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Abstract

We extend to the matrix setting a recent result of Srivastava-Vershynin [24] about
estimating the covariance matrix of a random vector. The result can be interpreted
as a quantified version of the law of large numbers for positive semi-definite matri-
ces which verify some regularity assumption. Beside giving examples, we discuss the
notion of log-concave matrices and give estimates on the smallest and largest eigen-
values of a sum of such matrices.
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1 Introduction

In recent years, interest in matrix valued random variables gained momentum. Many
of the results dealing with real random variables and random vectors were extended to
cover random matrices. Concentration inequalities like Bernstein, Hoeffding and others
were obtained in the non-commutative setting ( [5],[25], [17]). The methods used were
mostly combination of methods from the real/vector case and some matrix inequalities
like the Golden-Thompson inequality (see [8]).

Estimating the covariance matrix of a random vector has gained a lot of interest
recently. Given a random vector X in Rn, the question is to estimate Σ = EXXt. A nat-
ural way to do this is to take X1, .., XN independent copies of X and try to approximate
Σ with the sample covariance matrix ΣN = 1

N

∑
iXiX

t
i . The challenging problem is to

find the minimal number of samples needed to estimate Σ. It is known using a result
of Rudelson (see [22]) that for general distributions supported on the sphere of radius√
n, it suffices to take cn log(n) samples. But for many distributions, a number propor-

tional to n is sufficient. Using standard arguments, one can verify this for gaussian
vectors. It was conjectured by Kannan- Lovasz- Simonovits [14] that the same result
holds for log-concave distributions. This problem was solved by Adamczak et al ([3],
[4]). Recently, Srivatava-Vershynin proved in [24] covariance estimate with a number of
samples proportional to n, for a larger class of distributions covering the log-concave
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case. The method used was different from previous work on this field and the main idea
was to randomize the sparsification theorem of Batson-Spielman-Srivastava [7].

Our aim in this paper is to adapt the work of Srivastava-Vershynin to the matrix set-
ting replacing the vector X in the problem of the covariance matrix by an n×m random
matrix A and try to estimate EAAt by the same techniques. This will be possible since in
the deterministic setting, the sparsification theorem of Batson-Spielman-Srivastava [7]
has been extended to a matrix setting by De Carli Silva-Harvey-Sato [10] who precisely
proved the following:

Theorem 1.1. Let B1, . . . , Bm be positive semi-definite matrices of size n × n and ar-
bitrary rank. Set B :=

∑
iBi. For any ε ∈ (0, 1), there is a deterministic algorithm to

construct a vector y ∈ Rm with O(n/ε2) nonzero entries such that y ≥ 0 and

B �
∑
i

yiBi � (1 + ε)B.

For an n × n matrix A, denote by ‖A‖ the operator norm of A seen as an opera-
tor on ln2 . The main idea is to randomize the previous result using the techniques of
Srivastava-Vershynin [24]. Our problem can be formulated as follows:

Take B a positive semi-definite random matrix of size n×n. How many independent
copies of B are needed to approximate EB i.e taking B1, .., BN independent copies of
B, what is the minimal number of samples needed to make

∥∥ 1
N

∑
iBi − EB

∥∥ very small.

One can view this as a matrix analogue to the covariance estimate of a random vector
by taking for B the matrix AAt where A is an n × m random matrix. Moreover, this
problem implies an averaging approximation of covariance matrices of many random
vectors. Indeed, let X1, .., Xm be random vectors in Rn and take A′ the n × m matrix
which hasX1, .., Xm as columns. DenoteB = 1

mA
′A′t; it is clear thatB = 1

m

∑
j6mXjX

t
j .

Therefore, when approximating EB we are approximating the average of the covariance
matrices of the random vectors (Xj)j6m.

