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Abstract

We obtain new transport-entropy inequalities and, as a by-product, new deviation es-
timates for the laws of two kinds of discrete stochastic approximation schemes. The
first one refers to the law of an Euler like discretization scheme of a diffusion process
at a fixed deterministic date and the second one concerns the law of a stochastic
approximation algorithm at a given time-step. Our results notably improve and com-
plete those obtained in [10]. The key point is to properly quantify the contribution
of the diffusion term to the concentration regime. We also derive a general non-
asymptotic deviation bound for the difference between a function of the trajectory of
a continuous Euler scheme associated to a diffusion process and its mean. Finally,
we obtain non-asymptotic bound for stochastic approximation with averaging of tra-
jectories, in particular we prove that averaging a stochastic approximation algorithm
with a slow decreasing step sequence gives rise to optimal concentration rate.
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1 Introduction

In this work, we derive transport-entropy inequalities and, as a consequence, non-
asymptotic deviation estimates for the laws at a given time step of two kinds of discrete-
time and d-dimensional stochastic evolution scheme of the form

Xn+1 = Xn + γn+1H(n,Xn, Un+1), n ≥ 0, X0 = x ∈ Rd, (1.1)

where (γn)n≥1 is a deterministic positive sequence of time steps, the (Ui)i∈N∗ are i.i.d.
Rq-valued random variables defined on some probability space (Ω,F ,P) with law µ and
the function H : N×Rd×Rq → Rd is a measurable function satisfying for all x ∈ Rd, for
all n ∈ N, H(n, x, .) ∈ L1(µ), and µ(du)-a.s., H(n, ., u) is continuous. Here and below, we
will also assume that µ satisfies a Gaussian concentration property, that is there exists
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Transport-Entropy and deviation for stochastic approximations schemes

β > 0 such that for every real-valued 1-Lipschitz function f defined on Rq and for all
λ ≥ 0:

E[exp(λf(U1))] ≤ exp(λE[f(U1)] +
βλ2

4
). (GC(β))

It is well known that (GC(β)) implies the following deviation bound

P[f(U1)− E[f(U1)] ≥ r] ≤ exp(−r
2

β
) ∀r ≥ 0,

Examples of random variables satisfying this property include Gaussians, as well as
bounded random variables. A characterization of (GC(β)) due to Djellout, Guillin and
Wu [8] is given by Gaussian tail of U1, that is there exists ε > 0 such that E[exp(ε|U1|2)] <

+∞, see also Bolley and Villani [6] for another proof with a simple link between the
involved constants. The two claims are actually equivalent.

We are interested in furthering the discussion, initiated in [10], about giving non
asymptotic deviation bounds for two specific problems related to evolution schemes
of the form (1.1). The first one is the deviation between a function of an Euler like
discretization scheme of a diffusion process at a fixed deterministic date and its mean.
The second one refers to the deviation between a stochastic approximation algorithm
at a given time-step and its target. Under some mild assumptions, in particular the
assumption that the function u 7→ H(n, x, u) is lipschitz uniformly in space and time, it
is proved in [10] that both recursive schemes share the Gaussian concentration property
of the innovation.

In the present work, we point out the contribution of the diffusion term to the con-
centration rate which to our knowledge is new. This covers many situations and gives
rise to different regimes ranging from exponential to Gaussian. We also derive a general
non-asymptotic deviation bound for the difference between a function of the trajectory
of a continuous Euler scheme associated to a diffusion process and its mean. It turns
out that, under mild assumptions, the concentration regime is log-normal. Finally, we
study non-asymptotic deviation bound for stochastic approximation with averaging of
trajectories according to the averaging principle of Ruppert & Polyak, see e.g. [21] and
[18].

1.1 Euler like Scheme of a Diffusion Process

We consider a Brownian diffusion process (Xt)t≥0 defined on a filtered probability
space (Ω,F , (Ft)t≥0,P), satisfying the usual conditions, and solution to the following
stochastic differential equation (SDE)

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (SDEb,σ)

where (Wt)t≥0 is a q-dimensional (Ft)t≥0 Brownian motion and the coefficients b, σ are
assumed to be uniformly Lipschitz continuous in space and measurable in time.

A basic problem in Numerical Probability is to compute quantities like Ex[f(XT )]

for a given Lipschitz continuous function f and a fixed deterministic time horizon
T using Monte Carlo simulation. For instance, it appears in mathematical finance
and represents the price of a European option with maturity T when the dynamics
of the underlying asset is given by (SDEb,σ). To this end, we first introduce some dis-
cretization schemes of (SDEb,σ) that can be easily simulated. For a fixed time step
∆ = T/N, N ∈ N∗, we set ti := i∆, for all i ∈ N and define an Euler like scheme by

X∆
0 = x, ∀i ∈ [[0, N − 1]], X∆

ti+1
= X∆

ti + b(ti, X
∆
ti )∆ + σ(ti, X

∆
ti )∆1/2Ui+1, (1.2)
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where (Ui)i∈N∗ is a sequence of Rq-valued i.i.d. random variables with law µ satisfying:
E[U1] = 0q, E[U1U

∗
1 ] = Iq, where U∗1 denotes the transpose of the column vector U1 and

0q, Iq respectively denote the zero vector of Rq and the identity matrix of Rq ⊗ Rq. We
also assume that µ satisfies (GC(β)) for some β > 0. The main advantage of such a

situation is that it includes the case of the standard Euler scheme where U1
d
= N (0, Iq)

and the case of the Bernoulli law where U1
d
= (B1, · · · , Bq), (Bk)k∈[[1,q]] are i.i.d random

variables with law µ = 1
2 (δ−1 + δ1), both satisfying (GC(β)) with β = 2.

The weak error ED(f,∆, T, b, σ) = Ex[f(XT )] − Ex[f(X∆
T )] corresponds to the dis-

cretization error when replacing the diffusion X by its Euler scheme X∆ for the compu-
tation of Ex[f(XT )]. Since the seminal work of [22], it is known that, under smoothness
assumption on the coefficients b, σ, the standard Euler scheme produces a weak er-
ror of order ∆. In a hypoelliptic setting for the coefficients b and σ and for a bounded
measurable function f , Bally and Talay [2] obtained the expected order using Malli-
avin calculus. Let us also mention the recent work [1] where the authors study the
weak trajectorial error using coupling techniques. More precisely, they prove that the
Wasserstein distance between the law of a uniformly elliptic and one-dimensional diffu-
sion process and the law of its continuous Euler scheme Xc,∆ with time step ∆ := T/N

is smaller than O(N−2/3+ε), ∀ε > 0.
The expansion of ED also allows to improve the convergence rate to 0 of the dis-

cretization error using Richardson-Romberg extrapolation techniques, see e.g. [22].
In order to have a global control of the numerical procedure for the computation of

Ex[f(XT )], it remains to approximate the expectation Ex[f(X∆
T )] using a Monte Carlo

estimator M−1×
∑M
k=1 f((X∆

T )j) where the ((X∆
T )j)j∈[[1,M ]] are M independent copies of

the scheme (1.2) starting at the initial value x at time 0. This gives rise to an empirical
error defined by EEmp(M,f,∆, T, b, σ) = Ex[f(X∆

T )] − M−1 ×
∑M
j=1 f((X∆

T )j). Conse-
quently, the global error associated to the computation of Ex[f(XT )] writes as

EGlob(M,∆) = Ex[f(XT )]− Ex[f(X∆
T )] + Ex[f(X∆

T )]− 1

M
×

M∑
j=1

f((X∆
T )j)

:= ED(f,∆, T, b, σ) + EEmp(M,f,∆, T, b, σ).

It is well-known that if f(X∆
T ) belongs to L2(P) the central limit theorem provides

an asymptotic rate of convergence of order M1/2. Moreover, if f(X∆
T ) ∈ L3(P), a non-

asymptotic result is given by the Berry-Essen theorem. However, in practical imple-
mentation, one is interested in obtaining deviation bounds in probability for a fixed M

and a given threshold r > 0, that is explicitly controlling P (|EEmp(M,f,∆, T, b, σ)| ≥ r).
In this context, Malrieu and Talay [17] obtained Gaussian deviation bounds in an

ergodic framework and for a constant diffusion coefficient. Using optimal transporta-
tion techniques, Blower and Bolley [4] obtained Gaussian concentration inequalities
and transportation inequalities for the joint law of the first n positions of a stochastic
processes with state space some Polish space. Concerning the standard Euler scheme,
Menozzi and Lemaire [16] obtained two-sided Gaussian bounds up to a systematic bias
under the assumptions that the diffusion coefficient is uniformly elliptic, σσ∗ is Hölder-
continuous, bounded and that b is bounded. Frikha and Menozzi [10], getting rid of the
non-degeneracy assumption on σ, recently obtained Gaussian deviation bound under
the mild smoothness condition that b, σ are uniformly Lipschitz-continuous in space
(uniformly in time) and that σ is bounded. It should be noted that it is the bounded-
ness of σ that gives rise to the Gaussian concentration regime for the deviation of the
empirical error.

In the current work, we get rid of the boundedness of σ and we only need the Gaus-
sian concentration property of the innovation. We suppose that the coefficients satisfy
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the following smoothness and domination assumptions

(HS) The coefficients b, σ are uniformly Lipschitz continuous in space uniformly in time.

(HDα) There exists a C2(Rd,R∗+) function V satisfying ∃CV > 0, |∇V |2 ≤ CV V, η :=
1
2 supx∈Rd

∥∥∇2V (x)
∥∥ < +∞ and ∃α ∈ (0, 1], such that for all x ∈ Rd,

∃Cb > 0, sup
t∈[0,T ]

|b(t, x)|2 ≤ CbV (x), , ∃Cσ > 0, sup
t∈[0,T ]

Tr(a(t, x)) ≤ CσV 1−α(x).

where a = σσ∗.

The idea behind assumption (HDα) is to parameterize the growth of the diffusion
coefficient in order to quantify its contribution to the concentration regime. Indeed,
under (HS) and (HDα), with α ∈ [1/2, 1], and if the innovations satisfy (GC(β)), for
some positive β, we derive non-asymptotic deviation bounds for the empirical error
EEmp(M,f,∆, T, b, σ) ranging from exponential (if α = 1/2) to Gaussian (if α = 1)
regimes. Therefore, we greatly improve the results obtained in [10].

Our approach here is different from [10]. Indeed, in [10], the key tool consists in
writing the deviation using the same kind of decompositions that are exploited in [22]
for the analysis of the discretization error. In the current work, we will use the fact
that the Euler-like scheme (1.2) defines an inhomogenous Markov chain having Feller
transitions Pk, k = 0, · · · , N − 1, defined for non negative or bounded Borel function
f : Rd → R by

Pk(f)(x) = E
[
f(X∆

tk+1
)
∣∣∣X∆

tk
= x

]
= E

[
f
(
x+ b(tk, x)∆ + σ(tk, x)∆1/2U

)]
.

For every k, p ∈ {0, · · · , N − 1}, k ≤ p, we also define the iterative kernels Pk,p by

Pk,p(f)(x) = Pk ◦ · · · ◦ Pp−1(f)(x) = E
[
f(X∆

tp)
∣∣∣X∆

tk
= x

]
.

Now using that the law µ of the innovation satisfies (GC(β)) for some positive β, for
every 1-Lipschitz function f and for all λ ≥ 0, we obtain

PN−1(exp(λf))(x) = E
[
exp

(
λf
(
x+ b(tN−1, x)∆ + σ(tN−1, x)∆1/2U

))]
≤ exp

(
λPN−1(f)(x) + β

λ2

4
∆|σ(tN−1, x)|2

)
If σ is bounded, the Gaussian concentration property will readily follow provided the

iterated kernel functions Pk,p(f) are uniformly Lipschitz. Under the mild smoothness
assumption (HS), this can be easily derived, see Proposition 3.5. Otherwise, using
(HDα), we obtain

PN−1(exp(λf))(x) ≤ exp

(
λPN−1(f)(x) +

Cσβ∆

4
λ2V 1−α(x)

)
. (1.3)

The last inequality is the first step of our analysis. To investigate the empirical
error, the key idea is to exploit recursively from (1.3) that the increments of the scheme
(1.2) satisfy (GC(β)) and to adequately quantify the contribution of the diffusion term
V 1−α(x) to the concentration rate. Under (HS) and (HDα), the latter is addressed using
flow techniques and integrability results on the law of the scheme (1.2), see Propositions
3.1 and 3.6.
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1.2 Stochastic Approximation Algorithm

Beyond concentration bounds of the empirical error for Euler-like schemes, we want
to look at non asymptotic bounds for stochastic approximation algorithms. Introduced
by H. Robbins and S. Monro [19], these recursive algorithms aim at finding a zero of a
continuous function h : Rd → Rd which is unknown to the experimenter but can only be
estimated through experiments. Successfully and widely investigated since this seminal
work, such procedures are now commonly used in various contexts such as convex
optimization since minimizing a function amounts to finding a zero of its gradient.

To be more specific, the aim of such an algorithm is to find a solution θ∗ to the
equation h(θ) := E[H(θ, U)] = 0, where H : Rd × Rq → Rd is a Borel function and
U is a given Rq-valued random variable with law µ. The function h is generally not
computable, at least at a reasonable cost. Actually, it is assumed that the computation
of h is costly compared to the computation of H for any couple (θ, u) ∈ Rd ×Rq and to
the simulation of the random variable U .

A stochastic approximation algorithm corresponds to the following simulation-based
recursive scheme

θγn+1 = θγn − γn+1H(θγn, Un+1), n ≥ 0, θ0 ∈ Rd, (1.4)

where (Un)n≥1 is an i.i.d. Rq-valued sequence of random variables with law µ defined
on a probability space (Ω,F ,P) and γ = (γn)n≥1 is a sequence of non-negative deter-
ministic steps satisfying the usual assumption∑

n≥1

γn = +∞, and
∑
n≥1

γ2
n < +∞. (1.5)

When the function h is the gradient of a potential, the recursive procedure (1.4) is a
stochastic gradient algorithm. Indeed, replacing H(θγn, Un+1) by h(θγn) in (1.4) leads to
the usual deterministic descent gradient method. When h(θ) = M(θ)− `, θ ∈ R, where
M is a monotone function, say increasing, we can write M(θ) = E[N(θ, U)] where N :

R×Rq → R is a Borel function and ` is a given constant such that the equation M(θ) = `

has a solution. Setting H = N − `, the recursive procedure (1.4) then corresponds to
the seminal Robbins-Monro algorithm and aims at computing the level of the function
M .
In the present paper, we make no attempt to provide a general discussion concerning
convergence results of stochastic approximation algorithms. We refer readers to [9],
[14] for some general results on the a.s. convergence of such procedures under the
existence of a so-called Lyapunov function, i.e. a continuously differentiable function
L : Rd → R+ such that ∇L is Lipschitz, |∇L|2 ≤ C(1 + L) for some positive constant C
and

〈∇L, h〉 ≥ 0.

See also [15] for a convergence theorem under the existence of a pathwise Lyapunov
function. For the sake of simplicity, in the sequel it is assumed that θ∗ is the unique so-
lution of the equation h(θ) = 0 and that the sequence (θγn)n≥0 defined by (1.4) converges
a.s. towards θ∗.

