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THE SHAPE THEOREM FOR THE FROG MODEL

BY O. S. M. ALVES,1 F. P. MACHADO2 AND S. YU. POPOV3

Federal University of Goias, University of São Paulo and University of São Paulo

We prove a shape theorem for a growing set of simple random walks
on Zd , known as the frog model. The dynamics of this process is described as
follows: There are active particles, which perform independent discrete time
SRWs, and sleeping particles, which do not move. When a sleeping particle
is hit by an active particle, it becomes active too. At time 0 all particles
are sleeping, except for that placed at the origin. We prove that the set of
the original positions of all active particles, rescaled by the elapsed time,
converges to some compact convex set.

1. Introduction and results. We study a discrete time particle system on Zd

named frog model. In this model, particles thought of as frogs move as independent
simple random walks (SRWs) on Zd . At time 0 there is one particle at each site
of the lattice and all the particles are sleeping except for the one at the origin.
The only active particle starts to perform a discrete time SRW. From then on
when an active particle jumps on a sleeping particle, the latter wakes up and starts
jumping independently, also performing a SRW. The number of active particles
grows to infinity as active particles jump on sites that have not been visited before,
awakening the particles that are sitting there. Let us underline that the active
particles do not interact with each other and there is no “one-particle-per-site”
rule.

This model is a modification of a model for information spreading that the
authors learned from K. Ravishankar. The idea is that every active particle has
some information and it shares that information with a sleeping particle at the time
the former jumps on the latter. Particles that have the information move freely,
helping in the process of spreading the information. The model that we deal with
in this paper is a discrete-time version of that proposed by R. Durrett [(1996),
private communication], who also suggested the term “frog model.”

To the best of our knowledge, the first published result on this model is due
to Telcs and Wormald (1999), where it was referred to as the “egg model.” They
proved that, starting from the initial configuration defined above, the origin will be
visited infinitely often a.s. Popov (2001) proved that the same is true in dimension
d ≥ 3 for the initial configuration with a sleeping particle (or “egg”) at each x �= 0
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with probability α/‖x‖2, α being a large positive constant. Recently A. Ramirez
and V. Sidoravicius communicated to us that they are working on a continuous-
time analog of this model and that they have proved some results such as shape
theorem and convergence to the product of Poissons.

We now define the process in a formal way. Let {(Sxn)n∈N, x ∈ Zd} be
independent SRWs such that Sx0 = x for all x ∈ Zd . For the sake of cleanness
let Sn := S0

n . These sequences of random variables give the trajectory of the
particle placed originally at site x, starting to move at the time it wakes up. Let
t (x, z)= min{n :Sxn = z}, remembering that if d ≥ 3, then P[t (x, z)= ∞] > 0. For
technical reasons, besides the process which starts from the initial configuration
defined above, we need also to introduce the processes starting from one active
particle in x and sleeping particles elsewhere, x ∈ Zd . Define by

T (x, z)= inf

{
k∑

i=1

t (xi−1, xi) :x = x0, x1, . . . , xk = z for some k

}
(1.1)

the passage time from x to z for the frog model. It means that, if the process starts
from just one active particle sitting at site x, in the sense that initially that particle
is the only active one, then T (x, z) is the time it takes to awaken the particle at
site z. Note that the particle which awakens z need not be that from x.

Now, let Zx
y (n) be the location (at time n) of the particle that started from site y

in the process in which the only active particle at time zero was at site x. Formally,
we have Zx

x (n)= Sxn , and

Zx
y (n)=

{
y, if T (x, y)≥ n,
S
y
n−T (x,y), if T (x, y) < n.

Since every random variable of the form Zx
y (n) is constructed using the same

realization of the random variables {(Sxn)n∈N, x ∈ Zd}, this defines a coupling
of processes {Zx, x ∈ Zd}, where Zx := {Zx

y (n) :y ∈ Zd, n ∈ N}. The idea is
that as soon as a particle becomes active, it follows the same trajectory in all the
processes Zx .

