2n} and r

N2n
2n are cylinder nonincreasing

functions. The FKG inequality ensures then

E

(
1{0→D2n}

n + r
N2n
2n /

√
2

2n

)
≥ P (0 → D2n)E

(
n + r

N2n
2n /

√
2

2n

)
.

With (19), this gives

E

(
1{0→D2n}

n + r
N2n
2n /

√
2

2n

)
≥ P (0 → D2n)

(
1

2
+ 1√

2
E

(
r0

2n

2n

)
+ E

(
N2n

n

))
.(26)

We can now come back to (22). Applying (25), (26), (9), (23) and taking limits,
we get (

1

2
+ 1√

2
αp + ρ

)
P (0 → ∞) ≤ 1 + ρ

µ
P (0 → ∞).

Since we are supposing p > −→pc, P (0 → ∞) > 0, and we get

1

µ
≥ βp + ρ

1 + ρ
.(27)
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To end the proof of Theorem 1.4 in the case p > −→pc, note that the asymptotic
speed in oriented percolation strictly increases as a function of the parameter p,
and thus if p < 1, αp < 1√

2
. Thus βp = 1

2 + αp√
2
< 1, and, as ρ > 0, βp+ρ

1+ρ
> βp.

Theorem 1.4 is then a direct consequence of (27).

PROOF OF THEOREM 1.4 WHEN p = −→pc . In this case, we cannot use the fact
that the probability for the cluster containing the origin in the endowed oriented
percolation model to be infinite is strictly positive. The idea is, however, to use the
same technique: we say that the edges with passage time 1 are open, but we allow
some other edges to be open too, in order to have a supercritical endowed oriented
percolation model. Let ε > 0 and K > 1 be such that F(K) > −→pc + ε. Note that
we can decrease ε, keep K constant and still have this property. Let (�,F ,P )

be a probability space, and (t (e))e∈E2 be a family of independent and identically
distributed random variables, with distribution F , and suppose inf suppF = 1 and
F(1) = −→pc. We build, as previously, a family (η(e))e∈E

→
2

of independent and
identically distributed random variables in the following manner:

1. Let (ψ(e))e∈E
→
2

be a family of independent and identically distributed random
variables, with distribution qδ1 + (1 − q)δ0, where q will be chosen later;
moreover, choose this family to be independent from (t (e))e∈E2 .

2. If t (e) = 1 then set η(e) = 1.
3. If t (e) > K then set η(e) = 0.
4. If 1 < t(e) ≤ K , then set η(e) = ψ(e).

The random variables (η(e))e∈E
→
2

are independent, identically distributed, take
their values in {0,1}, and

P
(
η(e) = 1

) = P
(
t (e) = 1

)+ P
(
1 < t(e) ≤ K and ψ(e) = 1

)
= −→pc + q

(
F(K)− −→pc

)
.

The parameter q is now chosen to have P (η(e) = 1) = −→pc + ε; this means
q = ε

F (K)−−→pc

. We thus endowed an oriented percolation model with parameter

p = −→pc + ε, in our first passage percolation model. We can then proceed to the
same construction as in the supercritical case, and with the same notations we see
that on the event 0 → D2n, MN2n

2n is linked to the origin by a path, denoted by π2n,
with at most 2n + 2N2n edges with passage times taking their values between 1
and K . To define properly π2n, choose an order on the edges of Z

2 and take π2n the
smallest such path for the associated lexicographic order. Equation (21) becomes
here

1{0→D2n}b
(
n+ r

N2n
2n√

2

)
≤ 1{0→D2n}

∑
e∈π2n

t (e),
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which can be rewritten: a.s. for n large enough,

1{0→D2n}
n+ r

N2n
2n /

√
2

2n
≤ 1{0→D2n}

(
1

2n

∑
e∈π2n

t (e)

)
n+ r

N2n
2n /

√
2

b(n+ r
N2n
2n /

√
2)

.

Note, moreover, that

1

2n

∑
e∈π2n

t (e) = |π2n|
2n

· 1

|π2n|
∑

e∈π2n

t (e) ≤
(

1 + N2n

n

)
· 1

|π2n|
∑

e∈π2n

t (e).

This finally gives

1{0→D2n}
n + r

N2n
2n /

√
2

2n

≤ 1{0→D2n}
(

1 + N2n

n

)(∑
e∈π2n

t (e)

|π2n|
)

n+ r
N2n
2n /

√
2

b(n+ r
N2n
2n /

√
2)

.

(28)

The study of the convergence of the means of the two sides of this equation is
nearly the same as for (22). Note that the term with the sum in the right-hand
side member is the only term that is different and needs a new study; by a direct
adaptation of the law of large numbers for arrays of independent random variables
in L4, we can prove that

1

|π2n|
∑

e∈π2n

t (e) ≤ K and tends a.s. to E
(
t (e)|η(e) = 1

)
.(29)

In the same manner as for (27), by applying the dominated convergence theorem
for the right-hand side member, we get

(βp + ρ)Pp(0 → +∞) ≤ 1 + ρ

µ
E
(
t (e)|η(e) = 1

)
Pp(0 → +∞).

Remember that p = −→pc + ε > −→pc, and thus Pp(0 → +∞) > 0, so we have

1

µ
≥ βp + ρ

1 + ρ
· 1

E(t(e)|η(e) = 1)
.