We assume that the law µ of the innovation satisfies (GC(β)) for some β > 0 and that
the step sequence (γn)n≥1 satisfies (1.5). We also suppose that the following assump-
tions on the function H are in force:

(HL) For all u ∈ Rq, the functionH(., u) is Lipschitz-continuous with a Lipschitz modulus
having linear growth in the variable u, that is:

∃CH > 0, ∀u ∈ Rq, sup
(θ,θ′ )∈(Rd)2

|H(θ, u)−H(θ
′
, u)|

|θ − θ′ |
≤ CH(1 + |u|).
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(HLS)α (Lyapunov Stability-Domination) There exists a C2(Rd,R∗+) function L satisfying
∃CL > 0, |∇L|2 ≤ CLL, η := 1

2 supx∈Rd
∥∥∇2L(x)

∥∥ < +∞ such that

∀θ ∈ Rd, 〈∇L(θ), h(θ)〉 ≥ 0, and ∃Ch > 0, ∀θ ∈ Rd, |h(θ)|2 ≤ ChL(θ).

and ∃α ∈ (0, 1],

∃Cα > 0, ∀θ ∈ Rd, sup
(u,u′ )∈(Rq)2

|H(θ, u)−H(θ, u
′
)|

|u− u′ |
≤ CαL

1−α
2 (θ)

(HUA) (Uniform Attractivity) The map h : θ ∈ Rd 7→ E[H(θ, U)] is continuously differen-
tiable in θ and there exists λ > 0 s.t. ∀θ ∈ Rd, ∀ξ ∈ Rd, λ|ξ|2 ≤ 〈Dh(θ)ξ, ξ〉.

Compared to [10], our assumptions are weaker. Indeed, it is assumed in [10] that
the map (θ, u) ∈ Rd × Rq 7→ H(θ, u) is uniformly Lipschitz continuous. In our current
framework, this latter assumption is replaced by (HL) and (HLS)α.

The last assumption (HUA), which already appeared in [10], is introduced to derive
a sharp estimate of the concentration rate in terms of the step sequence. Let us note
that such assumption appears in the study of the weak convergence rate order for the
sequence (θn)n≥1 as described in [9] or [14]. Indeed, it is commonly assumed that the
matrix Dh(θ∗) is uniformly attractive that is Re(λmin) > 0 where λmin is the eigenvalue
with the smallest real part. In our current framework, this local condition on the Ja-
cobian matrix of h at the equilibrium is replaced by the uniform assumption (HUA).
This allows to derive sharp estimates for the concentration rate of the sequence (θn)n≥1

around its target θ∗ and to provide a sensitivity analysis for the bias δn := E[|θn − θ∗|]
with respect to the starting point θ0.

Let us note that under (HUA) and the linear growth assumption

∀θ ∈ Rd, E
[
|H(θ, U)|2

]
≤ C(1 + |θ − θ∗|2),

which is satisfied if (HL) and (HLS)α, with α ∈ [0, 1], hold and if µ satisfies (GC(β)) for
some β > 0, the function L : θ 7→ 1

2 |θ − θ
∗|2 is a Lyapunov function for the recursive

procedure defined by (1.4) so that one easily deduces that θγn → θ∗, a.s. as n→ +∞.
The global error between the stochastic approximation procedure θγn at a given time

step n and its target θ∗ can be decomposed as an empirical error and a bias as follows

|θγn − θ∗| = |θγn − θ∗| − Eθ0 [|θγn − θ∗|] + Eθ0 [|θγn − θ∗|]
:= EEmp(γ, n,H, λ, α) + δn (1.6)

where we introduced the notations EEmp(γ, n,H, λ, α) = |θγn − θ∗| − Eθ0 [|θγn − θ∗|] and
δn := Eθ0 [|θγn − θ∗|].

The empirical error EEmp(γ, n,H, λ, α) is the difference between the absolute value
of the error at time n and its mean whereas the bias δn corresponds to the mean of
the absolute value of the difference between the sequence (θγn)n≥0 at time n and its
target θ∗. Unlike the Euler like scheme, a bias systematically appears since we want
to derive a deviation bound for the difference between θγn and its target θ∗. This term
strongly depends on the choice of the step sequence (γn)n≥1 and the initial point θ0, see
Proposition 4.7 for a sensitivity analysis.

As for Euler like schemes, our strategy is different from [10]. Indeed, we exploit
again the fact that the stochastic approximation scheme (1.4) defines an inhomogenous
Markov chain having Feller transitions Pk, k = 0, · · · , N − 1, defined for non negative or
bounded Borel function f : Rd → R by

Pk(f)(θ) = E
[
f(θγk+1)

∣∣ θγk = θ
]

= E [f (θ − γk+1H(θ, U))] .
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For every k, p ∈ {0, · · · , N − 1}, k ≤ p, we also define the iterative kernels Pk,p by

Pk,p(f)(θ) = Pk ◦ · · · ◦ Pp−1(f)(θ) = E
[
f(θγp )

∣∣ θγk = θ
]
.

For a 1-Lipschitz function f and for all λ ≥ 0, using (HLS)α and that the law µ of the
innovation satisfies (GC(β)) for some positive β, we obtain

PN−1(exp(λf))(θ) = E [exp (λf (θ − γNH(θ, U)))]

≤ exp

(
λPN−1(f)(θ) + β

λ2

4
C2
αγ

2
NL

1−α(θ)

)
(1.7)

Let us note the similarity between (1.3) and (1.7). If (HLS)α holds with α = 1 then
the last term appearing in the right hand side of the last inequality is uniformly bounded
in θ. This latter assumption corresponds to the framework developed in [10] and leads
to a Gaussian concentration bound.

Otherwise, the problem is more challenging. Under the mild domination assumption
(HLS)α, the key idea consists again in exploiting recursively from (1.7) that the incre-
ments of the stochastic approximation algorithm (1.4) satisfy (GC(β)) and in properly
quantifying the contribution of the diffusion term L1−α(θ) to the concentration rate.

As already noticed in [10], the concentration rate and the bias strongly depends
on the choice of the step sequence. In particular, if γn = c

n , with c > 0 then the
optimal concentration rate and bias is achieved if c > 1

2λ , see Theorem 2.2. in [10].
Otherwise, they are sub-optimal. This kind of behavior is well-known concerning the
weak convergence rate for stochastic approximation algorithm. Indeed, if c > 1

2Re(λmin)

we know that a Central Limit Theorem holds for the sequence (θn)n≥1 (see e.g. [9]). Let
us note that the condition c > 1

2λ as well as c > 1
2Re(λmin) is difficult to handle and may

lead to a blind choice in practical implementation.
To circumvent such a difficulty, it is fairly well-known that the key idea is to carefully

smooth the trajectories of a converging stochastic approximation algorithm by averag-
ing according to the Ruppert & Polyak averaging principle, see e.g. [21] and [18]. It
consists in devising the original stochastic approximation algorithm (1.4) with a slow
decreasing step γ = (γn)n≥1, namely

γn =

(
c

b+ n

)ν
, ν ∈

(
1

2
, 1

)
, c, b > 0,

and to simultaneously compute the empirical mean (θ̄γn)n≥1 of the sequence (θγn)n≥0 by
setting

θ̄γn =
θ0 + θγ1 + · · ·+ θγn−1

n
= θ̄γn−1 −

1

n

(
θ̄γn−1 − θ

γ
n−1

)
. (1.8)

We will not enter into the technicalities of the subject but under mild assumptions
(see e.g. [9], p.169) one shows that

√
n(θ̄γn − θ∗)

L→ N (0,Σ∗), n→ +∞,

where Σ∗ is the optimal covariance matrix. For instance, for d = 1, one has Σ∗ =
V ar(H(θ∗,U))

(h′ (θ∗))2 . Hence, the optimal weak rate of convergence
√
n is achieved for free

without any condition on the constants c or b. However, this result is only asymptotic
and so far, to our best knowledge, non-asymptotic estimates for the deviation between
the empirical mean sequence (θ̄γn)n≥0 at given time step and its target θ∗, that is non-
asymptotic averaging principle were not investigated.
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The sequence (zγn)n≥0 defined by zγn := (θ̄γn+1, θ
γ
n) is F -adapted, i.e. for all n ≥ 0, zγn

is Fn-measurable, where Fn := σ(θ0, Uk, k ≤ n). Moreover, it defines an inhomogenous
Markov chain having Feller transitions Kk, k = 0, · · · , N − 1, defined for non negative
or bounded Borel function f : Rd ×Rd → R by

Kk(f)(z) = E[f(zγk+1)
∣∣ zγk = z] = E[f(θ̄γk+2, θ

γ
k+1)

∣∣ (θ̄γk+1, θ
γ
k) = (z1, z2)],

= E

[
f

(
k + 1

k + 2
z1 +

1

k + 2
(z2 − γk+1H(z2, U)), z2 − γk+1H(z2, U)

)]
.

For every k, p ∈ {0, · · · , N − 1}, k ≤ p, we also define the iterative kernels Kk,p by

Kk,p(f)(z) = Kk ◦ · · ·Kp−1(f)(z) = E[f(zγp )
∣∣ zγk = z].

Hence, for any 1-Lipschitz function and for all λ ≥ 0, using again (HLS)α and that
the law µ of the innovation satisfies (GC(β)) for some positive β, one has for all k ∈
{0, · · · , N − 1}

Kk(exp(λf))(z) = E
[
exp

(
λf
(
zγk+1

))∣∣ zγk = z
]

≤ exp

(
λKk(f)(z) + β

λ2

4

(
Cαγk+1(

1

k + 2
+ 1)L

1−α
2 (z2)

)2
)

≤ exp
(
λKk(f)(z) + βλ2C2

αγ
2
k+1L

1−α(z2)
)

(1.9)

where we used that the functions u 7→ f
(
k+1
k+2z1 + 1

k+2 (z2 − γk+1H(z2, u)), z2 − γk+1H(z2, u)
)

are Lipschitz-continuous with Lipschitz modulus equals to Cαγk+1( 1
k+2 + 1)L

1−α
2 (z2) for

all (z1, z2) ∈ Rd ×Rd.
Here again, (1.7) and (1.9) are quite similar and if α = 1 the concentration regime

turns out to be Gaussian. Otherwise, an analysis along the lines of the methodology
developed so far provides the concentration regime of the stochastic approximation
algorithm with averaging of trajectories.

1.3 Transport-Entropy inequalities

As a by-product of our analysis, we derive transport-entropy inequalities for the
law of both stochastic approximation schemes. We recall here basic definitions and
properties. For a complete overview and recent developments in the theory of transport
inequalities, the reader may refer to the recent survey [12]. We will denote by P(Rd)

the set of probability measures on Rd.
For p ≥ 1, we consider the set Pp(Rd) of probability measures with finite moment of

order p. The Wasserstein metric Wp(µ, ν) of order p between two probability measures
µ, ν ∈ Pp(Rd) is defined by

W p
p (µ, ν) = inf

{∫
Rd×Rd

|x− y|pπ(dx, dy) : π ∈ P(Rd ×Rd), π0 = µ, π1 = ν

}
where π0 and π1 are two probability measures standing for the first and second marginals
of π ∈ P(Rd ×Rd). For µ ∈ P(Rd), we define the relative entropy w.r.t ν ∈ P(Rd) as

H(µ, ν) =

∫
Rd

log

(
dµ

dν

)
dµ

if µ � ν and H(µ, ν) = +∞ otherwise. We are now in position to define the notion
of transport-entropy inequality. Here as below, Φ : R+ → R+ is a convex, increasing
function with Φ(0) = 0.
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Transport-Entropy and deviation for stochastic approximations schemes

Definition 1.1. A probability measure µ on Rd satisfies a transport-entropy inequality
with function Φ if for all ν ∈ P(Rd), one has

Φ(W1(ν, µ)) ≤ H(ν, µ)

For the sake of simplicity, we will write that µ satisfies TΦ.

The following proposition comes from Corollary 3.4. of [12].

Proposition 1.2. The following propositions are equivalent:

• The probability measure µ satisfies TΦ.

• For all 1-Lipschitz function f , one has

∀λ ≥ 0,

∫
exp(λf)dµ ≤ exp

(
λ

∫
fdµ+ Φ∗(λ)

)
,

where Φ∗ is the monotone conjugate of Φ defined onR+ as Φ∗(λ) = supρ≥0 {λρ− Φ(ρ)}.

Such transport-entropy inequalities are very attractive especially from a numerical
point of view since they are related to the concentration of measure phenomenon which
allows to establish non-asymptotic deviation estimates. The three next results put an
emphasis on this point. Suppose that (Xn)n≥1 is a sequence of i.i.d. Rd-valued random
variables with common law µ.

Corollary 1.3. If µ satisfies TΦ then for all 1-Lipschitz function f and for all r ≥ 0, for
all M ≥ 1, one has

P

(
| 1

M

M∑
k=1

f(Xk)− E[f(X1)]| ≥ r

)
≤ 2 exp(−MΦ(r))

Deriving non-asymptotic deviation bounds for W1(µM , µ) is of interest for many ap-
plications in the fields of numerical probability and statistic. In its present form, next
result is due to Gozlan and Leonard [11], Theorem 12.

Proposition 1.4. If µ satisfies TΦ then the empirical measure µM defined as µM =
1
M

∑M
k=1 δXk satisfies the following concentration bound

P (W1(µM , µ) ≥ E[W1(µM , µ)] + r) ≤ exp (−MΦ(r)) .

where for x ∈ Rd, δx stands for the Dirac mass at point x.

The quantity E[W1(µM , µ)] will go to zero as M goes to infinity, by convergence
of empirical measures, but we still need quantitative bounds. The next result is an
adaptation of Theorem 10.2.1 in [20] on similar bounds but for the distance W2. For
sake of completeness, we provide a proof in Appendix A.

Proposition 1.5. Assume that µ has a finite moment of order d+ 3. Then, one has

E[W1(µM , µ)] ≤ C(d, µ)M−1/(d+2)

where

C(d, µ) := 4
√
d+ 2

√∫
Rd

(1 + |x|d+1)−1dx

√
2−2d + 23−d

∫
|y|d+3µ(dy) + 23−dd(d+ 3)!.
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This bound is not optimal in general, but has the advantage of having very explicit
constants. In the case of a distribution with compact support, it has been shown in [3],
Section 7, that E[W1(µM , µ)] is of order O(M−1/d), and that this is the optimal exponent
in d when d ≥ 3.
In view of Kantorovich-Rubinstein duality formula, namely

W1(µ, ν) = sup

{∫
fdµ−

∫
fdν : [f ]1 ≤ 1

}
where [f ]1 denotes the Lipschitz-modulus of f , the latter result provides the following
concentration bounds ∀r ≥ 0, ∀M ≥ 1

P

(
sup

f :[f ]1≤1

(
1

M

M∑
k=1

f(Xk)− E[f(X1)]

)
≥ C(d, µ)M−1/(d+2) + r

)
≤ exp (−MΦ(r)) .

Similar results were first obtained for different concentration regimes by Bolley,
Guillin, Villani [7] relying on a non-asymptotic version of Sanov’s Theorem. Some of
these results have also been derived by Boissard [5] using concentration inequalities,
and were also extended to ergodic Markov chains up to some contractivity assumptions
in the Wasserstein metric on the transition kernel.

Some applications are proposed in [7]. Such results can indeed provide non-asymptotic
deviation bounds for the estimation of the density of the invariant measure of a Markov
chain. Let us note that the (possibly large) constant C(d, µ) appears as a trade-off to
obtain uniform deviations over all Lipschitz functions.

As a consequence of the transport-entropy inequalities obtained for the laws at a
given time step of Euler like schemes and stochastic approximation algorithm, we will
derive non-asymptotic deviation bounds in the Wasserstein metric.