With the help of these variables we define the sites whose originally sleeping
particles have been awakened by time n, provided that initially the only active
particle was in x, namely

ξxn = {
y ∈ Zd :T (x, y) ≤ n

}
.

We are mostly concerned with ξn := ξ0
n and its asymptotic behavior. In order to

analyse that behavior, we define

ξ̄ xn = {
y + (−1/2,1/2]d :y ∈ ξxn

} ⊂ Rd,

and ξ̄n := ξ̄0
n .

The main result of this paper is the following.
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THEOREM 1.1. For any dimension d ≥ 1 there is a nonempty convex set
A = A(d)⊂ Rd such that, for any 0 < ε < 1,

(1 − ε)A ⊂ ξ̄n

n
⊂ (1 + ε)A

for all n large enough a.s.

Note that, although Theorem 1.1 establishes the existence of the asymptotic
shape A, it is difficult to identify this shape exactly. Of course, A is symmetric, the
origin belongs to the interior of A, and A ⊂ D , where

D = {
x = (x(1), . . . , x(d)) ∈ Rd : |x(1)| + · · · + |x(d)| ≤ 1

}
.

Also, note that if the initial configuration is augmented (i.e., some new particles are
added), then the asymptotic shape (when it exists) augments as well. We are going
to show that if the initial configuration is rich enough, then the limiting shape A
may contain some pieces of the boundary of D (a “flat edge” result).

To formulate that result, we need some additional notation. For d ≥ 2 and
1 ≤ i < j ≤ d let

�ij = {
x = (x(1), . . . , x(d)) ∈ Rd :x(k) = 0 for k �= i, j

}
,

and for 0 < β < 1/2 let

�
β
ij = {

x = (x(1), . . . , x(d)) ∈ �ij : |x(i)| + |x(j)| = 1,min{|x(i)|, |x(j)|} ≥ β
}
.

Define �β to be the convex hull of (�β
ij )1≤i<j≤d . Denote by Am the asymptotic

shape in the frog model when the initial configuration is such that any site x ∈ Zd

contains exactly m particles. The existence of Am for arbitrary m can be derived in
just the same way as in the case m= 1 (Theorem 1.1).

THEOREM 1.2. For each d ≥ 2 there exists m0 = m0(d) such that for all
m≥ m0 there exists 0 < β < 1/2 such that �β ⊂ Am.

The paper is organized in the following way. Section 2 contains some well-
known results about large deviations and SRW on Zd . We need these results later
in the course of the proof of Theorem 1.1. In Section 3 we apply the subadditive
ergodic theorem to our model, and the rest of the proof of the shape theorem is
given in Section 4. Besides that, in Section 4 we prove the “flat edge” result.

2. Basic facts. Along this section we state some facts about large deviations
and random walks which we need in order to prove our results. As usual,
C,C1,C2, . . . stand for positive finite constants. For what follows we use these
constants freely. Also, �x� stands for the largest integer which is less than or equal
to x, while �x� is the smallest integer which is greater than or equal to x.

The following large deviation result is an immediate consequence of Theo-
rem 1.1, page 748 of Nagaev (1979).
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LEMMA 2.1. Let {Xi, i ≥ 1} be i.i.d. positive random variables such that
there are C1 > 0 and 0 < α < 1 such that for all n,

P[Xi ≥ n] ≤ C1 exp{−nα}.(2.1)

Then there exist a > 0, 0 < β < 1 and C2 > 0 such that for all n,

P

[
n∑

i=1

Xi ≥ an

]
≤ C2 exp{−nβ}.

Let

RB
n = {

SB
i : 0 ≤ i ≤ n

} = {
y ∈ Zd : t (x, y)≤ n for some x ∈ B

}
be the set of distinct sites visited by the family of SRWs starting from the set of
sites B, up to time n. Some authors refer to R0

n as the range of SRW. As usual, |RB
n |

stands for the cardinality of RB
n . A useful basic fact is that |RB

n | ≤ (n+ 1)|B|.