Remember that p = −→pc + ε, that ρ = p5(1 − p), and that we can bring ε to 0
without changing K . The continuity of p �→ βp ensures that βp tends to 1/2, ρ
tends to ρc = −→p 5

c (1 − −→pc) > 0 and E(t(e)|η(e) = 1) tends to 1, so

1

µ
≥ lim

ε→0

βp + ρ

1 + ρ
· 1

E(t(e)|η(e) = 1)
=

1
2 + ρc

1 + ρc

>
1

2
.

This ends the proof of Theorem 1.4. �
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6. Coupling of two passage times with comparable distributions. The
first step to prove Theorem 1.2 is to couple the two passage times on the same
probability space. The next lemma is an extension of Theorem 2.6 in [17] for the
case of random variables which are not supposed to have finite means.

LEMMA 6.1. Let F and F̃ be two distributions on R
+. Then F̃ is more

variable than F if and only if there exists a pair of random variables (t, t̃ ) on
a probability space (�0,F0,P0) with marginal distributions F and F̃ such that

F -a.s. for y, E0(t̃|t = y) ≤ y.(30)

Note first that if F̃ has infinite mean, then the conditional expectation E(t̃|t = y)

is a priori a random variable with values in R
+ ∪ {+∞}. This result ensures that it

is, moreover, almost surely finite.

PROOF. As a direct consequence of Jensen’s inequality for conditional
expectations, condition (30) is sufficient.

To prove that condition (30) is also necessary, we are going to construct t

and t̃ as the first and second coordinates in (R+)2 under a certain probability
measure λ on (R+)2. Let us introduce the following notation. Let µ and ν be two
probability measures on R

+ endowed with the Borel σ -field. Denote respectively
by Cb and Db the sets of bounded continuous functions on R

+ and (R+)2. On
(R+)2, p1 and p2 denote the first and second coordinate applications. Let = be
the set of all Borel probability measures on (R+)2, endowed with the topology
of weak convergence. Let > be a nonempty closed convex subset of =. In this
context, Strassen gives the following coupling result ([16], Theorem 7).

THEOREM 6.2. A necessary and sufficient condition for the existence of a
probability measure λ ∈ > such that µ = λ ◦ p−1

1 and ν = λ ◦ p−1
2 is that

∀ y, z ∈ Cb,

∫
y dµ+

∫
z dν ≤ sup

γ∈>

∫
(y ◦ p1 + z ◦ p2) dγ.(31)

To prove Lemma 6.1, we are going to apply this result to the set > of Borel
probability measures λ on (R+)2 such that for every positive y ∈ Cb and for every
concave increasing and positive z ∈ Cb,∫

(y ◦ p1)(z ◦ p2) dλ ≤
∫

(y ◦ p1)(z ◦ p1) dλ.(32)

Step 1. Let us prove that if λ ∈ >, then Eλ(p2|p1) ≤ p1, λ-p.s.
The probability measure λ1 = λ ◦ p−1

1 on R
+ is regular: we can build, for

every Borel set B in R
+, a sequence of continuous functions yn : R+ → [0,1],

that goes λ1-p.s. to the indicator function of B . Equation (32) and the dominated
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convergence theorem ensure then that for every concave increasing and positive
z ∈ Cb and for every Borel set B in R

+,∫
(1B ◦ p1)(z ◦ p2) dλ ≤

∫
(1B ◦ p1)(z ◦ p1) dλ.(33)

Define zn(t) = t ∧ n for t ∈ R
+. The map zn is then continuous, bounded,

concave and increasing. Moreover, the sequence (zn)n∈N is nondecreasing;
(33) and the monotone convergence theorem ensure then that for every Borel set B
in R

+, ∫
(1B ◦ p1)(p2) dλ ≤

∫
(1B ◦ p1)(p1) dλ.

This implies that for every event A in the σ -field generated by p1,∫
1Ap2 dλ ≤

∫
1Ap1 dλ,

and thus Eλ(p2|p1) ≤ p1, λ-p.s.

Step 2. Let us verify that > is closed, convex and nonempty in =.
The facts that that > is closed and convex for the topology of the weak

convergence is easily verified.
The set > is nonempty because it contains every probability measure that puts

mass only on the first diagonal; for these measures, the inequality is in fact an
equality.

Step 3. Let us check inequality (31) by choosing for µ and ν the probability
measures on R

+, respectively, associated to F and F̃ .
Let y and z be in Cb. Let z0 be the smallest concave increasing function on R

+
that is greater or equal to z (take for z0 the infimum of increasing affine functions
on R

+ that are greater or equal to z). The map z is bounded, thus so is z0. We then
have ∫

y dF +
∫

z dF̃ ≤
∫

y dF +
∫

z0 dF̃

≤
∫

(y + z0) dF as F̃ is more variable than F

≤ sup
s∈R+

(
y(s) + z0(s)

)
.

Let then r < sups∈R+(y(s)+ z0(s)); we have to prove that r < supγ∈>

∫
(y ◦p1 +

z◦p2) dγ . Choose s such that r < y(s)+z0(s). Denote by >t the set of probability
measures on R

+ whose mean is less or equal to t , and introduce

z1(t) = sup
α∈>t

∫
z dα.
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The map z1 is clearly increasing and greater or equal to z. Let us prove it is
also concave. Let αs ∈ >s , αt ∈ >t and γ ∈ [0,1]. The probability measure
α = γ αs + (1 − γ )αt is in >γs+(1−γ )t , and

γ

∫
z dαs + (1 − γ )

∫
z dαt =

∫
z dα ≤ z1

(
γ s + (1 − γ )t

)
.