2 Main Results

2.1 Euler like schemes and diffusions

Theorem 2.1 (Transport-Entropy inequalities for Euler like schemes). Denote by X∆
T

the value at time T of the scheme (1.2) associated to the diffusion (SDEb,σ) starting
from x at time 0. Denote the Lipschitz modulus of b and σ appearing in the diffusion
process (SDEb,σ) by [b]1 and [σ]1, respectively and by µ∆

T the law of X∆
T . Assume that

the innovations (Ui)i≥1 in (1.2) satisfy (GC(β)) for some β > 0 and that the coefficients
b, σ satisfy (HS) and (HDα) for α ∈ [ 1

2 , 1].
Then, µ∆

T satisfies TΦ∗α
with Φ∗α(λ) = supρ≥0 {λρ− Φα(ρ)} and one has:

• If α ∈ ( 1
2 , 1], for all ρ ≥ 0

Φα(ρ) = Ψα(T,∆, b, σ, x)(ρ2 ∨ ρ
2α

2α−1 ),

• If α = 1
2 , for all ρ ∈ [0, ϕ(T, b, σ,∆)−1/2λ3.2)

Φ1/2(ρ) = K3.2
(ρϕ(T, b, σ,∆)1/2/λ3.2)2

1− (ρϕ(T, b, σ,∆)1/2/λ3.2)
.

Moreover, we have Ψα(T,∆, b, σ, x) = K3.1(ϕ(T, b, σ,∆)2∨ϕ(T, b, σ,∆)
α

2α−1 ), ϕ(T, b, σ,∆) =

Cσβ
(1+C(∆)∆)

4C(∆) e3C(∆)T , C(∆) := 2[b]1+[σ]21+∆[b]21, the constants K3.1, λ3.2 and K3.2 being
defined in Corollaries 3.2 and 3.4 respectively.

Note that in the above theorem, we do not need any non-degeneracy condition on
the diffusion coefficient.

In the case α ∈ ( 1
2 , 1], one easily gets the following explicit formula:
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• If λ ∈ [0, 2Ψ], then Φ∗α(λ) = 1
4Ψλ

2;

• If λ ∈ [ 2α
2α−1Ψ,+∞), then Φ∗α(λ) = 1

2α

(
2α−1
2αΨ

)2α−1
λ2α;

• If λ ∈ (2Ψ, 2α
2α−1Ψ),then Φ∗α(λ) = λ−Ψ.

Let us note that the linear behavior of Φ∗α on a small interval is due to the fact that

Φα is not C1. One may want to replace ρ2 ∨ ρ
2α

2α−1 by ρ2 + ρ
2α

2α−1 (up to a factor 2) in the
expression of Φα. However, in this case, an explicit expression for Φ∗α does not exist
(except for the case α = 1) and only its asymptotic behavior can be derived so that one
is led to compute it numerically in practical situations.

In the case α = 1/2, tedious but simple computations show that

Φ∗1/2(λ) =

((
1 +

λ3.2

K3.2ϕ(T, b, σ,∆)1/2
λ

) 1
2

− 1

)2

.

This behavior corresponds to a concentration profile that is Gaussian at short distance,
and exponential at large distance.

Remark 2.2. The order of magnitude of our bounds is actually optimal in α under
our general assumptions. For example, if we consider the diffusion process dXt =

(1 + X2
t )(1−α)/2dBt, then the process Yt = V (Xt), with V (x) :=

∫ x
0

(1 + s2)(α−1)/2ds,
satisfies the SDE dYt = dBt + b(Yt)dt, where b is a bounded drift. This process therefore
has the same concentration properties as a Brownian motion, which are known to be
Gaussian. From this, we deduce

Px(Xt ≥ r) = Px(Yt ≥ V (r)) ≤ exp(−cV (r)2).

This is indeed the order of magnitude of the concentration bounds given by Theorem
2.1.

Corollary 2.3. (Non-asymptotic deviation bounds) Under the same assumptions as The-
orem 2.1, one has:

• for all real-valued 1-Lipschitz function f defined on Rd, for all α ∈ [1/2, 1] for all
M ≥ 1 and all r ≥ 0,

Px

(
| 1

M

M∑
k=1

f((X∆
T )k)− Ex[f(X∆

T )]| ≥ r

)
≤ 2 exp(−MΦ∗α(r)),

• for all α ∈ [1/2, 1], for all M ≥ 1 and all r ≥ 0,

Px

(
sup

f :[f ]1≤1

(
1

M

M∑
k=1

f((X∆
T )k)− Ex[f(X∆

T )]

)
≥ C(d, µ∆

T )

M1/(d+2)
+ r

)
≤ exp (−MΦ∗α(r)) ,

where the ((X∆
T )k)1≤k≤M are M independent copies of the scheme (1.2).

The constant C(d, µ∆
T ) depends on the moment of order d+3 of µ∆

T . Hence, an explicit
control in terms of x, b, σ,∆ can be easily obtained under our general assumptions. We
leave the computational details to the reader.

Remark 2.4 (Extension to smooth functions of a finite number of time step). The pre-
vious transport-inequalities and non-asymptotic bounds could be extended to smooth
functions of a finite number of time step such as the maximum of a scalar Euler like
scheme. In that case, it suffices to introduce the additional state variable (M∆

ti )i≥1 :=

(maxk∈[[0,i]]X
∆
tk

)i≥1. Now, the couple (X∆
ti ,M

∆
ti )1≤i≤N is Markovian and similar argu-

ments could be easily extended to the couple for Lipschitz functions of both variables.
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Remark 2.5 (Transport-Entropy inequalities for the law of a diffusion process). The
previous transport-inequalities and non-asymptotic bounds could be extended to the
law at time T of the diffusion process solution to (SDEb,σ) by passing to the limit
∆ → 0. Indeed, it is well-known that under (HS), one has X∆

T
a.s.−→ XT , as ∆ → 0

and by Lebesgue theorem, one deduces from the first result of Corollary 2.3 that the
empirical error (empirical mean) of XT itself satisfies a non-asymptotic deviation bound
with a similar deviation function (just pass to the limit ∆ → 0 in all constants). Then,
using Corollary 5.1 in [12] (equivalence between deviation of the empirical mean and
transport-entropy inequalities), one easily derives that the law of XT satisfies a similar
transport-entropy inequalities when α ∈ (1/2, 1].

We want to point out that it is the growth of σ that gives the concentration regime
ranging from Gaussian concentration bound if α = 1 to exponential when α = 1

2 . How-
ever, in many popular models in finance, the diffusion coefficient is linear, for instance
practitioners often have to deal with Black-Scholes like dynamics of the form

Xt = x0 +

∫ t

0

b(Xs)Xsds+

∫ t

0

σ(Xs)XsdWs

for smooth, bounded coefficients b, σ. This corresponds to assumption (HDα) where
α = 0 and V (x) = 1 + |x|2, x ∈ Rd. For the estimation of Ex[f(X∆

T )] for a Lipschitz
function f : Rd → R, or even in more general situations, the estimation of Ex[f(X∆)] for
a Lipschitz function f : C → R, where C := C([0, T ],Rd) stands for the space ofRd-valued
continuous functions on [0, T ], equipped with the uniform norm ||f ||∞ := sup0≤t≤T |f(t)|,
the expected concentration is the log-normal one. To deal with the latter case, we
consider the continuous Euler scheme Xc,∆ associated to (SDEb,σ) and writing

∀t ∈ [0, T ], Xc,∆
t = x+

∫ t

0

b(φ(s), Xc,∆
φ(s))ds+

∫ t

0

σ(φ(s), Xc,∆
φ(s))dWs, x ∈ Rd. (2.1)

where we set φ(t) := ti for ti ≤ t < ti+1, i ∈ N. The next result provides a general
non-asymptotic deviation bound for the empirical error under very mild assumptions.

Theorem 2.6 (General non-asymptotic deviation bounds). Denote byXc,∆ := (Xc,∆
t )0≤t≤T

the path of the scheme (2.1) with step ∆ starting from point x at time 0. Assume that
∀t ∈ [0, T ], the coefficients b(t, .) and σ(t, .) are continuous functions in x and that they
satisfy the linear growth assumption:

∀x ∈ Rd, sup
t∈[0,T ]

|b(t, x)| ≤ Cb(1 + |x|), sup
t∈[0,T ]

Tr(a(t, x)) ≤ Cσ(1 + |x|2).

Then, for all 1-Lipschitz function f : C → R, for all M ∈ N∗, for all r ≥ 0, one has

Px

(
| 1

M

M∑
k=1

f((Xc,∆)k)− Ex[f(Xc,∆)]| ≥ r

)
≤


2e
− r2M

(2(1+|x|))2 exp(2κ(b,σ,T )) , if r
√
M

2(1+|x|) ≤ e
κ(b,σ,T )

2e
− 1

4κ(b,σ,T )
log
(

r2M
(2(1+|x|))2

)2

, otherwise

where κ(b, σ, T ) := 28(1 + (Cσ ∨Cb)T ) and ((Xc,∆)k)1≤k≤M are M independent copies of
the scheme (2.1). The result remains valid when one considers the path of the diffusion
X solution to (SDEb,σ) instead of the continuous Euler scheme.

Remark 2.7. We want to point out that though the constants appearing in the above
non-asymptotic deviation bound are all-purpose and rough estimates, the decay in r is
optimal. Indeed, if we select b(t, x) = 0, σ(t, x) = σx, σ > 0, so that Xt = x0 exp(σWt −
σ2t/2), M = 1 and f = ΠT , where ΠT denotes the projection at time T , sharp bounds
can be easily derived and it is plain to see that in this simple example the concentration
regime for large values of r is the log-normal one and gaussian for small values of r.
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2.2 Stochastic approximation algorithms

Theorem 2.8 (Transport-Entropy inequalities for stochastic approximation algorithms).
Let N ∈ N∗. Assume that the function H of the recursive procedure (θγn)0≤n≤N (with
starting point θ0 ∈ Rd) defined by (1.4) satisfies (HL), (HUA) and (HLS)α for α ∈ [ 1

2 , 1],
and that the step sequence γ = (γn)n≥0 satisfies (1.5). Suppose that the law of the
innovation satisfies (GC(β)), β > 0. Denote by µγN the law of θN .

Then, µγN satisfies TΦ∗α with Φ∗α,N (λ) = supρ≥0 {λρ− Φα,N (ρ)} and one has:

• If α ∈ ( 1
2 , 1], for all ρ ≥ 0

Φα,N (ρ) = ϕα(γ,H, θ0)(CγNρ
2 ∨ Cγ,αN ρ

2α
2α−1 ).

• If α = 1
2 , for all ρ ∈ [0, λ4.1/s̃N ),

Φ1/2,N (ρ) = 2ϕ1/2(γ,H, θ0)CγN
(ρ/λ4.1)2

1− (ρs̃N/λ4.1)
.

Moreover the three concentration rate sequences are defined for N ∈ N∗ by

CγN :=

N−1∑
k=0

γ2
k+1

Π1,N

Π1,k
,

Cγ,αN :=

N−1∑
k=0

γ
2α

2α−1

k+1 (
Π1,N

Π1,k
)

2α
2α−1 ((k + 1) log2(k + 4))

1−α
2α−1

s̃N := max
0≤k≤N−1

(k + 1)1/2 log(k + 4)γk+1

(
Π1,N

Π1,k

) 1
2

exp(

N−1∑
p=0

1

(p+ 1) log2(p+ 4)
)

with Π1,N :=
∏N−1
k=0 (1 − 2λγk+1 + CH,µγ

2
k+1), the constants CH,µ and ϕα(γ,H, θ0) being

explicitly given in Propositions 4.4 and 4.5 respectively.

As in the case of Euler like schemes, for α ∈ ( 1
2 , 1], we have:

• if λ ∈ [0, 2ϕ(CγN/(C
γ,α
N )2α−1)

1
2(1−α) ], then Φ∗α,N (λ) = λ2/(4ϕCγN );

• If λ ∈ [ 2α
2α−1ϕ(CγN/(C

γ,α
N )2α−1)

1
2(1−α) ,+∞), then Φ∗α,N (λ) = 1

2α

(
2α−1
2αϕ

)2α−1
λ2α

(Cγ,αN )2α−1 ;

• If λ ∈ (2ϕ(CγN/(C
γ,α
N )2α−1)

1
2(1−α) , 2α

2α−1ϕ(CγN/(C
γ,α
N )2α−1)

1
2(1−α) ), then Φ∗α,N (λ) =

(
CγN
Cγ,αN

)
2α−1

2(1−α)λ− ϕ (CγN )
α

1−α

(Cγ,αN )
2α−1
1−α

.

For α = 1
2 , we obtain the following explicit bound for the Legendre transform of

Φ1/2,N

∀λ ≥ 0, Φ∗1/2,N (λ) =
2ϕCγN
s̃2
N

((
1 +

s̃Nλ4.1λ

2ϕCγN

) 1
2

− 1

)2

Hence, for N ≥ 1 being fixed, the following simple asymptotic behaviors can be
easily derived:

• When λ is small, Φ∗1/2,N (λ) ∼ λ2
4.1λ

2/(2ϕCγN );

• When λ goes to infinity, Φ∗1/2(λ) ∼ λ4.1λ/s̃N .
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Corollary 2.9. (Non-asymptotic deviation bounds) Under the same assumptions as The-
orem 2.8, one has

Pθ0 (|θγN − θ
∗| ≥ r + δN ) ≤ exp

(
−Φ∗α,N (r)

)
and δN := Eθ0 [|θγN − θ∗|]. Moreover, the bias δN at step N satisfies

δN ≤ e−λΓ1,N+Cα,µΓ2,N |θ0 − θ∗|+(2Cα,µ)
1
2

(
N−1∑
k=0

γ2
k+1e

−2λ(Γ1,N−Γ1,k+1)+2Cα,µ(Γ2,N−Γ2,k+1)

) 1
2

,

where Γ1,N :=
∑N
k=1 γk, Γ2,N :=

∑N
k=1 γ

2
k, Cα,µ := λ2/2 + 2CαKE[|U |2] with K > 0.

Now, we investigate the impact of the step sequence (γn)n≥1 on the concentration
rate sequences CγN , Cγ,αN , s̃N and the bias δN . Let us note that a similar analysis has
been performed in [10]. We obtain the following results:

• If we choose γn = c
n , with c > 0. Then δN → 0, N → +∞, Γ1,N = c log(N)+ c′1 +rN ,

c′1 > 0 and rN → 0, so that Π1,N = O(N−2cλ).

– If c < 1
2λ , the series

∑N
k=1 γ

2
k/Π1,k,

∑N−1
k=0 γ

2α
2α−1

k+1 (1/Π
2α

2α−1

1,k )((k + 1) log2(k +

4))
1−α
2α−1 converge so that we obtain CγN = O(N−2cλ), Cγ,αN = O(N−

2α
2α−1 cλ),

s̃N = O(N−cλ).

– If c > 1
2λ , a comparison between the series and the integral yields CγN =

O(N−1), Cγ,αN = O((log(N))2 1−α
2α−1N−

α
2α−1 ), s̃N = O(log(N)N−

1
2 ).

Let us notice that we find the same critical level for the constant c as in the Central
Limit Theorem for stochastic algorithms. Indeed, if c > 1

2Re(λmin) where λmin
denotes the eigenvalue of Dh(θ∗) with the smallest real part then we know that a
Central Limit Theorem holds for (θγn)n≥1 (see e.g. [9], p.169). Such behavior was
already observed in [10].

The associated bound for the bias is the following:

δN ≤ K

(
|θ0 − θ∗|
Nλc

+
(2Cα,µ)

1
2

Nλc∧ 1
2

)
.