THEOREM 2.1 [See, e.g., Hughes (1995), pages 333, 338].

(i) If d = 2 then there is a2 > 0 such that

lim
n→∞

E|R0
n|

n/ logn
= a2.(2.2)

(ii) If d ≥ 3 then there is a3 := a3(d) > 0 such that

lim
n→∞

E|R0
n|

n
= a3.(2.3)

Let pn(x) = P[Sn = x] and ‖x‖ be the Euclidean norm. From Section 3
onward we also work with the norm ‖x‖1 = ‖(x(1), . . . , x(d))‖1 = ∑d

i=1 |x(i)|.
Let Gn(x) := ∑n

j=0 pj (x) be the mean number of visits to site x up to time n

and G(x) := G∞(x). These are the well-known Green’s functions. Let q(n, x) =
P[t (0, x)≤ n].

THEOREM 2.2. (i) If d = 2, x �= 0 and n ≥ ‖x‖2, then there exists C2 > 0
such that

q(n, x)≥ C2

log‖x‖ .(2.4)

(ii) Suppose that d ≥ 3, x �= 0 and n ≥ ‖x‖2. Then there exists C3 = C3(d) > 0
such that

q(n, x)≥ C3

‖x‖d−2
.(2.5)
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PROOF. Suppose without loss of generality that ‖x‖2 ≤ n ≤ ‖x‖2 + 1.
Observe that

Gn(x) =
n∑

j=0

pj (x)=
n∑

j=0

j∑
k=0

pk(0)P[t (0, x)= j − k]

=
n∑

k=0

pk(0)q(n− k, x)≤ q(n, x)Gn(0).

So

q(n, x)≥ Gn(x)

Gn(0)
≥




∑n
j=�n/2� pj (x)∑n
j=0 pj (0)

, d = 2,

(
G(0)

)−1 ∑n
j=�n/2� pj (x), d ≥ 3.

Using Theorem 1.2.1 of Lawler (1991), after some elementary computations we
finish the proof. �

3. Subadditive ergodic theorem. The basic tools for proving shape theorems
are the subadditive ergodic theorems. Next we state a result of Liggett (1985),
which is an improved version of Kingman’s subadditive ergodic theorem [cf.
Kingman (1973)].

THEOREM 3.1. Suppose that {Y (m,n)} is a collection of positive random
variables indexed by integers satisfying 0 ≤ m< n such that:

(i) Y (0, n)≤ Y (0,m)+ Y (m,n) for all 0 ≤ m< n (subadditivity).
(ii) The joint distribution of {Y (m+ 1,m+ k + 1), k ≥ 1} is the same as that

of {Y (m,m+ k), k ≥ 1} for each m≥ 0.
(iii) For each k ≥ 1 the sequence of random variables {Y (nk, (n+ 1)k), n≥ 1}

is a stationary ergodic process.
(iv) EY (0,1) <∞.

Then

lim
n→∞

Y (0, n)

n
→ γ a.s.,

where

γ = inf
n≥0

EY (0, n)
n

.

In the sequel we show that the hypotheses of Theorem 3.1 hold for Y (m,n) :=
T (mx,nx), for each fixed x ∈ Zd .
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First of all observe that the set of variables {T (x, y) :x, y ∈ Zd} defined in
Section 1 is subadditive in the sense that

T (x, z)≤ T (x, y)+ T (y, z)(3.1)

for all x, y, z ∈ Zd and all the realizations of the random variables Sxn . Indeed,
if site z is reached before site y, then (3.1) is evident. If that does not happen,
recall that the random variables T (y, z), y, z ∈ Zd are constructed using the same
collection of the random variables Sxn ; that is, each particle follows the same
trajectory as soon as it wakes up. So the process departing from only site y

awakened [the one which gives the passage time T (y, z)] is coupled with the
original process (i.e., that started from x), and for the latter one may have other
particles awakened at time T (x, y) besides that from y. Consequently, from (1.1)
it follows that T (x, z) − T (x, y), which is the remaining time to reach site z for
the original process, is less than or equal to T (y, z), thus proving (3.1).