By taking the supremum for αs ∈ >s and αt ∈ >t , we get the concavity inequality
for z1.

The map z1 is thus greater or equal to z0, so r < y(s) + z0(s) ≤ y(s) + z1(s).
Consequently, there exists α ∈ >s such that

r < y(s) +
∫

z dα =
∫

(y ◦ p1 + z ◦ p2) dγ for γ = δs × α.

It remains now to check that the probability measure γ we have just built on (R+)2

is in >. Let y ∈ Cb be positive and z ∈ Cb be concave increasing and positive,∫
(y ◦ p1)(z ◦ p2) dγ = y(s)

∫
z dα,

∫
(y ◦ p1)(z ◦ p1) dγ = y(s)z(s).

However, α ∈ >s and z is concave and increases, therefore

z(s) ≥
∫

z dα.

The maps y and z being positive, we can conclude that (32) is verified. So γ is
in >, and

∀ y, z ∈ Cb,

∫
y dF +

∫
z dF̃ ≤

∫
(y ◦ p1 + z ◦ p2) dγ,

thus inequality (31) is verified.

Step 4 (Conclusion). We can apply Theorem 6.2: There exists a probability
measure λ on (R+)2 such that under λ, p1 and p2, respectively, admit F and F̃ as
distribution functions, and, by Step 1, Eλ(p2|p1) ≤ p1 λ-p.s. This ends the proof
of Lemma 6.1. �

As a consequence of this coupling, we can compare the time constants and the
asymptotic shapes associated to two comparable passage times.

THEOREM 6.3. Let F and F̃ be two distributions on R
+ such that F̃ is more

variable than F . Denote, respectively, by µ, µ̃ the time constants and A, Ã the
asymptotic shapes associated to F , F̃ ; then µ ≥ µ̃ and A ⊂ Ã.
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PROOF. Van den Berg and Kesten have already proved this result for passage
times with finite means (see [17], Theorem 2.9). By truncating the distributions F

and F̃ at T , where T > 0, we get that µT ≥ µ̃T . Cox and Durrett’s continuity
result enables us to take the limit whens T goes to infinity in the inequality, and
thus to obtain the desired result. The inclusion for the asymptotic shapes can be
proved in the same manner. �

7. Proof of the comparison theorem. In this section, we prove Theorem 1.2
in the case inf suppF = 1 and F(1) ≥ −→pc. Remember that the cases inf suppF = 0
or inf suppF = 1 and F(1) < −→pc are treated by van den Berg and Kesten [17]. The
point in their paper is that under these hypotheses, there cannot exist too many
oriented portions of length N along an optimal path from 0 to n, using only edges
with passage time 1, if N is large enough. In the case F(1) ≥ −→pc, it is Theorem 1.4
that allows us to show that such oriented portions cannot occur too often. Indeed,
large deviations for supercritical oriented percolation ensure that they use a too
large number of vertical edges to be fast enough. We will follow the lines of the
proof in [17].

Let F be distribution function on R
+ such that inf suppF = 1 and −→pc ≤ F(1)

< 1. Let F̃ be a distribution function on R
+ such that F̃ is strictly more variable

than F . Couple these two distribution functions on the same space (�0,F0,P0)

as in Lemma 6.1 in a pair (t, t̃ ) of random variables with respective distribution
functions F and F̃ .

The first step is to remark that, as in Lemma 4.5 in [17], it is enough to prove
Theorem 1.2 under the additional hypothesis

P0(t̃ > t) > 0.

Then, Lemma 4.8 in [17] gives the following properties of the coupling.

LEMMA 7.1. Under the additional hypothesis P0(t̃ > t) > 0, there exist an
integer k > 0, strictly positive real numbers s, q , η and a Borel set I0 included
in [1,∞[ such that

F([1, inf I0]) > 0, F (I0) > 0 and F([sup I0,∞[) > 0,(34)

∀ y ∈ I0, P0(t̃ > y + s|t = y) ≥ q,(35)

∀ y1, . . . , yk, y
′
1, . . . , y

′
k+2 ∈ I0,

k∑
i=1

yi <

k+2∑
i=1

y′
i and

k∑
i=1

(yi + s) > η +
k+2∑
i=1

y′
i .

(36)
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In the following, we will always work with these hypotheses and we fix k, s, q ,
η, I0 as in the lemma. We realize the two families of independent and identically
distributed random variables (t (e))e∈E2 and (t̃(e))e∈E2 with respective common

distribution functions F and F̃ on the product space �
E2
0 .

In order to compare the time constants associated to t and t̃ , let us introduce
two new passage times: t̂ , obtained as a random convex combination between t

and t̃ , and ť , which is the conditional expectation of t̂ with respect to the σ -field
generated by t . Consider thus (ξ(e))e∈E2 , a family of independent and identically
distributed random variables; choose them to be independent from (t (e))e∈E2 and
(t̃(e))e∈E2 , and such that P (ξ(e) = 1) = P (ξ(e) = 0) = 1/2. Define then

t̂ (e) = ξ(e)t̃(e)+ (
1 − ξ(e)

)
t (e),(37)

ť (e) = E
(
t̂ (e)|t (e)).(38)

Denote by γn, γ̃n, γ̂n and γ̌n the optimal paths from 0 to n, respectively, associated
to passage times t , t̃ , t̂ and ť . Let us compare now this times for the “more variable”
order.