With some regularity, we will be able to take a number of independent copies pro-
portional to the dimension n. However, in the general case this is no longer true. In
fact, take B uniformly distributed on {neieti}i6n where ej denotes the canonical basis of
Rn. It is easy to verify that EB = In and when taking B1, .., BN independent copies of
B the matrix 1

N

∑
iBi is diagonal and its diagonal coefficients are distributed as

n

N
(p1, .., pn),

where pi denotes the number of times eieti is chosen. This problem is well- studied and
it is known (see [15]) that we must take N > cn log(n). This example is essentially due
to Aubrun [6]. More generally, if B is a positive semi-definite matrix such that EB = In
and Tr(B) 6 n almost surely, then by Rudelson’s inequality in the non-commutative
setting (see [18]) it is sufficient to take cn log(n) samples.

The method will work properly for a class of matrices satisfying a matrix strong
regularity assumption which we denote by (MSR) and can be viewed as an analog to
the property (SR) defined in [24].

Definition 1.2 (Property (MSR)).
Let B be an n× n positive semi-definite random matrix such that EB = In. We will say
that B satisfies (MSR) if for some c, η > 0 we have :

P(‖PBP‖ > t) 6
c

t1+η
∀t > c · rank(P ) and ∀P orthogonal projection of Rn.
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In the rest of the paper, c will always denote the parameter appearing in this defini-
tion while C will be a universal constant which may change from line to line. Also, c(η)

will denote a constant depending on c and η which may also change from line to line.
The main result of this paper is the following:

Theorem 1.3. Let B be an n×n positive semi-definite random matrix verifying EB = In
and (MSR) for some η > 0. Then for every ε ∈ (0, 1), taking N = C1

1 n

ε
2+ 2

η
we have

E

∥∥∥∥∥ 1

N

N∑
i=1

Bi − In

∥∥∥∥∥ 6 ε where B1, .., BN are independent copies of B.

If X is an isotropic random vector of Rn, put B = XXt then ‖PBP‖ = ‖PX‖22.
Therefore if X verifies the property (SR) appearing in [24], then B verifies property
(MSR). So applying Theorem 1.3 to B = XXt, we recover the covariance estimation
as stated in [24].

In order to apply our result, beside some examples, we investigate the notion of
log-concave matrices in relation with the definition of log-concave vectors. Moreover
remarking some strong concentration inequalities satisfied by these matrices we are
able, using the ideas developed in the proof of the main theorem, to have some results
with high probability rather than only in expectation as is the case in the main result.
This will be discussed in the last section of the paper.

The paper is organized as follows: in section 2, we discuss Property (MSR) and give
some examples, in section 3 we show how to prove Theorem 1.3 using two other results
(Theorem 3.1, Theorem 3.3) which we prove respectively in sections 4 and 5 using again
two other results (Theorem 4.1, Theorem 5.1) whose proofs are given respectively in
sections 6 and 7. In section 8, we discuss the notion of log-concave matrices and prove
some related results.

2 Property (MSR) and examples

A random vector X in Rl is called isotropic if its covariance matrix is the identity i.e
EXXt = Id. In [24], an isotropic random vector X in Rl was said to satisfy (SR) if for
some c, η > 0,

P
(
‖PX‖22 > t

)
6

c

t1+η
, ∀t > c · rank(P ) and ∀P orthogonal projection of Rl.

Since ‖PXXtP‖ = ‖PX‖22, then clearly B = XXt satisfies (MSR) if and only if
X satisfies (SR). Therefore if X verifies the property (SR), applying Theorem 1.3 to
B = XXt, we recover the covariance estimate as stated in [24].

Let us note that (MSR) implies moment assumptions on the quadratic forms 〈Bx, x〉.
To see this, first note that if x ∈ Sn−1 then 〈Bx, x〉 = ‖PxBPx‖, where Px is the orthogo-
nal projection on span(x). Now, by integration of tails we have for 1 < q < 1 + η,

E〈Bx, x〉q 6 C(c, q, η).