The second hypothesis, as well as the fact that for fixed x ∈ Zd and k ∈ N

the sequence {T ((n − 1)kx,nkx), n ≥ 1} is stationary, immediately follow
from the definition. Ergodicity holds because the sequence of random variables
{T ((n − 1)kx,nkx), n ≥ 1} is strongly mixing. That can be checked easily
because the events {T (n1kx, (n1 + 1)kx) = a} and {T (n2kx, (n2 + 1)kx) = b}
are independent provided that a + b < ‖(n1 − n2)kx‖1.

It is simple to see that the fourth hypothesis holds when d = 1. To see that
remember that for τ = the first return to the origin of a SRW, we can assure that
P[τ > t] ≤ Ct−1/2. Besides that, in a random time with exponential tail we will
have at least three awakened particles jumping independently in the frog model.
Combining these two facts we have that ET (0,1) < ∞. So, for d = 1 one gets
T (0, n)/n → γ a.s., and consequently we have the proof of Theorem 1.1 with
A = [−γ−1, γ−1] in dimension 1. Thus, from now on we assume that d ≥ 2.

To take care of the fourth hypothesis in dimension d ≥ 2, we need the following
result.

THEOREM 3.2. For all d ≥ 2 and x0 ∈ Zd there exist positive finite constants
C =C(x0, d) and β = β(d) such that

P[T (0, x0)≥ n] ≤C exp{−nβ}
for all n.

PROOF. We begin by considering the case d ≥ 3. Pick n ≥ ‖x0‖2. Fix some
0 < ε < 1 (to be chosen later). Denote for 1 ≤ i ≤ �d/2�,

Di,ε := {
x ∈ Zd :‖x‖ ≤ in1/2+ε

}
,

and define the event

A1 :=A1(n, ε) := {|R0
n ∩ D1,ε| ≥ r1n

1−ε
}
,(3.2)

where r1 = r1(d) is a positive constant to be chosen later.
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LEMMA 3.1. For any d ≥ 3 the number r1 can be chosen in such a way that
for some positive constants α1, α

′
1 and all n we have

P[A1] ≥ 1 − α1 exp{−α′
1n

ε}.(3.3)

PROOF. By Theorem 2.1 and the fact that for any random variable X with
0 ≤ X ≤ a a.s. and EX ≥ b it is true that P[X ≥ b/2] ≥ b/(2a), it follows that for
some r1,C1 > 0,

P[|R0
k| ≥ r1k] ≥ C1.(3.4)

Let

A′
1 :=A′

1(n, ε) := {|R0
n| ≥ r1n

1−ε
}
.

Divide the time interval [0, n] into (roughly speaking) nε disjoint intervals of
size n1−ε. For each subinterval of size n1−ε, the cardinality of the corresponding
subrange does not depend on the cardinalities of other subranges, so using (3.4)
with k = n1−ε one gets that

P[A′
1] ≥ 1 − (1 −C1)

nε .(3.5)

Consider the event

B = B(n, ε)=
{

sup
0≤i≤n

‖S0
i ‖ < n1/2+ε

}

and observe that by Lemma 1.5.1 of Lawler (1991) there is C2 such that

P[Bc] ≤C2 exp{−nε}.(3.6)

Combining (3.5) and (3.6), we get (3.3). �

Now consider the finite sequence of times

n1 := n, n2 := n+ 9n1+2ε, . . . , n�d/2� := n+ n1+2ε
�d/2�∑
j=2

(2j − 1)2.