LEMMA 7.2. t̃ � t̂ � ť � t and µ̃ ≤ µ̂ ≤ µ̌ ≤ µ.

PROOF. The inequalities for the time constants are a consequence of The-
orem 6.3 and of the inequalities for the passage times. The distribution F̂ of t̂

is given by F̂ = 1
2F + 1

2 F̃ . As F̃ is more variable than F , it is also more vari-

able than F̂ . The comparison between t̂ and ť is a consequence of the defin-
ition of the order and of Jensen’s property for conditional expectation. Finally,
ť = E(t̂|t) = E(ξ t̃ + (1 − ξ)t|t) = 1

2E(t̃|t)+ 1
2 t ≤ t . Lemma 6.1 ensures then that

ť � t . �

Let us give the following definitions.

DEFINITION 7.3. A pair (π+, π−) of paths is said to be feasible for γn if:

(i) π+ and π− have the same extremities and are edge disjoint;
(ii) |π+| = k and |π−| = k + 2;

(iii) ∀ e ∈ π+ ∪ π−, t (e) ∈ I0;
(iv) π+ is a portion of γn.

Note that the two first points in this definition are geometrical considerations.
The two last points only depend on the values of (t (e))e∈E2 , and thus, for a given
pair (π+, π−) of paths, the event {(π+, π−) is feasible for γn} is in the σ -field G
generated by (t (e))e∈E2 .
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DEFINITION 7.4. A feasible pair is advantageous if, moreover,

(i) ∀ e ∈ π+, t̃ (e) > t(e) + s and ξ(e) = 1,
(ii) ∀ e ∈ π−, ξ(e) = 0.

We can compare the probabilities of the events for a pair to be feasible and to
be advantageous:

LEMMA 7.5. If G is the σ -field generated by (t (e))e∈E2 , then

P
(
(π+, π−) is advantageous for γn|G) ≥ qk

22k+2 1{(π+,π−)is feasible for γn}.

PROOF.

P
(
(π+, π−) is advantageous for γn|G)

= E

[
1{(π+,π−)is feasible for γn}

( ∏
e∈π+

1{t̃ (e)≥t (e)+s}1{ξ(e)=1}
)

· · · ×
( ∏

e∈π−
1{ξ(e)=0}

)∣∣∣∣∣G
]
,

but with the previous remark, 1{(π+,π−)is feasible for γn} is in G, so

= 1{(π+,π−)is feasible for γn}

· · · × E

[( ∏
e∈π+

1{t̃ (e)≥t (e)+s}1{ξ(e)=1}
)( ∏

e∈π−
1{ξ(e)=0}

)∣∣∣∣∣G
]
,

but every ξ(e0) is independent from (t (e))e∈E2\{e0}, from every t̃ (e) and from
(ξ(e))e∈E2\{e0}, so

= 1

22k+2 1{(π+,π−) is feasible for γn}E
( ∏
e∈π+

1{t̃ (e)≥t (e)+s}

∣∣∣∣∣G
)
,

but every t̃ (e0) is independent from (t (e))e∈E2\{e0} and from (t̃(e))e∈E2\{e0};
moreover, (t (e))e∈E2 are independent, thus

= 1

22k+2
1{(π+,π−) is feasible for γn}

∏
e∈π+

E
(
1{t̃ (e)≥t (e)+s}|t (e)

)
,

Equation (35) finally gives the desired result. �

The point of the proof of Theorem 1.2 is to prove the following proposition,
which gives the existence of a certain number of feasible pairs along γn.
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PROPOSITION 7.6. For every ε > 0, there exists a strictly positive constant D
such that for every integer n large enough, there exists a deterministic sequence
((π+

i,n, π
−
i,n))i∈N of pairs of paths such that:

(i) For all i ∈ N, (π+
i,n, π

−
i,n) satisfies the first two points of the definition of the

feasible pair;
(ii) If i �= j then (π+

i,n ∪ π−
i,n) and (π+

j,n ∪ π−
j,n) are edge-disjoint;

(iii)
∑

i∈N P ((π+
i,n, π

−
i,n) is a feasible pair for γn and t (0, n) ≤ n(µ+ε)) ≥ Dn.

Let us prove first that Theorem 1.2 is a consequence of this proposition. We
delay the proof of Proposition 7.6 to the next section.