• If we choose γn = c
nρ , c > 0, 1

2 < ρ < 1, then δN → 0, Γ1,N ∼ c
1−ρN

1−ρ as N → +∞
and elementary computations show that there exists C > 0 s.t. for all N ≥ 1,
Π1,N ≤ C exp(−2λ c

1−ρN
1−ρ). Hence, for all ε ∈ (0, 1− ρ) we have:

CγN = Π1,N

N∑
k=1

γ2
kΠ−1

1,k ≤ c2

Π1,NΠ−1
1,N−Nρ+ε

N−Nρ+ε∑
k=1

1

k2ρ
+

N∑
k=N−Nρ+ε+1

1

k2ρ


≤ c2

{
Ce−2λ c

1−ρ (N1−ρ−(N−Nρ+ε)1−ρ) +
Nρ+ε

(N −Nρ+ε + 1)2ρ

}
≤ c2

{
Ce−2λcNε +

1

Nρ−ε

}
.

Up to a modification of ε, this yields CγN = Π1,N

∑N
k=1 γ

2
kΠ−1

1,k = o(N−ρ+ε), ε ∈
(0, 1− ρ). Similar computations show that Cγ,αN = o(N−

(ρ−(1−α))
2α−1 −ε) and we clearly

get s̃N = O
(

log(N)N−(ρ− 1
2 )
)

.
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Concerning the bias, from Corollary 2.9, we directly obtain the following bound:

δN ≤ K

(
exp

(
− λc

1− ρ
N1−ρ

)
|θ0 − θ∗|+

(2Cα,µ)
1
2

N
ρ
2−ε

)
, ∀ε > 0.

The impact of the initial difference |θ0− θ∗| is exponentially smaller compared to the
case γn = c

n . This is natural since the step sequence is decreasing slower to 0.

Theorem 2.10 (Transport-Entropy inequalities for stochastic approximation with av-
eraging of trajectories). Let N ∈ N∗. Assume that the function H of the recursive
procedure (θγn)0≤n≤N (with starting point θ0 ∈ Rd) defined by (1.4) satisfies (HL),
(HUA) and (HLS)α for α ∈ [ 1

2 , 1], and that the step sequence γ = (γn)n≥1 satis-
fies (1.5). Suppose that the law of the innovation satisfies (GC(β)), β > 0. De-
note by µ̄γN the law of (θ̄γn)0≤n≤N defined by (1.8). Then, µ̄γN satisfies TΦ̄∗α,N

with

Φ̄∗α,N (λ) = supρ≥0

{
λρ− Φ̄α,N (ρ)

}
and one has:

• If α ∈ ( 1
2 , 1], for all ρ ≥ 0

Φ̄α,N (ρ) = ϕα(γ,H, θ0)(C̄γNρ
2 ∨ C̄γ,αN ρ

2α
2α−1 )

• If α = 1
2 , for all ρ ∈ [0, λ4.1/ŝN ),

Φ̄1/2,N (ρ) = 2ϕ1/2(γ,H, θ0)C̄γN
(ρ/λ4.1)2

1− (ρŝN/λ4.1)

Moreover the three concentration rate sequences are defined for N ∈ N∗ by

C̄γN :=

N−1∑
k=1

γ̄2
k,N , C̄γ,αN :=

N−1∑
k=1

γ̄
2α

2α−1

k,N ((k + 1) log2(k + 4))
1−α
2α−1 ,

ŝN := max
1≤k≤N−1

(k + 1)
1
2 log(k + 4)γ̄k,Ne

∑N−1
p=0

1
(p+1) log2(p+4)

with γ̄k,N := γk
N (1 +

∑N−1
j=k+1(

Π1,j

Π1,k
)

1
2 ), and Π1,N :=

∏N−1
p=0 (1 − 2λγp+1 + CH,µγ

2
p+1), the

constants ϕα(γ,H, θ0) and λ4.1 being defined in Section 4.2 and Proposition 4.5 respec-
tively.

As regards the explicit computation of the Legendre transform of Φ̄α,N , similarly to
the previous theorem, we have:

• for α ∈ ( 1
2 , 1]:

– if λ ∈ [0, 2ϕ(C̄γN/(C̄
γ,α
N )2α−1)

1
2(1−α) ], then Φ̄∗α,N (λ) = (λ2/4ϕC̄γN );

– If λ ∈ [ 2α
2α−1ϕ(C̄γN/(C̄

γ,α
N )2α−1)

1
2(1−α) ,+∞), then Φ̄∗α,N (λ) = 1

2α

(
2α−1
2αϕ

)2α−1
λ2α

C̄γ,αN )2α−1 ;

– If λ ∈ (2ϕ(C̄γN/(C̄
γ,α
N )2α−1)

1
2(1−α) , 2α

2α−1ϕ(C̄γN/(C̄
γ,α
N )2α−1)

1
2(1−α) ), then Φ̄∗α,N (λ) =

(
C̄γN
C̄γ,αN

)
2α−1

2(1−α)λ− ϕ (C̄γN )
α

1−α

(C̄γ,αN )
2α−1
1−α

.

• for α = 1
2 ,

∀λ ≥ 0, Φ̄∗1/2,N (λ) =
2ϕC̄γN
ŝ2
N

((
1 +

ŝNλ4.1λ

2ϕC̄γN

) 1
2

− 1

)2

Hence, for N ≥ 1 being fixed, the following simple asymptotic behaviors can be
easily derived:
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– When λ is small, Φ̄∗1/2,N (λ) ∼ λ2
4.1λ

2/(2ϕC̄γN );

– When λ goes to infinity, Φ̄∗1/2(λ) ∼ λ4.1λ/ŝN .

Corollary 2.11. (Non-asymptotic deviation bounds) Under the same assumptions as
Theorem 2.10, for all N ≥ 1 for all r ≥ 0, one has

Pθ0
(∣∣θ̄γN − θ∗∣∣ ≥ r + δ̄N

)
≤ exp

(
−Φ∗α,N (r)

)
and δ̄N := Eθ0

[∣∣θ̄γN − θ∗∣∣].
Now, we analyze the impact of the step sequence on the concentration rate se-

quences C̄γN , C̄γ,αN , ŝN and the bias δ̄N . We first simplify the expression of the con-
centration rate. Let us note that since the step sequence (γn)n≥1 satisfies (1.5), there
exists a positive constant K > 0 such that (Π1,jΠ

−1
1,k)

1
2 ≤ K exp(−λ(Γ1,j−Γ1,k+1)), k < j.

Moreover, since the function x 7→ exp(−λx) is decreasing on [Γ1,p,Γ1,p+1], one clearly
gets for all i, j ∈ {0, · · · , N − 1}, i < j

Mj −Mi :=

j−1∑
p=i

e−λΓ1,p+1γp+1 =

j−1∑
p=i

∫ Γ1,p+1

Γ1,p

e−λΓ1,p+1dx ≤ 1

λ
(e−λΓ1,i − e−λΓ1,j)

so that, using the latter bound and an Abel transform, we obtain

N−1∑
j=k+1

exp(−λΓ1,j+1) =

N−1∑
j=k+1

(Mj+1 −Mj)γ
−1
j+1 ≤ −

1

λ

 N−1∑
j=k+1

(e−λΓ1,j+1 − e−λΓ1,j)γ−1
j+1


≤ − 1

λ

e−λΓ1,Nγ−1
N+1 − e

−λΓ1,k+1γ−1
k+2 −

N−1∑
p=k+1

e−λΓ1,p+1(γ−1
p+2 − γ

−1
p+1)


which finally leads to the following bound

γ̄k,N ≤
K

λ

γkγ−1
k+2

N
+
γk
N

N−1∑
p=k+1

e−λ(Γ1,p−Γ1,k+1)(γ−1
p+2 − γ

−1
p+1)

 . (2.2)

Now, we are in position to study the impact of the step sequence (γn)n≥1 on the
concentration rate sequences:

• If we select γn = c
n with c > 0, then, using that Γ1,N = c log(N) + c′1 + rN , c′1 > 0

with rN → 0, one easily derives from (2.2) that there exists C > 0 such that

γ̄k,N ≤ C

 1

N
+

1

k1−cλ
1

N

N−1∑
p=k

1

pλc

 ,

and a comparison between the series and the integral yields the following bounds:

– If λc < 1
2 , one has: C̄γN = O(N−2cλ), C̄γ,αN = O(N−

2α
2α−1 cλ) and ŝN = O(N−cλ).

– If λc > 1
2 , one has: C̄γN = O(N−1), C̄γ,αN = O((log(N))2 1−α

2α−1N−
α

2α−1 ) and

ŝN = O(N−
1
2 ).

Hence, we clearly see that for the case γn = c
n , averaging the trajectories of a

stochastic approximation algorithm is not the key to circumvent the lake of ro-
bustness concerning the choice of the constant c.
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The bound for the bias is obtained by averaging the bound previously obtained for
δN . We easily get:

δ̄N ≤
1

N

N−1∑
k=0

Eθ0 [|θγk − θ
∗|] ≤ K

(
|θ0 − θ∗|
Nλc

+
(2Cα,µ)

1
2

Nλc∧ 1
2

)

• If we choose γn = c
nρ , c > 0, 1

2 < ρ < 1 then we have for k ≤ p

Γ1,p − Γ1,k =

p∑
j=k+1

j−ρ =

p∑
j=k+1

∫ j+1

j

1

jρ
dx ≥

∫ p+1

k+1

1

xρ
dx

≥ 1

1− ρ
(
(p+ 1)1−ρ − (k + 1)1−ρ)

so that for some positive constant C which may vary from line to line

N−1∑
p=k+1

e−λ(Γ1,p−Γ1,k+1)(γ−1
p+2 − γ

−1
p+1) ≤ Ce

λ
1−ρ (k+1)1−ρ

 N−1∑
p=k+1

e−
λ

1−ρ (p+1)1−ρ 1

(p+ 1)1−ρ


≤ Ce

λ
1−ρ (k+1)1−ρ

∫ N

k+1

e−
λ

1−ρx
1−ρ

x−(1−ρ)dx

≤ Ce
λ

1−ρ (k+1)1−ρ
∫ N1−ρ

(k+1)1−ρ
e−

λ
1−ρxx

2ρ−1
1−ρ dx

where we use a change of variable in the latter integral. For k large enough, the

function x 7→ e−
λ

1−ρxx
2ρ

1−ρ is decreasing on [k,+∞) which implies

e
λ

1−ρ (k+1)1−ρ
∫ (N−1)1−ρ

(k+1)1−ρ
e−

λ
1−ρxx

2ρ
1−ρ

1

x
1

1−ρ
dx ≤ C(k + 1)2ρ

[
−1− ρ

ρ
x−

ρ
1−ρ

]+∞

(k+1)1−ρ

≤ C(k + 1)ρ.

Hence, we finally have γ̄k,N = O(N−1) and C̄γN = O(N−1), C̄γ,αN = O((log(N))2 1−α
2α−1N−

α
2α−1 )

and ŝN = O(log(N)N−
1
2 ). Hence, averaging has allowed the concentration rate

to go from the slow concentration rates o(N−ρ+ε), o(N−
ρ−(1−α)

2α−1 −ε) for all ε > 0

and O
(

log(N)N−(ρ− 1
2 )
)

to the optimal rates O(N−1), O((log(N))2 1−α
2α−1N−

α
2α−1 )

and ŝN = O(log(N)N−
1
2 ) for free, i.e. without any condition on the step sequence

parameter c.

Concerning the bias, by averaging the bias sequence (δk)1≤k≤N−1 we directly ob-
tain the following bound

δ̄N ≤ K

(
|θ0 − θ∗|

N
+

(2Cα,µ)
1
2

N
ρ
2−ε

)
, ∀ε > 0

Hence, we see that there is no sub-exponential decreasing of the impact of the
initial condition but a decay at rate O(N−1). Consequently, this leads us to say
that a stochastic approximation algorithm must be averaged after few iterations
in practical implementations and not directly from the first step.

3 Euler Scheme: Proof of the Main Results

In this section we will assume that (HS) and (HDα) are in force.
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3.1 Proof of Theorem 2.1

The proof of Theorem 2.1 is divided into several propositions. Next proposition
stresses the key role played by the Gaussian concentration property of the innovations
law, that is a weaker concentration regime will lead to a lower integrability rate with
respect to α.

Proposition 3.1. Denote by X∆ := (X∆
tk

)0≤k≤N the scheme (1.2) with time step ∆ =

T/N , N ∈ N∗ associated to the diffusion (SDEb,σ) starting from x at time 0. Assume that
the innovations (Ui)i≥1 of (1.2) satisfy (GC(β)) for some β > 0. Then, there exists εβ > 0

which only depends on the law µ such that for all λ < min(1, εβ(2ηαCσT exp(CT ))−1),
one has

sup
0≤n≤N

log
(
Ex
[
exp(λV α(X∆

tn))
])
≤ λ exp(CT )V α(x)+

1

2
log
(
E
[
exp

(
λ2ηαCσT exp(CT )|U1|2

)])
.

with C := C(b, σ, V, α,∆) = α(CV Cb)
1
2 + βCσα

2(1 + 2η∆)2(CV + Cb) + αηCb∆.

Proof. Using the concavity of x 7→ xα, α ∈ (0, 1], we have for all k ≥ 0

V α(X∆
tk+1

)− V α(X∆
tk

) ≤ αV α−1(X∆
tk

)(V (X∆
tk+1

)− V (X∆
tk

)).

A Taylor expansion of order 2 of the function V , recalling that 2η = supx∈Rd
∥∥∇2V (x)

∥∥ <
+∞, yields

V (X∆
tk+1

)− V (X∆
tk

)) ≤ ∇V (X∆
tk

).(X∆
tk+1
−X∆

tk
) + η|X∆

tk+1
−X∆

tk
|2,

which together with the previous inequality leads to

V α(X∆
tk+1

)− V α(X∆
tk

) ≤ α∆
∇V (X∆

tk
).b(tk, X

∆
tk

)

V 1−α(X∆
tk

)
+ α∆

1
2
∇V (X∆

tk
).σ(tk, X

∆
tk

)Uk+1

V 1−α(X∆
tk

)

+ αη∆2 |b(tk, X
∆
tk

)|2

V 1−α(X∆
tk

)
+ 2αη∆

3
2
b(tk, X

∆
tk

).σ(tk, X
∆
tk

)Uk+1

V 1−α(X∆
tk

)

+ αη∆
|σ(tk, X

∆
tk

)Uk+1|2

V 1−α(X∆
tk

)
.

From (HDα), for all (x, u) ∈ Rd × Rq, we clearly have supt∈[0,T ] |∇V (x).b(t, x)| ≤
(CV Cb)

1
2V (x) and supt∈[0,T ] |σ(t, x)u|2 ≤ CσV 1−α(x)|u|2 which yields

V α(X∆
tk+1

) ≤ V α(X∆
tk

)(1 + α(CV Cb)
1
2 ∆ + αηCb∆

2)

+ α∆
1
2 (1 + 2η∆)

(∇V (X∆
tk

) + b(X∆
tk

)).σ(X∆
tk

)Uk+1

V 1−α(X∆
tk

)
+ Cσαη∆|Uk+1|2.

Using (HDα), ∀x ∈ Rd the functions g(x, .) : u 7→ (∇V (x)+b(x)).σ(x)u
V 1−α(x) are Lipschitz, and

more precisely satisfy

∀x ∈ Rd, sup
(u,u′ )∈(Rq)2

|g(x, u)− g(x, u
′
)|

|u− u′ |
≤ (C

1/2
V + C

1/2
b )C1/2

σ V
α
2 (x).