Define the random sets

G̃1 = {x ∈ D1,ε : t (0, x) ≤ n1}
and, for k = 2, . . . , �d/2�,

G̃k = {x ∈ Dk,ε \ Dk−1,ε : there exists y ∈ G̃k−1 such that t (y, x)≤ nk − nk−1}.
For k = 2, . . . , �d/2� define the events

Ak =Ak(n, ε)= {|G̃k| ≥ rkn
k},

where the numbers rk = rk(d), k = 2, . . . , �d/2�, will be chosen later. Define also

ε(k) :=
{
ε/2, if k = 1,
ε, if k ≥ 2.
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LEMMA 3.2. Let d ≥ 4. One can choose the numbers ri , i = 2, . . . , �d/2�, in
such a way that for 1 ≤ k ≤ �d/2�−1 we have [with the event A1 defined by (3.2)]

P[Ak+1 |Ak] ≥ 1 − αk exp{−α′
kn

2ε(k)}(3.7)

for some positive constants αk,α′
k and all n. Moreover, for any fixed d ≥ 3 there

exist positive constants α̂0, α̂1, γ1 such that

P[A�d/2�] ≥ 1 − α̂0 exp{−α̂1n
γ1}(3.8)

for all n.

PROOF. Consider the set G̃k and pick from this set rkn2ε(k) disjoint groups
with nk−2ε particles in each group (note that, when Ak happens, there are enough

particles in G̃k to do it). Name these groups G1
k, . . . ,G

rkn
2ε(k)

k . Name their union
Gk ⊂ G̃k . Note that, by definition, the particles from Gk start to move until the
moment nk . Fix i ≤ rkn

2ε(k); for each y in the ring Dk+1,ε \ Dk,ε let ζ (k+1)
i (y) be

the indicator function of the event{
there exists x ∈Gi

k such that t (x, y)≤ nk+1 − nk
}
.

Note that the quantities nk were defined in such a way that if x ∈ Dk,ε, y ∈ Dk+1,ε,
then ‖x − y‖2 ≤ nk+1 − nk = (2k + 1)2n1+2ε. So, using the independence of
random walks starting from Gi

k and Theorem 2.2, we have

E(ζ (k+1)
i (y) |Ak) = P[ζ (k+1)

i (y) = 1 |Ak]
≥ 1 − ∏

x∈Gi
k

(
1 − q

(
(2k + 1)2n1+2ε, y − x

))
(3.9)

≥ 1 −
(

1 − C3

(2k + 1)d−2n(1/2+ε)(d−2)

)nk−2ε

≥ C4

nd/2+dε−(k+1)

(note that d/2 + dε > k + 1 for k ≤ �d/2� − 1). Let

ζ
(k+1)
i = ∑

y∈Dk+1,ε\Dk,ε

ζ k+1
i (y).

Since |Dk+1,ε \ Dk,ε| is of order nd/2+dε , it follows that there exists rk+1 > 0 such
that

E(ζ (k+1)
i |Ak)≥ 2rk+1n

k+1

and, clearly,

ζ
(k+1)
i ≤ nk−2ε × (2k + 1)2n1+2ε = (2k + 1)2nk+1.
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So, again using the fact that for any random variable X with 0 ≤ X ≤ a a.s. and
EX ≥ b it is true that P[X ≥ b/2] ≥ b/(2a), one gets that there is C5 such that

P
[
ζ
(k+1)
i ≥ rk+1n

k+1 | Ak

] ≥ C5 > 0.

Considering now all the rkn
2ε(k) groups and using the fact that the random walks

starting from there are independent, one gets

P[Ac
k+1 |Ak] ≤ (1 −C5)

rkn
2ε(k)

,

which in turn is equivalent to (3.7).
Now, by Lemma 3.1 and using (3.7) together with the following inequality,

P[A�d/2�] ≥ P[A�d/2� |A�d/2�−1] · · ·P[A2 |A1]P[A1],
it follows that (3.8) holds, which concludes the proof of Lemma 3.2. �

Now, suppose first that d ≥ 4. The idea is to consider the particles in G̃�d/2�
(which start moving until the moment n�d/2�) and wait until the moment n�d/2� +
(�d/2�+ 1)2n1+2ε in order to have an overwhelming probability for them to reach
the site x0.