PROOF OF THE COMPARISON THEOREM 1.2 FROM PROPOSITION 7.6.
Let F and F̃ be two distributions on R

+ satisfying the hypotheses given at the
beginning of this section. Suppose that Proposition 7.6 is proved. Let γn be the
t-optimal path between 0 and n. Consider the family ((π+

i,n, π
−
i,n))i∈N of feasible

pairs given by Proposition 7.6. Replace, if (π+
i,n, π

−
i,n) is advantageous, the portion

π+
i,n of γn by π−

i,n. This gives a new path γ−
n between 0 and n, thanks to the fact

that π+
i,n and π−

i,n have the same extremities. The distinct modifications along γn
are compatible as two distinct feasible pairs given by Proposition 7.6 are edge-
disjoint. Thus

t̂ (γn) − t̂ (γ−
n ) = ∑

i∈N

( ∑
e∈π+

i,n

t̂ (e)− ∑
e∈π−

i,n

t̂ (e)

)
1{(π+

i,n,π
−
i,n) is advantageous for γn}

= ∑
i∈N

( ∑
e∈π+

i,n

t̃ (e)− ∑
e∈π−

i,n

t (e)

)
1{(π+

i,n,π
−
i,n) is advantageous for γn}

by definition of t̂ and of “advantageous,”(39)

≥ ∑
i∈N

( ∑
e∈π+

i,n

(t (e) + s) − ∑
e∈π−

i,n

t (e)

)
1{(π+

i,n,π
−
i,n) is advantageous for γn}

by definition of “advantageous,”

≥ η
∑
i∈N

1{(π+
i,n,π

−
i,n) is advantageous for γn} by (36).

By conditioning with respect to G, we get

ť (0, n) = ť (γ̌n) ≤ ť (γ−
n ) = E(t̂(γ−

n )|G) by definition of γ̌n,

≤ E

(
t̂ (γn)− η

∑
i

1{(π+
n,i ,π

−
n,i) is advantageous for γn}

∣∣∣∣∣G
)

by (39),
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≤ ∑
e∈γn

E(t̂(e)|G)− η
∑
i

E
(
1{(π+

n,i,π
−
n,i ) is advantageous for γn}

∣∣∣G).
But E(t̂(e)|G) = E(t̂(e)|t (e)) because of the independence property of the distinct
edges; E(t̂(e)|t (e)) ≤ t (e) by the coupling given in Lemma 6.1, and by bounding
the right-hand side with Lemma 7.5, we get

ť (0, n) ≤ ∑
e∈γn

t (e) − ηqk

22k+2

∑
i

1{(π+
n,i,π

−
n,i ) is feasible for γn}

= t (0, n)− ηqk

22k+2

∑
i

1{(π+
n,i,π

−
n,i ) is feasible for γn}.

(40)

It is not possible here to take expectations as t is not supposed to have
finite mean. But we are going to see that the sum in the right-hand side is
greater than D′n, for a well-chosen D′, on an event with a large enough
probability. Let ε > 0 be small enough to have Proposition 7.6. Set �n,i =
{(π+

n,i, π
−
n,i) is feasible for γn}. Proposition 7.6 gives the existence of D > 0 such

that for n large enough,

Dn ≤ ∑
i

P
(
�n,i and t (0, n) ≤ n(µ+ ε)

)

and let D′ > 0 be such that D′ < min{D,(µ+ε)/k} (remember that k is the length
of the first path in the definition of an advantageous pair). Set �n = {∑i 1�n,i

≥
D′n}. Then

Dn ≤ ∑
i

P
(
�n,i and t (0, n) ≤ n(µ + ε)

)

= E

(
1t (0,n)≤n(µ+ε)

∑
i

1�n,i

)

= E

((
1t (0,n)≤n(µ+ε)

∑
i

1�n,i

)
1�n +

(
1t (0,n)≤n(µ+ε)

∑
i

1�n,i

)
1?�n

)
.

(41)

On ?�n, the complementary event of �n,
∑

i 1�n,i
≤ D′n, and on �n, using that

t (0, n) ≤ n(µ+ε), we can bound the number of feasible pairs with disjoint support
in γn by n(µ+ε)/k. It is to obtain this upper bound that we add, in Proposition 7.6,
the condition t (0, n) ≤ n(µ+ ε). Indeed, if t has not finite mean, it is not possible
to obtain estimates of the type P (t (0, n) ≤ n(µ+ ε)) ≤ A exp(−Bn), which could
enable us to omit the complementary event in the passage to the limit. We thus get

Dn ≤ n(µ + ε)

k
P (�n) + D′n

(
1 − P (�n)

) ⇔

P (�n) ≥ D − D′

(µ + ε)/k − D′ = D′′ > 0.
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Now choose ε′ > 0 and D′′′ > 0 such that

ε′ <D′ηqk/22k+3 and D′′′ <D′′/2,(42)

and take n large enough for Proposition 7.6 to hold and to have

max
{
P

(∣∣∣∣ ť (0, n)n
− µ̌

∣∣∣∣ ≥ ε′
)
,P

(∣∣∣∣ t (0, n)n
− µ

∣∣∣∣≥ ε′
)}

≤ D′′′,

which is possible by (1). Then

P

(
ť (0, n)

n
≥ µ̌− ε′ and

t (0, n)

n
≤ µ+ ε′

)
≥ 1 − 2D′′′ > 1 − D′′ ≥ P (�\�n).

So there exists a set �′
n, with strictly positive probability, such that on �′

n, we have

ť (0, n)

n
≥ µ̌− ε′, t (0, n)

n
≤ µ + ε′ and

∑
i

1�n,i
≥ D′n.

Put this in (40), and on �′
n get

µ̌ − ε′ ≤ ť (0, n)

n
≤ t (0, n)

n
− ηqk

22k+2n

∑
i

1{(π+
i ,π−

i ) is feasible for γn} by (40)

≤ µ + ε′ − ηqkD′

22k+2 .