Hence, from the Cauchy Schwarz inequality and since the law of the innovations sat-
isfy (GC(β)) for some β > 0, there exists εβ > 0 such that for λ < min(1, εβ(2ηαCσ∆)−1),
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one has

E
[

exp(λV α(X∆
tk+1

))
∣∣∣Ftk] ≤ exp(λV α(X∆

tk
)(1 + α(CV Cb)

1
2 ∆ + αηCb∆

2))

× E
[

exp(2λα∆
1
2 (1 + 2η∆)g(X∆

tk
, Uk+1))

∣∣∣Ftk] 1
2

× E
[
exp(2ληαCσ∆|Uk+1|2)

∣∣Ftk] 1
2

≤ exp(λV α(X∆
tk

)(1 + α(CV Cb)
1
2 ∆ + αηCb∆

2))

× exp(λ2βα2∆(1 + 2η∆)2(CV + Cb)CσV
α(X∆

tk
))

× E
[
exp(2ληαCσ∆|U1|2)

] 1
2

≤ exp(λC(∆)V α(X∆
tk

))E
[
exp(2ληαCσ∆|U1|2)

] 1
2 ,

where C(∆) := 1 + ∆
(
α(CV Cb)

1
2 + βCσα

2(1 + 2η∆)2(CV + Cb) + αηCb∆
)

. Now define

Vk =
V α(X∆

tk
)

C(∆)k
, for k ∈ {0, · · · , N}. Taking expectation in both sides of the previous

inequality clearly implies

E [exp(λVk+1)] ≤ E [exp(λVk)]E

[
exp

(
λ

2ηαCσ∆

C(∆)k+1
|U1|2

)] 1
2

and by a straightforward induction, for n ∈ {0, · · · , N} we have

E [exp(λVn)] ≤ exp(λV0)

n−1∏
k=0

E

[
exp

(
λ

2ηαCσ∆

C(∆)k+1
|U1|2

)] 1
2

,

which finally yields, for λ < min(1, εβ(2ηαCσ∆C(∆)n)−1),

E
[
exp(λV α(X∆

tn))
]
≤ exp(λC(∆)nV α(x))

n−1∏
k=0

E
[
exp

(
λ2ηαCσ∆C(∆)k+1|U1|2

)] 1
2 .

Observe now that C(∆)N ≤ exp(CT ) with C := C(b, σV, α,∆) = α(CV Cb)
1
2 +βCσα

2(1+

2η∆)2(CV + Cb) + αηCb∆. Using Jensen’s inequality, the latter bound clearly provides
the following control of the quantity of interest for λ < min(1, εβ(2ηαCσT exp(CT ))−1)

sup
0≤n≤N

log
(
E
[
exp(λV α(X∆

tn))
])
≤ λ exp(CT )V α(x)+

1

2
log
(
E
[
exp

(
λ2ηαCσT exp(CT )|U1|2

)])
.

Corollary 3.2. Assume that the assumptions of Proposition 3.1 are satisfied. Then,
there exists a constant K3.1 such that for all α ∈ ( 1

2 , 1], one has

∀λ ≥ 0, sup
0≤n≤N

log
(
Ex
[
exp(λV 1−α(X∆

tn))
])
≤ K3.1(λ ∨ λ

α
2α−1 ).

Remark 3.3. The constant K3.1 can be explicitly computed. Indeed, one has K3.1 :=
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max (Ψ1(T,∆, x, b, σ),Ψ2(T,∆, x, b, σ)) with

Ψ1(T,∆, x, b, σ) := e
2α−1
α ρ

− 1−α
2α−1

exp

(
ρ

1− α
α

eCTV α(x) +
1

2
logE[e

εβ(1−α)

2α |U |2 ]

)
+

(
V 1−α(x) +

(
CσE[|U |2]

K

) 1−α
α

)
e(1−α)KT ,

Ψ2(T,∆, x, b, σ) := ρ−
1−α
2α−1

2α− 1

α
+ ρ

1− α
α

eCTV α(x) +
1

2
logE

[
exp

(
εβ(1− α)

2α
|U |2

)]
,

ρ :=
1

2
min(1, εβ(2ηαCσT exp(CT ))−1),

C := C(b, σV, α,∆) = α(CV Cb)
1
2 + βCσα

2(1 + 2η∆)2(CV + Cb) + αηCb∆

K := K(V, b,∆) = (CV Cb)
1
2 + ηCb∆

Proof. For λ ∈ [0, 1], one has

Ex[exp(λV 1−α(X∆
tn))] = 1 + λEx[V 1−α(X∆

tn)] +
∑
k≥2

λk

k!
Ex[V (1−α)k(X∆

tn)]

≤ 1 + λEx[V 1−α(X∆
tn)] + λ

∑
k≥0

1

k!
Ex[V (1−α)k(X∆

tn)]

≤ exp
(
λ(Ex[V 1−α(X∆

tn)] + Ex[exp(V 1−α(X∆
tn))])

)
,

Tedious but simple computations, in the spirit of Proposition 3.1, show that

Ex[V 1−α(X∆
tn)] ≤ Ex[V α(X∆

tn)]
1−α
α ≤

(
V 1−α(x) +

(
CσE[|U |2]

K

) 1−α
α

)
e(1−α)KT .

with K := K(V, b,∆) = (CV Cb)
1
2 + ηCb∆.

Thanks to the following Young inequality, for all (ρ, x) ∈ R+×Rd, V 1−α(x) ≤ 1−α
α ρV α(x)+

2α−1
α ρ−

1−α
2α−1 , which is valid if α ∈ ( 1

2 , 1], one has for ρ = ρ := 1
2 min(1, εβ(2ηαCσT exp(CT ))−1)

sup
0≤n≤N

Ex[exp(V 1−α(X∆
tn))] ≤ e

2α−1
α ρ

− 1−α
2α−1

sup
0≤n≤N

Ex

[
exp

(
1− α
α

ρV α(X∆
tn)

)]
≤ e

2α−1
α ρ

− 1−α
2α−1

eρ
1−α
α eCTV α(x)+ 1

2 logE[exp(
εβ(1−α)

2α |U |2)]

where we used Proposition 3.1 for the last inequality.

Now, for all λ > 1, using the Young inequality λV 1−α(X∆
tn) ≤ ( 2α−1

α )ρ−
1−α
2α−1λ

α
2α−1 +

( 1−α
α )ρV α(X∆

tn), valid for all ρ > 0 (to be chosen later on) and for all α ∈ ( 1
2 , 1], one

derives

Ex[exp(λV 1−α(X∆
tn))] ≤ exp

(
(
2α− 1

α
)ρ−

1−α
2α−1λ

α
2α−1

)
Ex

[
exp

((
1− α
α

)
ρV α(X∆

tn)

)]
≤ exp

(
Kλ

α
2α−1

)
withK(ρ) := 2α−1

α ρ−
1−α
2α−1 +log(Ex

[
e(

1−α
α )ρV α(X∆

tn
)
]
) and 1−α

α ρ < min(1, εβ(2ηαCσTe
CT )−1).

We select ρ = ρ in the last inequality to complete the proof and use Proposition 3.1 to
bound the quantity K(ρ).

Corollary 3.4. Under the same assumptions as Proposition 3.1, one has

∀λ ∈ [0, λ3.2), sup
0≤n≤N

log
(
Ex

[
exp(λ2V 1/2(X∆

tn))
])
≤ K3.2

(λ/λ3.2)2

1− (λ/λ3.2)
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withK3.2 := λ2
3.2e

CT (2V
1
2 (x)+2ηαCσE[|U1|2]T ) and λ3.2 satisfiesE[eλ

2
3.22ηαCσT exp(CT )|U1|2 ] ≤

2.

Proof. By definition of λ3.2, we have ∀k ≥ 1, λ2k
3.2(2ηαCσT exp(CT ))kE[|U1|2k] ≤ 2k!. Con-

sequently, setting temporarily C1 := exp(CT )V 1/2(x), C2 := 2ηαCσT exp(CT ) for sake of
simplicity, simple computations show that for λ < λ3.2

logE
[
exp

(
λ2C2|U1|2

)]
− λ2C2E[|U1|2] = log

1 +
∑
k≥1

λ2kCk2E[|U1|2k]

k!

− λ2C2E[|U1|2]

≤
∑
k≥2

λ2kCk2E[|U1|2k]

k!

≤ 2
∑
k≥2

(
λ

λ3.2

)2k

≤ 2
(λ/λ3.2)2

1− (λ/λ3.2)

hence, using Proposition 3.1 for α = 1
2 , we clearly get

sup
0≤n≤N

log
(
Ex

[
exp(λ2V 1/2(X∆

tn))
])
≤ λ2

3.2

(
C1 +

C2E[|U1|2]

2

)
(λ/λ3.2)2 +

(λ/λ3.2)2

1− (λ/λ3.2)

≤ 2λ2
3.2

(
C1 +

C2E[|U1|2]

2

)
(λ/λ3.2)2

1− (λ/λ3.2)
.

This completes the proof.

Proposition 3.5. (Control of the Lipschitz modulus of iterative kernels) Denote the
Lipschitz modulus of b and σ appearing in the diffusion process (SDEb,σ) by [b]1 and
[σ]1, respectively. Denote by Pk and Pk,p = Pk ◦ · · · ◦ Pp−1, k, p ∈ {0, · · · , N − 1}, k ≤ p

the (Feller) transition kernel and the iterative kernels of the Markov chain defined by
the scheme (1.2), respectively. Then, for all real-valued Lipschitz function f and for all
k, p ∈ {0, · · · , N − 1}, k ≤ p the functions Pk(f) are Lipschitz-continuous and one has

[Pk,p(f)]1 := sup
(x,x′)∈(Rd)2

|Pk,p(f)(x)− Pk,p(f)(x′)|
|x− x′|

≤ [f ]1(1 + C(b, σ,∆)∆)
p−k

2

where [f ]1 stands for the Lipschitz modulus of the function f and C(b, σ,∆) = 2[b]1 +

[σ]21 + ∆[b]21.

Proof. Using the Cauchy Schwarz inequality and (HS), for all (x, y) ∈ (Rd)2 and for all
k ∈ {0, · · · , N − 1}, one has

|Pk(f)(x)− Pk(f)(y)| ≤ E
[∣∣∣f(x+ b(tk, x)∆ + σ(tk, x)U1)− f(y + b(tk, y)∆ + ∆

1
2σ(tk, y)U1)

∣∣∣]
≤ [f ]1E

[∣∣∣x− y + (b(tk, x)− b(tk, y))∆ + ∆
1
2 (σ(tk, x)− σ(tk, y))U1

∣∣∣2] 1
2

≤ [f ]1(1 + C(b, σ,∆)∆)
1
2 |x− y|.

A straightforward induction argument completes the proof.

Proposition 3.6. (Control of the Laplace transform) Denote by X∆
T the value at time T

of the scheme (1.2) associated to the diffusion (SDEb,σ). Assume that the innovations
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(Un)n≥1 in (1.2) satisfy (GC(β)) for some β > 0. Let f be a real-valued 1-Lipschitz-
continuous function defined on Rd. For all λ ≥ 0 and for all α ∈ ( 1

2 , 1], one has

Ex
[
exp(λf(X∆

T ))
]
≤ exp(λEx

[
f(X∆

T )
]
) exp

(
K3.1(ϕ(T, b, σ,∆) ∨ ϕ(T, b, σ,∆)

α
2α−1 )(λ2 ∨ λ

2α
2α−1 )

)
,

with ϕ(T, b, σ,∆) := Cσβ
(1+C(∆)∆)

4C(∆) e3C(∆)T and C(∆) := 2[b]1 + [σ]21 + ∆[b]21.

If α = 1
2 , for all λ ∈ [0, ϕ(T, b, σ,∆)−1/2λ3.2), one has

Ex
[
exp(λf(X∆

T ))
]
≤ exp(λEx

[
f(X∆

T )
]
) exp

(
K3.2

(λϕ(T, b, σ,∆)1/2/λ3.2)2

1− (λϕ(T, b, σ,∆)1/2/λ3.2)

)
.

Proof. As mentionned earlier on in the introduction, we begin our proof using that
the law µ of the innovation satisfies (GC(β)) and (HDα). Hence, for λ ≥ 0 and k ∈
{0, · · · , N − 1}, one has

Pk(exp(λf))(x) = E
[
exp

(
λf
(
x+ b(tk, x)∆ + σ(tk, x)∆1/2Uk+1

))]
≤ exp

(
λPk(f)(x) + β

λ2

4
[f ]21∆|σ(tk, x)|2

)
≤ exp

(
λPk(f)(x) + Cσβ

λ2

4
[f ]21∆V 1−α(x)

)
. (3.1)

Taking expectation from both sides of the last inequality and using the Hölder in-
equality with conjugate exponents (p, q) (to be specified later on) leads to

Ex

[
exp(λf(X∆

tk+1
))
]
≤ Ex

[
exp(λpPk(f)(X∆

tk
))
] 1
p Ex

[
exp

(
qCσβ

4
∆λ2[f ]21V

1−α(X∆
tk

)

)] 1
q

.

(3.2)
Now, we apply the last inequality for f := Pk+1,N (f) and obtain

Ex

[
exp(λPk+1,N (f)(X∆

tk+1
))
]
≤ Ex

[
exp(λpPk,N (f)(X∆

tk
))
] 1
p

× Ex
[
exp

(
qCσβ

4
∆λ2[Pk+1,N (f)]21V

1−α(X∆
tk

)

)] 1
q

.

Consequently, an elementary induction yields

Ex
[
exp(λf(X∆

T ))
]

= Ex
[
exp(λPN,N (f)(X∆

tN ))
]

≤ Ex
[
exp(λpNP0,N (f)(x))

] 1

pN

×
N−1∏
k=0

(
Ex

[
exp

(
Cσβ

4
λ2qp2k∆[PN−k,N (f)]21V

1−α(X∆
tN−k−1

)

)] 1
q

) 1

pk

≤ exp(λEx
[
f(X∆

T )
]
)

× exp

(
N−1∑
k=0

1

pk
1

q
sup

0≤n≤N
log
(
Ex

[
e
Cσβ

4 λ2∆qp2N (1+C(∆)∆)NV 1−α(X∆
tn

)
]))

where we used Proposition 3.5 for the last inequality. Observe now that since (p, q) are
conjugate exponents, we have 1

q

∑N−1
k=0

1
pk

= 1
q (1− 1

pN
) 1

1− 1
p

≤ 1
q

p
p−1 = 1, so that

Ex
[
exp(λf(X∆

T ))
]
≤ exp(λEx

[
f(X∆

T )
]
)e

sup0≤n≤N log

(
Ex

[
e
Cσβ

4
λ2∆qp2N (1+C(∆)∆)NV 1−α(X∆

tn
)
])
.
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Setting p := 1 + C(∆)∆, q = p
p−1 = 1+C(∆)∆

C(∆)∆ and using the straightforward inequality

(1 + C(∆)∆)3N ≤ exp(3C(∆)T ), we derive

Ex
[
exp(λf(X∆

T ))
]
≤ exp(λEx

[
f(X∆

T )
]
)e

sup0≤n≤N log

(
Ex

[
e
Cσβ(1+C(∆))

4C(∆)
e3C(∆)T λ2V 1−α(X∆

tn
)

])
.

We set ϕ(T, b, σ,∆) := Cσβ
(1+C(∆)∆)

4C(∆) e3C(∆)T . For α ∈ ( 1
2 , 1], Corollary 3.2 clearly implies

Ex
[
exp(λf(X∆

T ))
]
≤ exp(λEx

[
f(X∆

T )
]
) exp

(
K3.1(ϕ(T, b, σ,∆) ∨ ϕ(T, b, σ,∆)

α
2α−1 )(λ2 ∨ λ

2α
2α−1 )

)
and for α = 1

2 , according to Proposition 3.4, for λ < ϕ(T, b, σ,∆)−1/2λ3.2, one has

Ex
[
exp(λf(X∆

T ))
]
≤ exp(λEx

[
f(X∆

T )
]
) exp

(
K3.2

(λϕ(T, b, σ,∆)1/2/λ3.2)2

1− (λϕ(T, b, σ,∆)1/2/λ3.2)

)
.