Let

H := {
no particle from G̃�d/2� hits x0 until the time n�d/2� + (�d/2�+ 1)2n1+2ε}.

When the event A�d/2� happens, the number of particles in G̃�d/2� is at least
r�d/2�n�d/2� and they are all at the distance at most (�d/2� + 1)n1/2+ε from x0.
So by using Theorem 2.2 together with the fact that the random walks starting
from G̃�d/2� are independent, we obtain

P
[
T (0, x0) > n�d/2� + (�d/2� + 1)2n1+2ε |A�d/2�

]
≤ P[H |A�d/2�]

≤
(

1 − C8

n(1/2+ε)(d−2)

)r�d/2�n�d/2�

.

Now, choosing ε < 1
2(d−2) , and using the fact that

P
[
T (0, x0) > n�d/2� + (�d/2� + 1)2n1+2ε]

≤ P
[
T (0, x0) > n�d/2� + (�d/2� + 1)2n1+2ε |A�d/2�

] + P[Ac�d/2�]
together with (3.8), we are finished for d ≥ 4.

Analogously, for the case d = 3, with the event H defined as above, we have

P[H |A1] ≤
(

1 − C9

n1/2+ε

)r1n
1−ε

.

By choosing ε < 1/4 and using Lemma 3.1, the result follows for d = 3.
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The case d = 2 is treated quite analogously to the case d = 3. That is, first,
dividing the time interval [0, n] into n1/2 subintervals of size n1/2 (i.e., taking
ε = 1/2) and using (2.2), we prove that with large probability the original particle
will awaken const × n1/2/ logn sleeping particles in the ball of radius n until the
moment n, where n ≥ ‖x0‖2. Considering the independent random walks of those
particles until the time n+4n2 and using Theorem 2.2, we get the result. Thus, the
proof of Theorem 3.2 is complete. �

4. Asymptotic shape. In the previous section it was proved that for all
x ∈ Zd , the collection T (nx,mx), m > n ≥ 0, satisfies the hypotheses of the
subadditive ergodic theorem. Therefore, defining T (x) := T (0, x) for all x ∈ Zd ,
it holds that there exists µ(x)≥ 0 such that

T (nx)

n
→µ(x) a.s., n → ∞.(4.1)

From the fact T (nx)≥ n‖x‖1 it follows that µ(x)≥ ‖x‖1 for all x ∈ Zd .
Let us extend the definition of T (x, y) to the whole Rd × Rd by defining

T (x, y) = min{n :y ∈ ξ̄ x0
n },

where x0 ∈ Zd is such that x ∈ (−1/2,1/2]d + x0. Note that the subadditive
property (3.1) is preserved. The next goal is to show that µ can be extended to
Rd in such a way that (4.1) holds for all x ∈ Rd .

LEMMA 4.1. For all x ∈ Qd ,

T (nx)

n
→ µ(mx)

m
=: µ(x),

where m is the smallest positive integer such that mx ∈ Zd .

PROOF. Let n = km + r , where k, r ∈ N and 0 ≤ r < m. Since T (nx) ≤
T (kmx)+ T (kmx, kmx + rx), it is true that, a.s.,

lim sup
n→∞

T (nx)

n
≤ µ(mx)

m
.(4.2)

Analogously, writing n = (k+1)m− l, one gets T ((k+1)mx)−T (nx, (k+1)mx)

≤ T (nx), which implies that, a.s.,

lim inf
n→∞

T (nx)

n
≥ µ(mx)

m
.(4.3)

Combining (4.2) and (4.3), we complete the proof of Lemma 4.1. �

From the definition of µ it can be easily checked that for any x, y ∈ Qd , α ∈ Q it
holds that µ(x + y)≤ µ(x)+µ(y) and µ(αx)= αµ(x). Note that µ is uniformly
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continuous in Qd (as all the norms in a finite-dimensional space are equivalent),
and therefore it can be continuously extended to Rd in such a way that for all
x ∈ Rd ,

lim
n→∞

T (nx)

n
=µ(x)(4.4)

[the fact that (4.4) still holds can be proved by approximating x by rationals and
using Lemma 4.3 below]. So, it follows that µ is a norm in Rd .