This means that µ̌ ≤ µ + 2ε′ − ηqkD′
22k+2 . The choice (42) for ε′ finally gives the re-

sult. �

8. Existence of feasible pairs and proof of Proposition 7.6. The idea of the
proof is to use once again a renormalization process. Theorem 1.4 ensures that on
the event {t (0, n) ≤ n(µ + ε1)}, a large enough proportion of the main crossings
of the t-optimal path γn between 0 and n must get out of their box between the
two percolation cones. A renormalization process based on Proposition 7.6 gives
then that with a probability that tends to 1 when n goes to infinity, the path γn has
a number of main crossings (ai, bi) such that

t (ai, bi) ≥ (1 + δ)‖bi − ai‖1

that is proportional to n. The exceeding amount of time δ‖bi − ai‖1 enables
us to construct, with positive probability, a feasible pair in the crossed box for
a copy t∗ of t . We will restrict ourselves to prove Proposition 7.6 under the
additional hypothesis “the support of F is not bound.” This case is easier, and
the other case can also be proved in the same manner, as in [17]. Let F and F̃ be
two distributions satisfying the hypotheses given at the beginning of the previous
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section, and suppose that the support of F is not bound. Choose parameters ε1, ε,
ρ1 and ρ2 as follows:

µ+ ε1 <
1

βp

,(43)

0 < ε < ε1,(44)

1 > ρ1 >
µ + ε

µ + ε1
,(45)

0 < ρ2 <
ρ1(µ+ ε1) − (µ + ε)

ρ1(ε1 + ε)
.(46)

The first inequality is possible by Theorem 1.4, and the other choices are enabled
by the previous ones.

Step 1 (Renormalization). For each N ∈ N
∗, consider the renormalization grid

induced by the N -cubes {CN(k) = Nk + CN,k ∈ Z
2} with CN = [−1/2,N −

1/2]2. Choose a sequence (ν(N))N∈N such that

lim
N→+∞P

( ∑
e∈B1

N(0)

t (e) ≥ ν(N)

)
= 0.(47)

We give to each N -box Bi
N(k) a random color depending on a parameter δ > 0

that will be chosen later.

DEFINITION 8.1. The box B1
N(k), with k ∈ Z

2, is said to be black if and only
if it satisfies the three following properties:

(C1) ∀y ∈ ∂inB
1
N(k), ∀ z ∈ ∂outB

1
N(k), ∀ path γ from y to z, included in B1

N(k),
t (γ ) ≤ N(µ+ ε1) ⇒ t (γ ) ≥ (1 + δ)‖z − y‖1.

(C2) ∀y ∈ ∂inB
1
N(k), ∀ z ∈ ∂outB

1
N(k), ∀ path γ from y to z, included in B1

N(k),
t (γ ) ≥ N(µ− ε).

(C3)
∑

e∈B1
N(k) t (e) ≤ ν(N).

It is said to be white otherwise. This definition is extended to other boxes by
rotations. A N -cube CN(k), with k ∈ Z

2, is said to be black if the four boxes Bj
N(k)

with j ∈ {1,2,3,4} that surround it in DN(k) are black, and white otherwise.

REMARK. If an optimal path between 0 and n crosses a black N -box in
a “typical time,” that is, a time less than N(µ + ε1), then under (C1) it cannot
do it by using an oriented path only made of edges with passage time 1.

We will see that the number of N -boxes crossed by such a path in a typical
time is, with high probability, proportional to n. Let us verify that this coloring
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satisfies the conditions of renormalization Lemma 2.2. It is clear that the colors
of the different cubes are identically distributed, and that the color of CN(k) only
depends on the passage times of the edges in DN(k). Let us now estimate the
probability pN(δ) for CN(0) to be white, and prove that

∃ δ > 0 such that lim
N→+∞pN(δ) = 0.(48)

It is clear that pN(δ) ≤ 4P (B1
N(0) is white) and that the probability for B1

N(0)
to be white is bounded by the sum of the probabilities for each condition (C1), (C2)
and (C3) to fail. The probability for (C3) to fail tends to 0 when N goes to infinity
because of the choice (47) we made for the sequence (νN)N∈N. The probability
for (C2) to fail is bounded by (3N + 1)P (b(N) ≤ N(µ − ε)), where b(N) is
the first time when the plane x = N is reached by the first passage percolation
model starting at 0. A classical large deviation result (see [10]) ensures now that
P (b(N) ≤ N(µ − ε)) decreases exponentially in N , and so P ((C2) fails) tends
to 0 when N goes to infinity.

Let us now consider δ > 0:

P
(
(C1) fails

) ≤ ∑
y∈∂inB

1
N(0)

∑
z∈∂outB

1
N(0),

‖z−y‖1≤(µ+ε1)N

P
(
t (y, z) ≤ (1 + δ)‖z − y‖1

)

≤ 2(3N + 1)
∑

z∈{N}×[0,...,(µ+ε1−1)N]
P
(
t (0, z) ≤ (1 + δ)‖z‖1

)
.

Denote by (x, y) the coordinates of such a point z, then x = N and y ∈
[0, . . . , (µ+ ε1 − 1)N ]. So 0 ≤ y/x ≤ µ+ ε1 − 1. The choice (43) for ε1 gives the
existence of ε2 > 0 such that

µ + ε1 − 1 <
1 − βp − ε2

βp + ε2
.