Moreover, property (MSR) implies regularity assumption on the eigenvalues of the
matrix B. Indeed, for any orthogonal projection of rank k one can write

‖PBP‖ > min
F⊂Rn
dimF=k

max
x∈F
〈Bx, x〉 = λn−k+1(B),

1C1 = (64c)
1+ 2

η (1 + 1
η
)
2
η ∨ 64(4c)

1
η (32 + 32

η
)
1+ 3

η ∨ 256(2c)
3
2
+ 2
η (16 + 16

η
)
4
η
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where the last equality is given by the Courant-Fischer minimax formula (see [9]).
Therefore, property (MSR) implies the following: for some c, η > 0,

P (λn−k+1(B) > t) 6
c

t1+η
, ∀t > c · k and ∀k 6 n.

We may now discuss some examples for applications of the main result. Let us first
replace (MSR) with a stronger, but easier to manipulate, property which we denote by
(MSR∗). If B is an n × n positive semidefinite random matrix such that EB = In, we
will say that B satisfies (MSR∗) if for some c, η > 0:

P(Tr(PB) > t) 6
c

t1+η
∀t > c · rank(P ) and ∀P orthogonal projection of Rn.

Note that since ‖PBP‖ 6 Tr (PBP ) = Tr (PB), then (MSR∗) is clearly stronger
than (MSR).

2.1 (2 + ε)-moments for the spectrum

As we mentioned before, (MSR), one can see that it implies regularity assumptions
on the eigenvalues of B. Putting some independence in the spectral decomposition of
B, we will only need to use the regularity of the eigenvalues. To be more precise, we
have the following:

Proposition 2.1. Let B = UDU t be the spectral decomposition of an n× n symmetric
positive semidefinite random matrix, where U an orthogonal matrix and D is a diagonal
matrix whose entries are denoted by (αj)j6n. Suppose that U and D are independent
and that (αj)j6n are independent and satisfy the following:

∀i 6 n, Eαi = 1 and (Eαpi )
1
p 6 C,

for some p > 2. Then B satisfies (MSR∗) with η = p
2 − 1.

Proof. First note that since U and D are independent and Eαi = 1, then EB = In.
Now, (MSR∗) is a rotationally invariant property. Therefore we can assume without

loss of generality that U = In and thus that B = D. Let k > 0 and P be an orthogonal
projection of rank k on Rn and denote by (pij)i,j6n the entries of P . Note that Tr (PB) =∑
i6n piiαi, and now using Markov’s inequality we have for t > k,

P {Tr (PB) > t} = P

∑
i6n

pii(αi − 1) > t− k


6 P


∣∣∣∣∣∣
∑
i6n

pii(αi − 1)

∣∣∣∣∣∣ > t− k


6

1

(t− k)p
E

∣∣∣∣∣∣
∑
i6n

pii(αi − 1)

∣∣∣∣∣∣
p

.

Using Rosenthal’s inequality (see [21]) we get

E

∣∣∣∣∣∣
∑
i6n

pii(αi − 1)

∣∣∣∣∣∣
p

6 C(p) max


∑
i6n

ppiiE|αi − 1|p,

∑
i6n

p2
iiE|αi − 1|2


p
2

 .
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Taking in account that pii 6 1, which implies that for any l > 1,
∑
i p
l
ii 6 k, we deduce

that

E

∣∣∣∣∣∣
∑
i6n

pii(αi − 1)

∣∣∣∣∣∣
p

6 C(p)k
p
2 .

Instead of Rosenthal’s inequality, we could have used a symmetrization argument along-
side Khintchine’s inequality to get the estimate above.
One can easily conclude that B satisfies (MSR∗) with η = p

2 − 1.