Now, the next step is to assure that ξn grows at least linearly.

LEMMA 4.2. For all x ∈ Zd , d ≥ 2, there are constants 0 < δ0 < 1, C > 0
and 0 < γ < 1, which depend only on the dimension, such that

P
[
T (x) ≥ ‖x‖1

δ0

]
≤ C exp{−‖x‖γ1 }.

PROOF. Let n := ‖x‖1 and 0 = x0, x1, . . . , xn = x be a path connecting the
origin to site x such that for all i, ‖xi − xi−1‖1 = 1; note that ‖xk‖1 = k,
k = 0, . . . , n. Let Yi := T (xi−1, xi). Due to the subadditivity, it is enough to prove
that

P

[
n∑

i=1

Yi ≥ ‖x‖1

δ0

]
≤ C exp{−‖x‖γ1 }.(4.5)

Let

B :=
{
Yi <

√
n

2
, i = 1, . . . , n

}
.

Clearly, by Theorem 3.2 we have

P[B] ≥ 1 −C1n exp{−nγ
′ }(4.6)

for some γ ′ > 0. For i = 1, . . . , �√n� let

σi :=
Mi∑
j=0

Yi+j�√n�,

where

Mi := max{j ∈ N : i + j�√n� ≤ n}.
Observe that, if the event B happens, then each σi is as a sum of independent
identically distributed random variables, since in this situation the variables
{Yi+j�√n� : j = 1, . . . ,Mi} depend on disjoint sets of random walks.

We point out that we cannot guarantee the existence of the moment generating
function of Yi . All we have is a subexponential estimate as in (2.1) (see
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Theorem 3.2). Lemma 2.1 takes care of the situation and allows us to obtain (for
δ0 = 1/a)

P

[
n∑

i=1

Yi >
n

δ0

∣∣∣B
]

≤ P
[{

σ1 ≤ M1

δ0
, . . . , σ�√n� ≤ M�√n�

δ0

}c ∣∣∣B]

≤
�√n�∑
i=1

P
[
σi ≥ Mi

δ0

∣∣∣B]
(4.7)

≤ C2

�√n�∑
i=1

exp{−M
β
i }.

Note that if n is large then for all i ≤ �√n� it holds that Mi = O(
√
n). The result

follows from (4.6) and (4.7). �

For y ∈ Rd and a > 0 denote D(y,a)= {x ∈ Rd :‖x − y‖1 ≤ a}.

LEMMA 4.3. For all d ≥ 2 there exist constants 0 < δ < 1, C > 0, γ0 > 0,
which depend only on the dimension, such that

P[D(0, nδ)⊂ ξ̄n] ≥ 1 −C exp{−nγ0}
for all n.

PROOF. By Lemma 4.2, if x is such that ‖x‖1 = n then we have

P
[
T (x)≥ n

δ0

]
≤C exp{−nγ }.

Now, let y ∈ Zd be such that 0 < ‖y‖1 < n. Then there exists x ∈ Zd such that
‖x‖1 = n and ‖x − y‖1 equals n or n + 1. Suppose that ‖x − y‖1 = n; the other
case is treated similarly. Since T (y)≤ T (x)+T (x, y) and by Lemma 4.2 we have

P
[
T (y)≥ 2n

δ0

]
≤ P

[
T (x) ≥ n

δ0

]
+ P

[
T (x − y) ≥ n

δ0

]
(4.8)

≤ 2C exp{−nγ }.
As the number of points in D(0, nδ) is of order nd , by using (4.8) we complete the
proof of Lemma 4.3. �

Now we are able to complete the proof of the shape theorem for the frog model.