Proposition 3.1 applied with ε2 gives us the existence of three positive constants
A, B and δ such that P ((C1) fails) ≤ 2(3N +1)((µ+ε1 −1)N +1)A exp(−BN).
By choosing such a δ, we prove (48).

Choose now δ > 0 satisfying (48). We can then apply the renormalization
lemma with parameter ρ1 we took in (45). Let N be large enough to have (8)
with positive A and B . By increasing N if necessary, we can suppose that

N ≥ k + 2 and N ≥ k sup I0

δ
.(49)

For each n, let γn be the t-optimal path between 0 and (n,0), and let σn =
(k1, . . . , kτn) be the sequence of its main cubes, as defined in Section 2. Denote
by An the event that among these τn main cubes, at most ρ1τn cubes are black.
With Lemma 2.2 we have

P (An) ≤ A exp(−Bn).(50)



1034 R. MARCHAND

Step 2 (Evaluation of the number of good crossings). To each of the τn main
cubes of γn, with the possible exception of the last seven, a main crossing is
associated. Define now the good and bad cubes:

DEFINITION 8.2. An N -cube is said to be good for the path γ if and only if it
is a main cube of γ , it is black and the passage time of the main crossing associated
to it is less than N(µ+ ε1); it is said to be bad otherwise.

For every i in I = [1, . . . , τn − 7], denote by γ i
n the main crossing associated to

the main cube CN(ki) and set

I g
n = {

i ∈ I,CN(ki) is good for γn
}
,(51)

I b
n = {

i ∈ I,CN(ki) is black and bad for γn
}
.(52)

Note that if i ∈ I
g
n , then CN(ki) is black and so t (γ i

n) ≥ N(µ − ε), and that if
i ∈ I b

n , then CN(ki) is black and bad for γn and so t (γ i
n) ≥ N(µ+ ε1). Define ?An

as the complementary event of An introduced at the previous step and

Bn = {
t (γn) ≤ n(µ+ ε)

}
and βn = number of good cubes for γn

number of black main cubes for γn
.

Then we can estimate the number of good cubes of a path.

LEMMA 8.3. For every n large enough, on ?An∩Bn, the optimal path γn has
at least ρ1ρ2τn good cubes.

PROOF. We have the following inequalities in time:

n(µ+ ε) ≥ t (γn)

≥ ∑
i∈I

g
n

t (γ i
n) + ∑

i∈Ib
n

t (γ i
n)

≥ βn(ρ1τn − 7)(µ− ε)N + (1 − βn)(ρ1τn − 7)(µ+ ε1)N.

Remembering that τn ≥ n
N

, we get βn ≥ 1
ε1+ε

(µ + ε1 − 1
ρ1−7N/n

(µ + ε)). This

quantity tends, as n goes to +∞, to ρ1(µ+ε1)−(µ+ε)
ρ1(ε1+ε)

. Thus for n large enough, with
the choice (46) we made for ρ2, we have βn ≥ ρ2. So on ?An ∩ Bn, the path γn
has at least ρ1ρ2τn good cubes. �

LEMMA 8.4. There exists a constant D′ > 0 such that for n large enough,
there exists a deterministic family Bn of disjoint N -boxes such that

∑
B∈Bn

P

(
t (0, n) ≤ n(µ + ε), B is black,

γn crosses B in a time less than N(µ+ ε1)

)
≥ D′n.
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PROOF. We can find six families of boxes (Bi )1≤i≤6 such that each N -box is
in one and only one family and such that two boxes in the same family are disjoint.
The previous lemma can be written in the following manner:( ∑

1≤i≤6

∑
B∈Bi

1{B is black}1{γn crosses B in a time less than N(µ+ε1)}1Bn

)
1?An

≥ ρ1ρ2τn1?An1Bn.

Take expectations and use the fact that τn ≤ n
N

,

∑
1≤i≤6

∑
B∈Bi

P

(
t (0, n) ≤ n(µ+ ε),B is black,

γn crosses B in a time less than N(µ+ ε1)

)

≥ ρ1ρ2
n

N
P (?An ∩ Bn).

Equation (50) ensures that P (?An) tends to 1 and equation (1) that P (Bn) tends
to 1 as n goes to infinity. This implies, for n large enough, the existence of a family
Bn = Bi0 satisfying the conditions of the lemma with D′ = ρ1ρ2

12N . �

Step 3 (Construction of feasible pairs along good crossings). Let n be large
enough and let B be a box in the family given by Lemma 8.4. Suppose that γn
crosses B in a time less than (µ + ε1)N and that this crossing, denoted by γn|B ,
is a main crossing of γn. Denote by y and z the extremities of the restriction γn|B
of the path γn to the box B . We build a pair of paths (π+, π−) in the following
manner (see Figure 5). Suppose that B is a box of the type B1

N(k); this means
there exists h ∈ Z such that z = y + (N,h). Let π be the direct path between y

and z; this means the path composed of the three segment lines: [y, y+(N −1,0)],
[y + (N − 1,0), z − (1,0)] and [z − (1,0), z]. Call π+ the portion of π between
y + (1,0) and y + (k + 1,0). The choice (49) for N ensures that π+ is well
defined as a portion of π . Build then π− as the bypass of π+ composed with