Applying Theorem 1.3, we can deduce the following proposition:

Proposition 2.2. Let B = UDU t be the spectral decomposition of an n× n symmetric
positive semidefinite random matrix, where U an orthogonal matrix and D is a diagonal
matrix whose entries are denoted by (αj)j6n. Suppose that U and D are independent
and that (αj)j6n are independent and satisfy the following:

∀i 6 n, Eαi = 1 and (Eαpi )
1
p 6 C,

for some p > 2. Let ε ∈ (0, 1), then taking N = C(p) n

ε
2p
p−2

we have

E

∥∥∥∥∥ 1

N

N∑
i=1

Bi − In

∥∥∥∥∥ 6 ε,

where B1, .., BN are independent copies of B.

2.2 From (SR) to (MSR)

We will show how to jump from property (SR) dealing with vectors to the property
(MSR∗) dealing with matrices.

Proposition 2.3. Let A be an n×m random matrix and denote by (Ci)i6m its columns.
Suppose that A′t =

√
m(Ct1, .., C

t
m) is an isotropic random vector in Rnm which satisfies

property (SR). Then B = AAt verifies EB = In and Property (MSR∗).

Proof. For l 6 nm, one can write l = (j − 1)n + i with 1 6 i 6 n, 1 6 j 6 m, so
that the coordinates of A′ are given by a′l =

√
mai,j , and since A′ is isotropic we get

Eai,jar,s = 1
mδ(i,j),(r,s).

The terms of B are given by bi,j =

m∑
s=1

ai,saj,s. We deduce that Ebi,j = δi,j and therefore

EB = In.
Let P be an orthogonal projection of Rn and put P ′ = Im ⊗ P i.e. P ′ is an nm × nm
matrix of the form

P ′ =


P 0 . . . 0

0 P
. . .

...
...

. . .
. . .

...
0 . . . . . . P


Clearly we have ‖P ′A′‖22 = mTr(PB) and rank(P ′) = m · rank(P ).

Let t > c · rank(P ) then mt > c · rank(P ′) and by property (SR) we have

P
(
‖P ′A′‖22 > mt

)
6

c

(mt)1+η
.
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This means that
P (Tr(PB) > t) 6

c

(mt)1+η
,

and therefore B satisfies (MSR∗).

3 Proof of Theorem 1.3

Let us first introduce some notations which will be used in the rest of the paper. The
set of n×n symmetric matrices is denoted by Sn. For X ∈ Sn, the notation λ(X) always
refers to the eigenvalues of X. For X,Y ∈ Sn, X � Y means that X − Y is positive
semidefinite. The vector space Sn can be endowed with the trace inner product 〈·, ·〉
defined by 〈X,Y 〉 := Tr(XY ).

Let us now introduce a regularity assumption on the moments which we denote by
(MWR):

∃p > 1 such that E 〈Bx, x〉p 6 Cp ∀x ∈ Sn−1.

Note that by a simple integration of tails, (MSR) (with P a rank one projection) implies
(MWR) with p < 1 + η.

The proof of Theorem 1.3 is based on two theorems dealing with the smallest and

largest eigenvalues of
1

N

N∑
i=1

Bi.

Theorem 3.1. Let Bi be n × n independent positive semidefinite random matrices
verifying EBi = In and (MWR) .
Let ε ∈ (0, 1), then for

N > 16 (16Cp)
1
p−1

n

ε
2p−1
p−1

,

we get

Eλmin

(
1

N

N∑
i=1

Bi

)
> 1− ε.

Remark 3.2. The proof yields a more general estimate; precisely if h = n
N then

Eλmin

(
1

N

N∑
i=1

Bi

)
> 1− C(p) max

{
h
p−1
2p−1 , h

}
.

Theorem 3.3. Let Bi be n × n independent positive semidefinite random matrices
verifying EBi = In and (MSR).
For ε ∈ (0, 1) and N > C2

2 n

ε
2+ 2

η
we have

Eλmax

(
1

N

N∑
i=1

Bi

)
6 1 + ε.

Remark 3.4. The proof yields a more general estimate; Precisely if h = n
N then

Eλmax

(
1

N

N∑
i=1

Bi

)
6 1 + c(η) max

{
h

η
2+2η , h

}
.