3.2 Proof of Theorem 2.6

We will prove the result for the process X solution of (SDEb,σ). The proof for the
continuous Euler scheme is similar. The following lemma is standard. As will become
clear in the discussion below, the only interest it holds is to know the explicit behavior
with respect to p. This behavior is optimal as it can be readily checked by taking Xt =

x0 exp(σWt − σ2t/2), t ∈ [0, T ], see also remark 2.7.

Lemma 3.7. Under the assumptions of Theorem 2.6, for all p ≥ 1, one has

Ex[ sup
0≤t≤T

|Xt|2p] ≤ (1 + |x|)2p exp(26p2(1 + (Cb ∨ Cσ)T )).

Proof. Let g : x 7→
√

1 + |x|2 satisfying for all x ∈ Rd, ∇g(x) = g−1(x)x, ∇2g(x) =

g−1(x)Id − g−3(x)xx∗ and V : x 7→ g2p(x). We apply Itô’s formula to the process V (Xt)

with∇V (x) = 2pg(x)2p−1∇g(x),∇2V (x) = 2pg(x)2p−1∇2g(x)+2p(2p−1)g(x)2p−2∇g(x)∇g(x)∗

noticing that for all t ∈ [0, T ]

∇V (x).b(t, x) +
1

2
Tr(σ∗∇2V σ)(t, x) ≤ 2pCbg(x)2p−1(1 + |x|) +

1

2
Cσ(1 + |x|2)||∇2V (x)||

≤ 4pCbg(x)2p

+
1

2
Cσ(1 + |x|2)(4pg(x)2p−2 + 2p(2p− 1)g(x)2p−2)

≤ 4p(Cb ∨ Cσ)g(x)2p + 2p(Cb ∨ Cσ)g(x)2p

+ p(2p− 1)(Cb ∨ Cσ)g(x)2p

≤ 8p2(Cb ∨ Cσ)V (x)

we clearly obtain,

V (Xτm
t ) ≤ V (x) + 8p2(Cb ∨ Cσ)

∫ t

0

V (Xτm
s )ds+

∫ t∧τm

0

(∇V ∗σ)(Xτm
s )dWs, (3.3)

where we classically introduced the stopping time τm := inf {t ≥ 0 : |Xt − x| ≥ m} for
m ∈ N∗ and Xτm := (Xt∧τm)t≥0. The stochastic integral Mm

t :=
∫ t∧τm

0
(∇V ∗σ)(Xτm

s )dWs

defines a continuous martingale so that taking expectation in the previous inequality
clearly yields

Ex[V (Xτm
t )] ≤ V (x) + 8p2(Cb ∨ Cσ)

∫ t

0

Ex[V (Xτm
s )]ds.
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Now, using Gronwall’s lemma we derive

∀m ∈ N∗, sup
t∈[0,T ]

Ex[V (Xτm
t )] ≤ (1 + |x|)2p exp(8p2(Cb ∨ Cσ)T )

As τm → +∞ a.s., as m → +∞ (since sups∈[0,t] |Xs| < +∞) using Fatou’s lemma, we
finally obtain for all p ≥ 1

sup
0≤t≤T

Ex[V (Xt)] = sup
0≤t≤T

Ex[g(Xt)
2p] ≤ (1 + |x|)2p exp(8p2(Cb ∨ Cσ)T ). (3.4)

We then observe that Itô’s formula also implies

Ex[ sup
0≤s≤t

V (Xτm
t )] ≤ V (x) + 8p2(Cb ∨ Cσ)

∫ t

0

Ex[ sup
0≤u≤s

V (Xτm
u )]ds+ Ex[(Mm

t )∗] (3.5)

where (Mm
t )∗ := sup0≤s≤tM

m
s . Combining Jensen’s and Doob’s inequalities, one clearly

gets

Ex[(Mm
t )∗]2 ≤ Ex[((Mm

t )∗)2] ≤ 4Ex[(Mm
t )2] ≤ 16p2Cσ

∫ t

0

Ex[g(Xτm
s )4p]ds

≤ 16p2CσT (1 + |x|)4p exp(32p2(Cb ∨ Cσ)T )

where we used ∀x ∈ Rd, (∇V ∗σ)2(x) ≤ 4p2Cσg(x)4p−2(1 + |x|2) = 4p2Cσg(x)4p and (3.4)
for the last inequality. Consequently, plugging the latter estimate into (3.5), one has for
all t ∈ [0, T ]

Ex[ sup
0≤s≤t

V (Xτm
t )] ≤ V (x) + 4p(CσT )

1
2 (1 + |x|)2p exp(16p2(Cb ∨ Cσ)T )

+ 8p2(Cb ∨ Cσ)

∫ t

0

Ex[ sup
0≤u≤s

V (Xτm
u )]ds

≤ (1 + |x|)2p(1 + 4p(CσT )
1
2 exp(16p2(Cb ∨ Cσ)T ))

+ 8p2(Cb ∨ Cσ)

∫ t

0

Ex[ sup
0≤u≤s

V (Xτm
u )]ds

so that using Gronwall’s lemma yields and passing to the limit m→ +∞, for all p ≥ 1

Ex[ sup
0≤t≤T

|Xt|2p] ≤ Ex[ sup
0≤s≤T

V (Xt)] ≤ 2(1 + |x|)2p exp(26p2(1 + (Cb ∨ Cσ)T )).

For all real-valued and 1-Lipschitz function f defined on C and for all p ≥ 1, one has

Ex[|f(X)− Ex[f(X)]|2p] = Ex[|f(X)− f(0) + f(0)− Ex[f(X)]|2p] ≤ 22pEx[||X||2p∞]

≤ 22p+1(1 + |x|)2p exp(26p2(1 + (Cb ∨ Cσ)T )) (3.6)

where we used Lemma 3.7 for the last inequality. Now, combining the Chebyshev and
Rosenthal inequalities for independent zero-mean random variables (see e.g. [13]), for
all p ≥ 1, there exists C2p > 0 such that

Px

(
1

M
|
M∑
k=1

f(Xk)− Ex[f(X)]| ≥ r

)
≤
Ex[(

∑M
k=1 f(Xk)− Ex[f(X)])2p]

r2pM2p

≤ C2p
Ex[|f(X)− Ex[f(X)]|2p]

r2pMp

≤ 2
(2(1 + |x|))2p exp(28p2(1 + (Cb ∨ Cσ)T ))

r2pMp

:= 2 exp(−ϕ(p))
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with ϕ(p) := −κ(b, σ, T )p2 + p log( r2M
(2(1+|x|))2 ) and where we used for all p ≥ 1, C2p ≤

(2p)2p ≤ exp(2p2), see e.g. p.235-236 in [13], and (3.6) for the last inequality. Optimizing

the latter inequality with respect to pwith p ≥ 1, i.e. selecting p = 1
2κ(b,σ,T ) log( r2M

(2(1+|x|))2 ),
we obtain

Px

(
1

M
|
M∑
k=1

f(Xk)− Ex[f(X)]| ≥ r

)
≤ 2 exp

(
− 1

4κ(b, σ, T )
log

(
r2M

(2(1 + |x|))2

)2
)

for r2M ≥ (2(1 + |x|))2 exp(2κ(b, σ, T )). Otherwise, using the Jensen and Rosenthal
inequalities, one has for all p ∈ [0, 1]

Ex[(

M∑
k=1

f(Xk)− Ex[f(X)])2p] ≤ Ex[(

M∑
k=1

f(Xk)− Ex[f(X)])2]p ≤
(
MC2Ex[|f(X)− Ex[f(X)]|2]

)p
≤Mp

(
4(2(1 + |x|))2 exp(κ(b, σ, T ))

)p
where we used (3.6) for the last inequality. Now, noticing that we have 4e ≤ exp(κ(b, σ, T )),
Chebyshev’s inequality yields

Px

(
1

M
|
M∑
k=1

f(Xk)− Ex[f(X)]| ≥ r

)
≤ Cp

r2pMp
≤ 2

(Cp)p

r2pMp
≤ 2 exp(−ϕ(p))

with ϕ(p) := −p log(p) + p log( r
2M
C ), C := (2(1 + |x|))2 exp(2κ(b, σ, T ) − 1) and where

we used that for all p ≥ 0, Cp ≤ 2(Cp)p since the function p 7→ 2pp is minimized for
p = exp(−1) and 2 exp(−1/e)) > 1. Consequently, optimizing over p such that p ≤ 1, i.e.

selecting p = r2M
Ce , one has

Px

(
1

M
|
M∑
k=1

f(Xk)− Ex[f(X)]| ≥ r

)
≤ 2 exp

(
− r2M

(2(1 + |x|))2 exp(2κ(b, σ, T ))

)

for r2M ≤ Ce = (2(1 + |x|))2 exp(2κ(b, σ, T )). This completes the proof.

4 Stochastic Approximation Algorithm: Proof of the main Results

Throughout this section we will assume that (HL), (HLS)α and (HUA) are in force.

4.1 Proof of Theorem 2.8

The proof of Theorem 2.8 is divided into several propositions.

Proposition 4.1. Denote by (θγn)0≤n≤N the scheme (1.4) with step sequence γ =

(γn)0≤n≤N satisfying (1.5). Assume that the innovations (Ui)i≥1 of (1.4) satisfy (GC(β))
for some β > 0. Then, there exists εβ > 0 which only depends on the law µ such that for
all λ < min(1, εβ(8ηαC2

αΠ2,N )−1), one has

sup
0≤n≤N

log
(
Eθ0

[
eλL

α(θγn)
])
≤ (Lα(θ0) + C

N−1∑
k=0

γ2
k+1)Π2,Nλ

+

(
1

2

N−1∑
k=0

γ2
k+1

)
log
(
E
[
e8ηαC2

αΠ2,Nλ|U |2
])
.

with Π2,N = Π2,N (α) :=
∏N−1
k=0 (1 + (2ηαCh + β

2α
2C2

α)γ2
k+1) and C = 4ηαC2

αE[|U |2].
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Proof. The proof relies on similar arguments as those used in the proof of Proposition
3.1. Using the concavity of x 7→ xα, α ∈ (0, 1], a Taylor expansion of order 2 of the
function L, and finally (HLS)α, for all k ∈ {0, · · · , N − 1}, we have

Lα(θγk+1)− Lα(θγk) ≤ αLα−1(θγk)
(
∇L(θγk).(θγk+1 − θ

γ
k) + η|θγk+1 − θ

γ
k |

2
)
,

= −γk+1αL
α−1(θγk) 〈∇L(θγk), h(θγk)〉

− γk+1αL
α−1(θγk) 〈∇L(θγk), H(θγk , Uk+1)− h(θγk)〉

+ αηγ2
k+1L

α−1(θγk)|H(θγk , Uk+1)|2,
≤ −γk+1αL

α−1(θγk) 〈∇L(θγk), H(θγk , Uk+1)− h(θγk)〉
+ 2ηαγ2

k+1L
α−1(θγk)|H(θγk , Uk+1)− h(θγk)|2 + 2ηαγ2

k+1L
α−1(θγk)|h(θγk)|2.

Let us note that (HLS)α implies that ∀(θ, u) ∈ Rd × Rq, |H(θ, u) − h(θ)|2 = |H(θ, u) −
E[H(θ, U)]|2 ≤ 2C2

αL
1−α(θ)(E[|U |2] + |u|2) which leads to

Lα(θγk+1)− Lα(θγk) ≤ −γk+1αL
α−1(θγk) 〈∇L(θγk), H(θγk , Uk+1)− h(θγk)〉+ 4ηαC2

αγ
2
k+1E[|U |2]

+ 4ηαC2
αγ

2
k+1|Uk+1|2 + 2ηαChγ

2
k+1L

α(θγk).

Using again (HLS)α, ∀θ ∈ Rd the functions g(θ, .) : u 7→ 〈∇L(θ),H(θ,u)−h(θ)〉
L1−α(θ) are Lipschitz

and more precisely satisfy

∀θ ∈ Rd, sup
(u,u′ )∈(Rq)2

|g(θ, u)− g(θ, u
′
)|

|u− u′ |
≤ CαL

α
2 (θ).

Consequently, denoting C = 4ηαC2
αE[|U |2], from the Cauchy-Schwarz inequality and

since the law of the innovation satisfies (GC(β)) for some β > 0, there exists εβ > 0 such
that for λ < min(1, εβ(8ηαC2

αγ
2
1)−1), one has

E
[
exp(λLα(θγk+1))

∣∣Fk] ≤ exp(λ(1 + 2ηαChγ
2
k+1)Lα(θγk)) exp(Cγ2

k+1λ)

× E [ exp(−2αλγk+1g(θγk , Uk+1))| Fk]
1
2 E
[
exp(8ηαλC2

αγ
2
k+1|Uk+1|2)

∣∣Fk] 1
2

≤ exp(λ(1 + (2ηαCh +
β

2
C2
αα)γ2

k+1)Lα(θγk)) exp(Cγ2
k+1λ)

× E
[
exp(8ηαλC2

αγ
2
k+1|U |2)

] 1
2

In the aim of simplifying notations, we define Π2,n :=
∏n−1
k=0(1 + (2ηαCh + β

2C
2
αα)γ2

k+1)

and temporarily set Lk := Lα(θγk)/Π2,k, for k ∈ {0, · · · , N}. Taking expectation in both
sides of the previous inequality clearly implies

Eθ0 [exp(λLk+1)] ≤ Eθ0 [exp(λLk)] exp

(
C

γ2
k+1

Π2,k+1
λ

)
E

[
exp

(
8ηαC2

α

γ2
k+1

Π2,k+1
λ|U |2

)] 1
2

and by a straightforward induction, for n ∈ {0, · · · , N} we have

Eθ0 [exp(λLn)] ≤ exp(λL0) exp

(
C

n−1∑
k=0

γ2
k+1

Π2,k+1
λ

)
n−1∏
k=0

E

[
exp

(
8ηαC2

α

γ2
k+1

Π2,k+1
λ|U |2

)] 1
2

,

which finally yields for λ < min(1, εβ(8ηαC2
αγ

2
1)−1)

Eθ0 [exp(λLα(θγn))] ≤ exp(Π2,nL
α(θ0)λ) exp

(
C

n−1∑
k=0

Π2,n

Π2,k+1
γ2
k+1λ

)

×
n−1∏
k=0

E

[
exp

(
8ηαC2

α

Π2,n

Π2,k+1
γ2
k+1λ|U |2

)] 1
2

.
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Up to a modification of a constant, we can assume without loss of generality that
sup0≤n≤N γn+1 = γ1 ≤ 1 so that using the Jensen’s inequality, the latter bound clearly
provides the following control of the quantity of interest for λ < min(1, εβ(8ηαC2

αΠ2,N )−1)

sup
0≤n≤N

log
(
Eθ0

[
eλL

α(θγn)
])
≤

(
Lα(θ0) + C

N−1∑
k=0

γ2
k+1

)
Π2,Nλ

+

(
1

2

N−1∑
k=0

γ2
k+1

)
log
(
E
[
e8ηαC2

αΠ2,Nλ|U |2
])
.

Corollary 4.2. Assume that the assumptions of Proposition 4.1 are satisfied. Then,
there exists a constant K4.1 depending on γ, α, θ0, H such that for all α ∈ ( 1

2 , 1], one has

∀λ ≥ 0, sup
0≤n≤N

log
(
Eθ0

[
exp(λL1−α(θγn))

])
≤ K4.1(λ ∨ λ

α
2α−1 ).