FIG. 5. Construction of a feasible pair.
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the three portions [y + (1,0), y + (1,−1)], [y + (1,−1), y + (k + 1,−1)] and
[y + (k + 1,−1), y + (k + 1,0)]; if y is at the bottom of the box, construct the
bypass π−, by symmetry, above π+ to be sure that it is inside the box. This
construction can be extended by rotation to all boxes. Consider a new family
(t∗(e))e∈E2 of passage time such that for every edge outside B , t∗ is equal to t and
such that for every e in B , t∗(e) is an independent copy of t (e) and is independent
of all the other passage times. For every n, denote by γ ∗

n the t∗-optimal path
between 0 and n. Set

?1 =
{

t (0, n) ≤ n(µ+ ε), B is black,
γn crosses B in a time less than (µ+ ε1)N

}
,

?2 = {∀ e ∈ π+ ∪ π−, t∗(e) ∈ I0
}
,

?3 = {∀ e ∈ π\π+, t∗(e) = 1
}
,

?4 = {∀ e ∈ B\(π ∪ π−), t∗(e) ≥ ν(N)
}
,

? = ⋂
1≤i≤4

?i.

By construction of t∗ and the choice (34) for I0, there exists a constant κ > 0
depending only on N , and in particular independent of n, of B in Bn and of the
positions of the extremities y and z of γn|B , such that

P (?2 ∩ ?3 ∩ ?4|t (e), e ∈ E2) ≥ κ.(53)

We can now prove the following.

LEMMA 8.5. Let B be a box in Bn, then

P


B contains a feasible

pair for γn and
t (0, n) ≤ n(µ+ ε)


≥ κP


 B is black, γn crosses B

in a time less than (µ + ε1)N,

and t (0, n) ≤ n(µ+ ε)


 .

PROOF. We are going to show in fact that on ?, the pair (π+, π−) is feasible
for γ ∗

n and t∗(0, n) ≤ n(µ + ε). Let us first prove that on ?, the t∗-passage time
between 0 and n is strictly smaller than the t-passage time. Denote by γ+

n the
path obtained by replacing in γn the crossing γn|B of the box B by the path π . By
definition of the coloring and of a good cube for γn, t (γn|B) ≥ (1 + δ)‖z−y‖1. By
construction of π and definition of ?2 and ?3, t∗(π) ≤ ‖z − y‖1 + k sup I0. Thus

t (γn) − t∗(γ+
n ) = t (γn|B)− t∗(π)

≥ (1 + δ)‖z − y‖1 − ‖z − y‖1 − k supI0

≥ δN − k supI0 > 0 by our choice (49) for N.
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But t∗(0, n) ≤ t∗(γ+
n ) and so t∗(0, n) < t(γn) = t (0, n). Note that this implies in

particular that on ?, t∗(0, n) ≤ n(µ+ ε). Let us show now that on ?, the path π is
a portion of γ ∗

n ; this will imply that the pair (π+, π−) is feasible for γ ∗
n . As t and t∗

are equal outside B and as t∗(0, n) < t(0, n), γ ∗
n must use at least one edge in B .

But on ?1 ∩ ?4, for every path γ using an edge f in B \ (π ∪ π−), t∗(γ ) > t(π),
because t (f ) is already bigger, by the coloring and the choice (47) we made for
(νN)N∈N, than t (π). The optimal path γ ∗

n can then only use edges in π ∪ π−, and
thus enter B by y and leave it by z, or conversely. By the choice (36) we made
for I0, we have moreover that∑

e∈π+
t∗(e) <

∑
e∈π−

t∗(e)

and thus π+ is a portion of γ ∗
n . So on ?, (π+, π−) is feasible for γ ∗

n . But now,

P

(
B contains a feasible pair

for γn, and t (0, n) ≤ n(µ+ ε)

)
= P

(
B contains a feasible pair

for γ ∗
n , and t∗(0, n) ≤ n(µ+ ε)

)

≥ P (?) = κP (?1) by the previous lemma.

This ends the proof of Lemma 8.5. �

Last step (End of proof). Let n be large enough. Let us arrange the boxes of Bn

in a sequence (Bn,i)i . There exists only a finite number m, depending on the size
N of the box, of possible configurations for a feasible pair (π+, π−) in a box B .
So for every box Bn,i , we can choose a pair (π+

n,i, π
−
n,i) such that

P

(
(π+

n,i, π
−
n,i) is feasible for γn

and t (0, n) ≤ n(µ+ ε)

)
≥ 1

m
P

(
Bn,i contains a feasible pair

for γn and t (0, n) ≤ n(µ+ ε)

)
.

Let us then verify that the family ((π+
n,i , π

−
n,i))i∈N satisfy the conditions of

Proposition 7.6. The two first points are trivial by the construction of Bn and
by the choice of ((π+

n,i, π
−
n,i))i∈N. Let us check the third point: using Lemmas 8.5

and 8.4, we get

∑
i

P


 (π+

n,i, π
−
n,i) is feasible

for γn and
t (0, n) ≤ n(µ+ ε)


 ≥ 1

m

∑
i

P


Bn,i contains a feasible

pair for γn
and t (0, n) ≤ n(µ+ ε)




≥ κ

m

∑
i

P


 Bn,i is black, γn crosses Bn,i

in a time less than (µ + ε1)N,

and t (0, n) ≤ n(µ+ ε)




≥ κD′n
m

.

This ends the proof of Proposition 7.6. �
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