2C2 = 16c
1
η (32 + 32

η
)
1+ 3

η ∨ 16
√
2(4c)

3
2
+ 2
η (8 + 8

η
)
4
η
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Combining this with the previous remark, for any B1, ..., BN n× n independent positive
semidefinite random matrices verifying EBi = In and (MSR), we have

1−c(η) max
{
h

η
2+2η , h

}
6 Eλmin

(
1

N

N∑
i=1

Bi

)
6 Eλmax

(
1

N

N∑
i=1

Bi

)
6 1+c(η) max

{
h

η
2+2η , h

}
We will give the proof of these two theorems in sections 4 and 5 respectively. We

need also a simple lemma:

Lemma 3.5. Let 1 < r 6 2 and Z1, ..., ZN be independent positive random variables

with EZi = 1 and satisfying (EZri )
1
r 6M Then

E

∣∣∣∣∣ 1

N

N∑
i=1

Zi − 1

∣∣∣∣∣ 6 2M

N
r−1
r

.

Proof. Let (εi)i6N independent ±1 Bernoulli variables. By symmetrization and Jensen’s
inequality we can write

E

∣∣∣∣∣ 1

N

N∑
i=1

Zi − 1

∣∣∣∣∣ 6 2

N
E

∣∣∣∣∣
N∑
i=1

εiZi

∣∣∣∣∣ 6 2

N
E

(
N∑
i=1

Z2
i

) 1
2

6
2

N
E

(
N∑
i=1

Zri

) 1
r

6
2

N

(
N∑
i=1

EZri

) 1
r

6
2M

N
r−1
r

.

Proof of Theorem 1.3. Take N > c(η) n

ε
2+ 2

η
satisfying conditions of Theorem 3.1 (with

p = 1 + η
2 ) and Theorem 3.3. Note that by the triangle inequality

∥∥∥∥∥ 1

N

N∑
i=1

Bi − In

∥∥∥∥∥ 6

∥∥∥∥∥ 1

N

N∑
i=1

Bi −
1

n
Tr

(
1

N

N∑
i=1

Bi

)
In

∥∥∥∥∥+

∥∥∥∥∥ 1

n
Tr

(
1

N

N∑
i=1

Bi

)
In − In

∥∥∥∥∥
:= α+ β.

Observe that

α = max

∣∣∣∣∣λ
(

1

N

N∑
i=1

Bi −
1

n
Tr

(
1

N

N∑
i=1

Bi

)
In

)∣∣∣∣∣
= max

[
λmax

(
1

N

N∑
i=1

Bi

)
− 1

n
Tr

(
1

N

N∑
i=1

Bi

)
,

1

n
Tr

(
1

N

N∑
i=1

Bi

)
− λmin

(
1

N

N∑
i=1

Bi

)]
.

Since the two terms in the max are non-negative, then one can bound the max by the

sum of the two terms. More precisely, we get α 6 λmax

(
1

N

N∑
i=1

Bi

)
− λmin

(
1

N

N∑
i=1

Bi

)
and by Theorem 3.1 and Theorem 3.3 we deduce that Eα 6 2ε.

Note that

β =

∣∣∣∣∣ 1

N

N∑
i=1

Tr(Bi)

n
− 1

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

Zi − 1

∣∣∣∣∣ ,
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where Zi = Tr(Bi)
n . Since Bi satisfies (MWR), then taking r = min(2, 1 + η

2 ) we have

∀i 6 N, (EZri )
1
r 6

1

n

n∑
j=1

(E 〈Biej , ej〉r)
1
r 6 c(η).

Therefore Zi satisfy the conditions of Lemma 3.5 and we deduce that Eβ 6 ε by the
choice of N .

As a conclusion

E

∥∥∥∥∥ 1

N

N∑
i=1

Bi − In

∥∥∥∥∥ 6 Eα+ Eβ 6 3ε.