Remark 4.3. The constant K4.1 can be explicitly computed. Indeed, one has K4.1 :=

max(Ψ1(γ, α, θ0, H),Ψ2(γ, α, θ0, H)) with

Ψ1(γ, α, θ0, H) =

(
L1−α(θ0) + (8ηαC2

αE[|U |2]

N−1∑
k=0

γ2
k+1)

1−α
α

)
N−1∏
k=0

(1 + 2η(1− α)Chγ
2
k+1)

+ e
2α−1
α ρ

− 1−α
2α−1

× e
(Lα(θ0)+2αC

∑N−1
k=0 γ2

k+1)Π2,Nρ
1−α
α +( 1

2

∑N−1
k=0 γ2

k+1) log

(
E

[
e
εβ(1−α)

2α
|U|2

])

Ψ2(γ, α, θ0, H) =
2α− 1

α
ρ−

1−α
2α−1 +

(
Lα(θ0) + C

N−1∑
k=0

γ2
k+1

)
Π2,Nρ

1− α
α

+

(
1

2

N−1∑
k=0

γ2
k+1

)
log

(
E

[
e
εβ(1−α)

2α |U |2
])

ρ =
1

2
min(1, εβ(8ηαC2

αΠ2,N )−1)

Proof. We only give a sketch of proof since it is rather similar to the one of Corollary
3.2. For λ ∈ [0, 1], one has

Eθ0 [exp
(
λL1−α(θγn)

)
] ≤ exp

(
λ(Eθ0 [L1−α(θγn)] + Eθ0 [exp(L1−α(θγn))]

)
.

Tedious but simple computations in the spirit of Proposition 4.1 easily show that

sup
0≤n≤N

Eθ0 [L1−α(θγn)] ≤ sup
0≤n≤N

Eθ0 [Lα(θγn)]
1−α
α ≤

(
L1−α(θ0) + (8ηαC2

αE[|U |2]

N−1∑
k=0

γ2
k+1)

1−α
α

)

×
N−1∏
k=0

(1 + 2η(1− α)Chγ
2
k+1).

Moreover, thanks to the Young inequality L1−α(θ) ≤ 1−α
α ρLα(θ) + 2α−1

α ρ−
1−α
2α−1 , for

every (ρ, θ) ∈ R∗+ ×Rd and α ∈ ( 1
2 , 1] and using Proposition 4.1, one obtains for ρ = ρ :=

1
2 min(1, εβ(8ηαC2

αΠ2,N )−1)

sup
0≤n≤N

Eθ0 [exp(L1−α(θγn))] ≤ exp

(
2α− 1

α
ρ−

1−α
2α−1

)
exp

((
Lα(θ0) + C

N−1∑
k=0

γ2
k+1

)
Π2,Nρ

1− α
α

+

(
1

2

N−1∑
k=0

γ2
k+1

)
log

(
E

[
e
εβ(1−α)

2α |U |2
]))

,
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so that for all λ ∈ [0, 1]

Eθ0 [exp
(
λL1−α(θγn)

)
] ≤ Ψ1(γ, α, θ0, H)λ.

Now, for λ > 1, we use the Young inequality λL1−α(θγn) ≤ 2α−1
α ρ−

1−α
2α−1λ

α
2α−1 + 1−α

α ρLα(θγn)

to derive

Eθ0 [exp(λL1−α(θγn))] ≤ exp
(
Kλ

α
2α−1

)
withK(ρ) := 2α−1

α ρ−
1−α
2α−1 +logEθ0

[
exp

((
1−α
α

)
ρLα(θγn)

)]
and 1−α

α ρ < min(1, εβ(8ηαC2
αΠ2,N )−1).

We select ρ = ρ in the last inequality and use Proposition 4.1 to bound the quantity
K(ρ).

Proposition 4.4. (Control of the Lipschitz modulus of iterative kernels) Denote by Pk
and Pk,p = Pk ◦ · · · ◦ Pp−1, k, p ∈ {0, · · · , N − 1}, k ≤ p the (Feller) transition kernel
and the iterative kernels of the Markov chain defined by the scheme (1.4). Then for all
Lipschitz function f and for all k, p ∈ {0, · · · , N − 1}, k ≤ p the functions Pk,p(f) are
Lipschitz-continuous and one has

[Pk,p(f)]1 := sup
(θ,θ′)∈(Rd)2

|Pk,p(f)(θ)− Pk,p(f)(θ′)|
|θ − θ′|

≤ [f ]1

p−1∏
i=k

(1− 2λγi+1 + CH,µγ
2
i+1)

1
2

where [f ]1 stands for the Lipschitz modulus of the function f and CH,µ := 2C2
H(1 +

E[|U |2]).

Proof. Using the Cauchy-Schwarz inequality, (HUA) then (HL), for all (θ, θ′) ∈ (Rd)2,
one has

|Pk(f)(θ)− Pk(f)(θ′)| ≤ E [|f(θ − γk+1H(θ, Uk+1))− f(θ′ − γk+1H(θ′, Uk+1))|]

≤ [f ]1E
[
|θ − θ′ − γk+1(H(θ, Uk+1)−H(θ′, Uk+1))|2

] 1
2

≤ [f ]1
(
|θ − θ′|2 − 2γk+1 〈θ − θ′, h(θ)− h(θ′)〉

+γ2
k+1E

[
|H(θ, Uk+1)−H(θ′, Uk+1)|2

]) 1
2

≤ [f ]1(1− 2λγk+1 + 2C2
H(1 + E[|U |2])γ2

k+1)
1
2 |θ − θ′|.

A straightforward induction argument completes the proof.

Proposition 4.5. (Control of the Laplace transform) Denote by θγN the value at step
N of the stochastic approximation algorithm (1.4) with step sequence γ := (γn)n≥1

satisfying (1.5). Assume that the innovations (Un)n≥1 in (1.4) satisfy (GC(β)) for some
β > 0. Let f be a real-valued 1-Lipschitz-continuous function defined on Rd. Then, for
all λ ≥ 0, for all N ≥ 1, for all α ∈ ( 1

2 , 1], one has

Eθ0 [eλf(θγN )] ≤ eEθ0 [λf(θγN )]eϕα(γ,H,θ0)(CγNλ
2∨Cγ,αN λ

2α
2α−1 )

with the two concentration rates CγN :=
∑N−1
k=0 γ2

k+1
Π1,N

Π1,k
, with Π1,N :=

∏N−1
k=0 (1−2λγk+1+

CH,µγ
2
k+1) and Cγ,αN :=

∑N−1
k=0 γ

2α
2α−1

k+1 (
Π1,N

Π1,k
)

2α
2α−1 ((k + 1) log2(k + 4))

1−α
2α−1 for all N ≥ 1 and

where ϕα(γ,H, θ0) := K4.12
1−α
2α−1

βC2
α

4 ∨ (
βC2

α

4 )
α

2α−1 exp
(

1
2α−1

∑N−1
k=0

1
(k+1) log2(k+4)

)
.

If α = 1
2 , then there exists two positive constants λ4.1 and ϕ1/2(γ,H, θ0) such that

∀λ ∈ [0, λ4.1/s̃N ), Eθ0 [eλf(θγN )] ≤ eλEθ0 [f(θγN )]e
2ϕ1/2(γ,H,θ0)CγN

(λ/λ4.1)2

1−(λs̃N/λ4.1)

with s̃N := max0≤k≤N−1(k + 1)1/2 log(k + 4)γk+1

(
Π1,N

Π1,k

) 1
2

e
∑N−1
p=0

1
(p+1) log2(p+4) .
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Proof. The proof relies on similar arguments as those used for the proof of Proposition
3.6. For λ ≥ 0 and k ∈ {0, · · · , N − 1}, one has

Pk(exp(λf))(θ) ≤ exp

(
λPk(f) +

λ2

4
βγ2

k+1[f ]21C
2
αL

1−α(θ)

)
Taking expectation on both sides of the last inequality with θ = θγk and applying the
Hölder inequality with conjugate exponents (pk, qk) (to be fixed later on), one obtains

Eθ0 [exp(λf(θγk))] ≤ Eθ0 [exp (λpkPk(f)(θγk))]
1
pk Eθ0

[
exp

(
qk
λ2

4
βγ2

k+1[f ]21C
2
αL

1−α(θγk)

)] 1
qk

and applying the last inequality to f := Pk+1,N (f) yields

Eθ0 [exp(λPk+1,N (f)(θγk))] ≤ Eθ0 [exp (λpkPk,N (f)(θγk))]
1
pk

× Eθ0
[
exp

(
qk
λ2

4
βγ2

k+1[Pk+1,N (f)]21C
2
αL

1−α(θγk)

)] 1
qk

. (4.1)

We use Corollary 4.2 to obtain for α ∈ ( 1
2 , 1]

Eθ0

[
exp

(
qk
λ2

4
βγ2

k+1[Pk+1,N (f)]21C
2
αL

1−α(θγk)

)] 1
qk

≤ exp

(
K4.1

βC2
α

4
∨
(
βC2

α

4

) α
2α−1

(γ2
k+1[Pk+1,N (f)]21λ

2 ∨ γ
2α

2α−1

k+1 [Pk+1,N (f)]
2α

2α−1

1 q
1−α
2α−1

k λ
2α

2α−1 )

)
:= fk(λ)

Now, an elementary induction argument leads to

Eθ0 [exp(λf(θγN ))] = Eθ0 [exp(λPN,Nf(θγN ))]

≤ Eθ0 [exp(λ

N−1∏
k=0

pkP0,N (f)(θ0))]
1∏N−1

k=0
pk

N−1∏
k=0

fN−1−k

(
λ

k∏
i=1

pN−i

) 1∏k
i=1

pN−i

(4.2)

We select pk := 1 + 1
(k+1) log2(k+4)

, qk = (1 + 1
(k+1) log2(k+4)

)(k + 1) log2(k + 4) ≤ 2(k +

1) log2(k + 4), k = 0, · · · , N − 1 so that
∏N−1
k=0 pk converges and more precisely we have∏N−1

k=0 pk < exp(
∑N−1
k=0

1
(k+1) log2(k+4)

) <∞.

We set ϕα(γ,H, θ0) := K4.12
1−α
2α−1

βC2
α

4 ∨ (
βC2

α

4 )
α

2α−1 exp
(

1
2α−1

∑N−1
k=0

1
(k+1) log2(k+4)

)
. Now,

using Proposition 4.4 and Corollary 4.2, we easily derive from (4.2)

∀λ ≥ 0, Eθ0 [exp(λf(θγN ))] ≤ exp (Eθ0 [λf(θγN ))]) exp
(
ϕα(γ,H, θ0)(CγNλ

2 ∨ Cγ,αN λ
2α

2α−1 )
)

with Cγ,αN :=
∑N−1
k=0 γ

2α
2α−1

k+1 (
Π1,N

Π1,k
)

2α
2α−1 ((k + 1) log2(k + 4))

1−α
2α−1 .

For α = 1
2 , we start from (4.1). First, we use the control obtained in Proposition 4.1

to derive

Eθ0

[
exp

(
qk
λ2

4
βγ2

k+1[Pk+1,N (f)]21C
2
1/2L

1
2 (θγk)

)] 1
qk

≤ exp

((
L

1
2 (θ0) + C

N−1∑
p=0

γ2
p+1

)
Π2,N (1/2)

βC2
1/2

4
γ2
k+1[Pk+1,N (f)]21λ

2 +
1

qk

(
1

2

N−1∑
p=0

γ2
p+1

)
× logE

[
exp

(
βηC4

1/2Π2,N (1/2) qkγ
2
k+1[Pk+1,N (f)]21λ

2|U |2
)])

.
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To simplify the latter bound, that is to obtain an explicit and computable formula for the
second term appearing in the right hand side, we will need the following lemma:

Lemma 4.6. For all λ ∈ [0, λ4.1/s
1/2
N ), one has

logE
[
eβηC

4
1/2Π2,N (1/2)qkγ

2
k+1[Pk+1,N (f)]21λ

2|U |2
]
≤ βηC4

1/2Π2,N (1/2)E[|U |2]qkγ
2
k+1[Pk+1,N (f)]21λ

2

+ 2qkγ
2
k+1[Pk+1,N (f)]21

(λ/λ4.1)2

1− (λs
1/2
N /λ4.1)

,

with sN := max0≤k≤N−1 qkγ
2
k+1

Π1,N

Π1,k
and λ4.1 satisfiesE[exp(λ2

4.1βηC
4
1/2Π2,N (1/2) |U |2)] ≤

2.

Proof. The proof is similar to the proof of Corollary 3.4. By definition of λ4.1, we have
λ2p

4.1(βηC4
1/2Π2,N (1/2)/2)pE[|U |2p] ≤ 2p!, ∀p ≥ 1. Hence, setting C1 := βηC4

1/2Π2,N (1/2)

we easily deduce for λ < λ4.1/s
1/2
N ,

logE
[
eλ

2C1qkγ
2
k+1[Pk+1,N (f)]21|U |

2
]
− λ2C1qkγ

2
k+1[Pk+1,N (f)]21E[|U |2]

≤
∑
p≥2

λ2pCp1 (qkγ
2
k+1[Pk+1,N (f)]21)pE[|U |2p]

p!

≤ 2
∑
p≥2

(
λ2qkγ

2
k+1[Pk+1,N (f)]21

λ2
4.1

)p
≤ 2qkγ

2
k+1[Pk+1,N (f)]21

(λ/λ4.1)2

1− (λs
1/2
N /λ4.1)

This completes the proof.

Using the previous lemma, we obtain for all λ ∈ [0, λ4.1/s
1/2
N ),

Eθ0

[
exp

(
qk
λ2

4
βγ2

k+1[Pk+1,N (f)]21C
2
1/2L

1
2 (θγk)

)] 1
qk

≤ exp

(
Ψ(N, γ, θ0)γ2

k+1[Pk+1,N (f)]21λ
2 +

(
N−1∑
p=0

γ2
p+1

)
γ2
k+1[Pk+1,N (f)]21

(λ/λ4.1)2

1− (λs
1/2
N /λ4.1)

)
,

where we introduced the notation Ψ(N, γ, θ0) :=
(
L

1
2 (θ0) + C

∑N−1
p=0 γ2

p+1

)
Π2,N (1/2)

βC2
1/2

4 +

βηC4
1/2Π2,N (1/2)E[|U |2].

Now, as for α ∈ ( 1
2 , 1], an induction argument in the spirit of (4.2) yields for all

λ ∈ [0, λ4.1/s̃N )

Eθ0 [exp(λf(θγN ))] ≤ exp (λEθ0 [f(θγN )]) exp
(
CγNΨ (N, γ, θ0) e

∑N−1
k=0

1
(k+1) log2(k+4)λ2

+e
∑N−1
k=0

1
(k+1) log2(k+4)

(
N−1∑
p=0

γ2
p+1

)
CγN

(λ/λ4.1)2

1− (λs̃N/λ4.1)

)
,

≤ exp (λEθ0 [f(θγN )]) exp

(
2ϕ1/2(γ,H, θ0)CγN

(
(λ/λ4.1)2 ∨ (λ/λ4.1)2

1− (λs̃N/λ4.1)

))
= exp (λEθ0 [f(θγN )]) exp

(
2ϕ1/2(γ,H, θ0)CγN

(λ/λ4.1)2

1− (λs̃N/λ4.1)

)
with ϕ1/2(γ,H, θ0) := exp(

∑N−1
k=0

1
(k+1) log2(k+4)

)(λ2
4.1Ψ(N, γ, θ0) +

∑N−1
p=0 γ2

p+1), and s̃N :=

s
1/2
N exp(

∑N−1
k=0

1
(k+1) log2(k+4)

), and where we used again
∏N−1
k=0 pk < exp(

∑N−1
k=0

1
(k+1) log2(k+4)

).
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In contrast to Euler like schemes, a bias appears in the non-asymptotic deviation
bound for the stochastic approximation algorithm. Consequently, it is crucial to have
a control on it. At step n of the algorithm, it is given by δn := E[|θγn − θ∗|]. Under the
current assumptions (HL), (HLS)α, (HUA), we have the following proposition.