PROOF OF THEOREM 1.1. Let A := {x ∈ Rd :µ(x) ≤ 1}. The following
argument is rather standard [see, e.g., Bramson and Griffeath (1980), Durrett and
Griffeath (1982)]; we keep it to preserve the self-containedness of the paper.
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Let ε′ = (1 − ε)−1 − 1, and ε′′ = 1 − (1 + ε)−1. Clearly, to prove Theorem 1.1,
it is enough to prove that nA ⊂ ξ̄(1+ε′)n and ξ̄(1−ε′′)n ⊂ nA for all n large enough,
a.s.

Since A is compact, there exists a finite set F := {x1, . . . , xk} ⊂ A such that
µ(xi) < 1 for i = 1, . . . , k, and (with δ from Lemma 4.3) A ⊂ ⋃k

i=1 D(xi, ε
′δ).

Note that (4.4) implies that nF ⊂ ξ̄n for all n large enough a.s. Now, Lemma 4.3 and
Borel–Cantelli imply that a.s. for all n large enough we have D(nxi, nε

′δ)⊂ ξ̄
nxi
nε′ ,

for all i = 1,2, . . . , k. So nA ⊂ ξ̄(1+ε′)n and this part of the proof is done.
Now, choose G := {y1, . . . , yk} ⊂ 2A \ A such that 2A \ A ⊂ ⋃k

i=1 D(yi, ε
′′δ).

Notice that µ(yi) > 1 for i = 1, . . . , k. Again, (4.4) implies that nG ∩ ξ̄n = ∅ for
all n large enough a.s. Analogously, by Lemma 4.3 and Borel–Cantelli we get
that for all n large enough, if ξ̄(1−ε′′)n ∩ n(2A \ A) �= ∅, then ξ̄n ∩ nG �= ∅. This
shows that ξ̄(1−ε′′)n ⊂ nA for all n large enough, a.s., and so concludes the proof of
Theorem 1.1. �

PROOF OF THEOREM 1.2. To prove the theorem, it is enough to prove the
following fact: for fixed i, j , there exists β ∈ (0,1/2) such that

�
β
ij ⊂ Am.(4.9)

Indeed, in this case (4.9) holds for all i, j with the same β by symmetry, hence
�β ⊂ Am by virtue of convexity of Am.

Now, the proof of (4.9) is just a straightforward adaptation of the proof of the
“flat edge” result of Durrett and Liggett (1981). To keep the paper self-contained,
let us outline the ideas of the proof. Suppose, without loss of generality, that i = 1,
j = 2, and m is even. We are going to prove that the frog model observed only
on �12 ∩ Zd+ dominates the oriented percolation process in Z2+ with parameter
θ = 1 − (1 − (2d)−1)m/2. To show this, first suppose that initially for any x all the
particles in x are labeled “x→” or “x↑” in such a way that x contains exactly m/2
particles of each label. Define e1, e2 to be the first two coordinate vectors. The
oriented percolation is then defined in the following way. For x ∈�12 ∩ Zd+:

1. The bond from x to x + e1 is open if for the frog model at the moment next to
that of activation of the site x at least one particle labeled “x→” goes to x + e1.

2. The bond from x to x+ e2 is open if at that moment at least one particle labeled
“x↑” goes to x + e2.

Clearly, the two above events are independent, and their probabilities are
exactly θ . So the frog model indeed dominates the oriented percolation in the
following sense: if a site x = (x(1), x(2)) (for the sake of brevity forget the zero
coordinates from 3 to d) belongs to cluster of 0 in the oriented percolation, then
in the frog model the corresponding site is awakened exactly at time x(1) + x(2).
Now it rests only to choose m as large as necessary to make the oriented
percolation supercritical (θ → 1 as m → ∞) and use the result that (conditioned
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on the event that the cluster of 0 is infinite) the intersection of the cluster of 0 with
the line {(x(1), x(2)) :x(1) + x(2) = n} grows linearly in n [cf. Durrett and Liggett
(1981)]. �
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