Proposition 4.7 (Control of the bias). For all n ≥ 1, we have

δn ≤ e−λΓ1,n+Cα,µΓ2,n |θ0 − θ∗|+ (2Cα,µ)
1
2

(
n−1∑
k=0

γ2
k+1e

−2λ(Γ1,n−Γ1,k+1)+2Cα,µ(Γ2,n−Γ2,k+1)

) 1
2

,

where Γ1,n :=
∑n
k=1 γk, Γ2,n :=

∑n
k=1 γ

2
k, Cα,µ := λ2/2 + 2CαKE[|U |2] with K > 0.

Proof. With the notations of Section 1.2, we define for all n ≥ 1, ∆Mn := h(θγn−1) −
H(θγn−1, Un) = E[H(θγn−1, Un)

∣∣Fn−1]−H(θγn, Un). Recalling that (Un)n≥1 is a sequence of
i.i.d. random variables we have that (∆Mn)n≥1 is a sequence of martingale increments
w.r.t. the natural filtration F := (Fn := σ(θ0, U1, · · · , Un, );n ≥ 1).

From the dynamic (1.4), we now write for all n ≥ 0,

zn+1 := θγn+1 − θ∗ = θγn − θ∗ − γn+1 {h(θγn)−∆Mn+1}

= θγn − θ∗ − γn+1

∫ 1

0

dλDh(θ∗ + λ(θγn − θ∗))(θγn − θ∗) + γn+1∆Mn+1,

where we used that h(θ∗) = 0 for the last equality. Setting Jn :=
∫ 1

0
dλDh(θ∗+λ(θγn−θ∗)),

we obtain zn+1 = (I − γn+1Jn)zn + γn+1∆Mn+1 which yields

Eθ0 [|zn+1|2] = Eθ0 [|I − γn+1Jn|2|zn|2] + 2γn+1Eθ0 [(I − γn+1Jn)∆Mn+1] + γ2
n+1Eθ0 [|∆Mn+1|2]

= Eθ0 [|I − γn+1Jn|2|zn|2] + γ2
n+1Eθ0 [|∆Mn+1|2].

From assumption (HLS)α, we deduce that ∀(θ, u) ∈ Rd × Rq, |h(θ) − H(θ, u)|2 ≤
2C2

αL
1−α(θ)(E[|U |2]+|u|2) which combined with the independence of θn and Un+1 clearly

implies
Eθ0 [|h(θγn)−H(θγn, Un+1)|2] ≤ 4C2

αE[|U |2]Eθ0 [L1−α(θγn)].

Now, let us notice that L has sub-quadratic growth so that there exists a constant
K > 0 such that

Eθ0
[
|∆Mn+1|2

]
= Eθ0

[
|h(θγn)−H(θγn, Un+1)|2

]
≤ 4C2

αE[|U |2]Eθ0
[
L1−α(θγn)

]
≤ 4KC2

αE[|U |2](1 + Eθ0 [|zn|2]),

which provides the following bound

Eθ0 [|zn+1|2] ≤ (1− λγn+1)2Eθ0 [|zn|2] + 4KC2
αE[|U |2]γ2

n+1Eθ0 [|zn|2]

≤
(
1− 2λγn+1 + 2Cα,µγ

2
n+1

)
Eθ0 [|zn|2] + 2Cα,µγ

2
n+1.

Temporarily setting Π̃n =
∏n−1
p=0 (1 − 2λγp+1 + 2Cα,µγ

2
p+1), a straightforward induction

argument provides

Eθ0 [|zn|2] ≤ Π̃n|θ0 − θ∗|2 + 2Cα,µ

n−1∑
k=0

γ2
k+1Π̃nΠ̃−1

k+1

≤ e−2λΓ1,n+2Cα,µΓ2,n |θ0 − θ∗|2 + 2Cα,µ

n−1∑
k=0

γ2
k+1e

−2λ(Γ1,n−Γ1,k+1)+2Cα,µ(Γ2,n−Γ2,k+1)

where we used the elementary inequality, 1 + x ≤ exp(x), x ∈ R. This completes the
proof.
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4.2 Proof of Theorem 2.10

Proposition 4.8. (Control of the Lipschitz modulus of iterative kernels) Denote by Kk

and Kk,p = Kk ◦ · · · ◦Kp−1, k, p ∈ {0, · · · , N − 1}, k ≤ p the (Feller) transition kernel and
the iterative kernels of the Markov chain z = (θ̄, θ) defined by the scheme (1.4), (1.8).
Let f : Rd → R be a 1-Lipschitz function. Then for all k, p ∈ {0, · · · , N − 1}, k ≤ p the
functions Kk,p(f) : z 7→ E[f(θ̄γp+1)

∣∣ zk = z] are Lipschitz-continuous. In particular, for all
(z, z′) ∈ (Rd ×Rd)2, one has

|Kk,p(f)(z)−Kk,p(f)(z′)| ≤ k + 1

p+ 1
|z1 − z′1|+

1

p+ 1

p∑
j=k+1

(
Π1,j

Π1,k

) 1
2

|z2 − z′2|

where Π1,p =
∏p−1
k=0(1− 2λγk+1 + CH,µγ

2
k+1).

Proof. Let (z, z′) ∈ (Rd × Rd)2. We denote by zk,zp,1 = θ̄k,zp+1 and zk,zp,2 = θk,zp the values at
step p of the two components of the stochastic approximation algorithm (zn)n≥0 starting
at point z at step k. Using (1.8) and a straightforward induction, one easily derives

θ̄k,zp+1 =
k + 1

p+ 1
z1 +

1

p+ 1

p∑
j=k+1

θk,zj ,

so that taking conditional expectation in the previous equality and using Proposition
4.4,we obtain

|Kk,p(f)(z)−Kk,p(f)(z′)| = |E[f(θ̄k,zp+1)]− E[f(θ̄k,z
′

p+1)]| ≤ E[|θ̄k,zp+1 − θ̄
k,z′

p+1|]

≤ k + 1

p+ 1
|z1 − z′1|+

1

p+ 1

p∑
j=k+1

E[|θk,zj − θk,z
′

j |]

≤ k + 1

p+ 1
|z1 − z′1|+

1

p+ 1

p∑
j=k+1

(
Π1,j

Π1,k

) 1
2

|z2 − z′2|

Let k ∈ {0, · · · , N − 1} and f be a real-valued 1-Lipschitz function defined on Rd.
Using that the law of the innovations of the scheme satisfies (GC(β)), for all λ ≥ 0, one
has

E
[
eλKk,N−1f(zk)

∣∣∣ zk−1 = z
]

= E
[
eλKk,N−1f( k

k+1 θ̄
γ
k+ 1

k+1 θ
γ
k ,θ

γ
k )
∣∣∣ (θ̄γk , θγk−1) = (z1, z2)

]
≤ eλKk−1,N−1(f)(z)eλ

2 β
4 [g]21

where g : u 7→ Kk,N−1(f)
(

k
k+1z1 + 1

k+1z2 − γk
k+1H(z2, u), z2 − γkH(z2, u)

)
. Combining

Proposition 4.8 and (HLS)α, one easily obtains

[g]1 ≤ CαL
1−α

2 (z2)γk

 1

N
+

1

N

N−1∑
j=k+1

(
Π1,j

Π1,k

) 1
2


so we deduce that

E [ exp(λKk,N−1f(zk))| zk−1] ≤ exp(λKk−1,N−1(f)(zk−1)) exp

(
λ2 β

4
C2
αL

1−α(zk−1)γ̃2
k,N

)
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where we introduced the notation γ̃k,N := γk
N

(
1 +

∑N−1
j=k+1 (Π1,j/Π1,k)

1
2

)
. Hence, taking

expectation in the previous inequality and using the Hölder inequality with conjugate
exponents (pk, qk), one clearly gets

Eθ0

[
eλKk,N−1(f)(zk)

]
≤ Eθ0 [eλpkKk−1,N−1(f)(zk−1)]

1
pk Eθ0

[
eλ

2 β
4C

2
αqkL

1−α(θγk−1)γ̃2
k,N

] 1
qk

Similarly to the proof of Proposition 4.5, we set pk = 1 + 1
(k+1) log2(k+4)

, qk = (1 +
1

(k+1) log2(k+4)
)(k+ 1) log2(k+ 4) ≤ 2(k+ 1) log2(k+ 4) and use Corollary 4.2 to obtain for

α ∈ ( 1
2 , 1]

Eθ0

[
eλ

2 β
4C

2
αqkL

1−α(θγk−1)γ̃2
k,N

] 1
qk ≤ e

K4.12
1−α
2α−1

βC2
α

4 ∨
(
βC2
α

4

) α
2α−1

(γ̃2
k,Nλ

2∨γ̃
2α

2α−1
k,N q

1−α
2α−1
k λ

2α
2α−1 )

.

An elementary induction argument allows to conclude

Eθ0
[
exp(λf(θ̄γN ))

]
= Eθ0 [exp(λKN−1,N−1(f)(zN−1))]

≤ exp(λEθ0 [f(θ̄γN ]) exp
(
ϕα(γ,H, θ0)(C̄γNλ

2 ∨ C̄γ,αN λ
2α

2α−1 )
)

with C̄γN :=
∑N−1
k=1 γ̃2

k,N , C̄γ,αN :=
∑N−1
k=1 γ̃

2α
2α−1

k,N ((k + 1) log2(k + 4))
1−α
2α−1 and where we

introduced ϕα(γ,H, θ0) := K4.12
1−α
2α−1

βC2
α

4 ∨
(
βC2

α

4

) α
2α−1

e
1

2α−1

∑N−1
k=0

1
(k+1) log2(k+4) .

For α = 1
2 , similarly to the proof of Proposition 4.5 (we actually use again Lemma

4.6), we derive for all λ ∈ [0, λ4.1/s̄
1/2
N )

Eθ0

[
eqk

λ2

4 βγ̃
2
k,NC

2
1/2L

1/2(θγk−1)
] 1
qk ≤ e

Ψ(N,γ,θ0)γ̃2
k,Nλ

2+(
∑N−1
p=0 γ2

p+1)γ̃2
k,N

(λ/λ4.1)2

1−(λs̄
1/2
N

/λ4.1)

with Ψ(N, γ, θ0) :=
(
L

1
2 (θ0) + C

∑N−1
p=0 γ2

p+1

)
Π2,N (1/2)

βC2
1/2

4 + βηC4
1/2Π2,N (1/2)E[|U |2]

and s̄N := max1≤k≤N−1(k + 1) log2(k + 4)γ̃2
k,N . Then an elementary induction argument

clearly yields

∀λ ∈ [0, λ4.1/ŝN ), Eθ0 [eλf(θ̄γN )] ≤ eλEθ0 [f(θ̄γN )]e
2ϕ1/2(γ,H,θ0)C̄γN

(λ/λ4.1)2

1−(λŝN/λ4.1)

with ϕ1/2(γ,H, θ0) := e
∑N−1
k=0

1
(k+1) log2(k+4) (λ2

4.1Ψ(N, γ, θ0) +
∑N−1
p=0 γ2

p+1), and also ŝN :=

s̄
1/2
N e

∑N−1
k=0

1
(k+1) log2(k+4) .

A Proof of Proposition 1.5

Let eσ := 1
2σ exp(−|x|/σ) be the density of the exponential distribution with variance

2σ2 on R. If µ is a probability measure on Rd, we define µσ as the convolution of µ with
e⊗dσ , that is

µσ(dx) :=

∫ d∏
i=1

1

2σ
exp(−|xi − yi|/σ)µ(dy).

Lemma A.1. If µ is a probability measure onRd with finite first moment, thenW1(µ, µσ) ≤√
2dσ.

Proof. Let X and Y be independent random vectors with laws µ and e⊗dσ respectively.
Then (X,X + Y ) is a coupling of µ and µσ, and

W1(µ, µσ) ≤ E[|Y |] ≤ E[|Y |2]1/2 ≤
√

2dσ.
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We therefore have the bound

W1(µM , µ) ≤W1(µM , µ
σ
M ) +W1(µσM , µ

σ) +W1(µσ, µ) ≤W1(µσM , µ
σ) +

√
8dσ, (A.1)

so what is left is to bound E[W1(µσM , µ
σ)] and to optimize with respect to σ.

The density of µσM with respect to the Lebesgue measure is given by g1,σ,M (x) :=
1
M

∑M
k=1 e

⊗d
σ (x−Xk), and the density of µσ is g2,σ(x) := Eµ(e⊗dσ (x−X)).

By the Kantorovitch-Rubinstein duality formula, we have

W1(µσM , µ
σ) = sup

f :[f ]1≤1

∫
f(x)g1,σ,M (x)dx−

∫
f(x)g2,σ(x)dx ≤

∫
|x||g1,σ,M (x)− g2,σ(x)|dx

To bound this quantity, we use the Cauchy-Schwarz inequality, namely for any non-
negative measurable function f on Rd, we have∫

f(x)dx ≤ Cd

√∫
(1 + |x|d+1)f(x)2dx, Cd :=

√∫
Rd

1

1 + |x|d+1
dx.

Using this inequality, we get the bound

W1(µσM , µ
σ) ≤ Cd

√∫
(1 + |x|d+1)|x|2|g1,σ,M (x)− g2,σ(x)|2dx (A.2)

≤ Cd

√∫
(1 + 2|x|d+3)|g1,σ,M (x)− g2,σ(x)|2dx.

Therefore,

E[W1(µσM , µ
σ)] ≤ CdE


√√√√∫ (1 + 2|x|d+3)| 1

M

M∑
k=1

e⊗dσ (x−Xk)− Eµ(e⊗dσ (x−X))|2dx


≤ Cd√

M

√∫
(1 + 2|x|d+3)Varµ(e⊗dσ (x−X))dx

≤ Cd√
M

√∫
(1 + 2|x|d+3)E[e⊗dσ (x−X)2]dx.

Note that e⊗dσ (x)2 = 2−2dσ−de⊗dσ/2(x), so that we get

E[W1(µσM , µ
σ)] ≤ Cd

2dσd/2
√
M

√∫
(1 + 2|x|d+3)

∫
e⊗dσ/2(x− y)µ(dy)dx

≤ Cd

2dσd/2
√
M

√∫ ∫
(1 + 2|u+ y|d+3)e⊗dσ/2(u)duµ(dy)

≤ Cd

2dσd/2
√
M

√∫ ∫
(1 + 2d+3(|u|d+3 + |y|d+3))e⊗dσ/2(u)duµ(dy)

≤ Cd

2dσd/2
√
M

√
1 + 2d+3

∫
|y|d+3µ(dy) + 2d+3

∫
|u|d+3e⊗dσ/2(u)du

≤ Cd

2dσd/2
√
M

√
1 + 2d+3

∫
|y|d+3µ(dy) + σd+3

∫
|u|d+3e⊗d1 (u)du

≤ Cd

2dσd/2
√
M

√
1 + 2d+3

∫
|y|d+3µ(dy) + 2d+3σd+3d(d+ 3)!
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In the end, assuming σ ≤ 1, we obtain

E[W1(µ, µσ)] ≤
√

8dσ +
Cd

2dσd/2
√
M

√
1 + 2d+3

∫
|y|d+3µ(dy) + 2d+3σd+3d(d+ 3)!

≤ C(d, µ)(σ +
σ−d/2√
M

)

Taking σ = M−1/(d+2), we get the upper bound we were aiming for.
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