4 Proof of Theorem 3.1

Given A an n × n positive semi-definite matrix such that all eigenvalues of A are
greater than a lower barrier lA = l i.e A � l.In, define the corresponding potential
function to be

φl(A) = Tr(A− l · In)−1.

The proof of Theorem 3.1 is based on the following result which will be proved in section
6:

Theorem 4.1. Let A � l · In and φl(A) 6 φ, B a positive semi-definite random matrix
satisfying EB = In and Property (MWR) with some p > 1.
Let ε ∈ (0, 1), if

φ 6
1

4 (8Cp)
1
p−1

ε
p
p−1 , (4.1)

then there exist l′ a random variable such that

A+B � l′ · In, φl′(A+B) 6 φl(A) and El′ > l + 1− ε.

Proof of Theorem 3.1. Let φ satisfying condition (4.1) of Theorem 4.1. We start with
A0 = 0 and l0 = −nφ so that φl0(A0) = − n

l0
= φ.

Applying Theorem 4.1, one can find l1 such that

A1 = A0 +B1 � l1 · In, φl1(A1) 6 φl0(A0) = φ

and
El1 > l0 + 1− ε

Now apply Theorem 4.1 conditionally on A1 to find l2 such that

A2 = A1 +B2 � l2 · In, φl2(A2) 6 φl1(A1)

and
EB2

l2 > l1 + 1− ε.

Using Fubini’s Theorem we have

El2 > El1 + 1− ε > l0 + 2(1− ε)
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After N steps, we get Eλmin(AN ) > ElN > l0 +N(1− ε). Therefore,

Eλmin

(
1

N

N∑
i=1

Bi

)
> 1− ε− n

Nφ
.

Taking N = n
εφ , we get Eλmin

(
1

N

N∑
i=1

Bi

)
> 1− 2ε.

5 Proof of Theorem 3.3

Given A an n×n positive semi-definite matrix such that all eigenvalues of A are less
than an upper barrier uA = u i.e. A ≺ u · In, define the corresponding potential function
to be

ψu(A) = Tr (u · In −A)
−1
.

The proof of Theorem 3.3 is based on the following result which will be proved in section
7:

Theorem 5.1. Let A ≺ u · In and ψu(A) 6 ψ, B a positive semi-definite random matrix
satisfying EB = In and Property (MSR).
Let ε ∈ (0, 1), if

ψ 6 C3 · 3ε1+ 2
η (5.1)

there exists u′ a random variable such that

A+B ≺ u′ · In, ψu′(A+B) 6 ψu(A) and Eu′ 6 u+ 1 + ε.

Proof of Theorem 3.3. Let ψ satisfying the condition of Theorem 5.1. We start with
A0 = 0, u0 = n

ψ so that ψu0
(A0) = ψ.

Applying Theorem 5.1, one can find u1 such that

A1 = A0 +B1 ≺ u1 · In, ψu1(A1) 6 ψu0(A0) and Eu1 6 u0 + 1 + ε.

Now apply Theorem 5.1 conditionally on A1 to find u2 such that

A2 = A1 +B2 ≺ u2 · In, ψu2(A2) 6 ψu1(A1) and EB2u2 6 u1 + 1 + ε.

Using Fubini’s Theorem we have

Eu2 6 Eu1 + 1 + ε 6 u0 + 2(1 + ε).

After N steps we get Eλmax

(
N∑
i=1

Bi

)
6 EuN 6 u0 +N(1 + ε).

Taking N > n
εψ = C−1

3
n

ε
2+ 2

η
, we deduce that

Eλmax

(
1

N

N∑
i=1

Bi

)
6 1 + 2ε.

3C3 =
[
8(2c)

1
η (16 + 16

η
)
1+ 3

η

]−1

∧
[
16(2c)

3
2
+ 2
η (8 + 8

η
)
4
η

]−1
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Estimating the covariance of random matrices

6 Proof of Theorem 4.1

6.1 Notations

We work under the assumptions of Theorem 4.1. We are looking for a random vari-
able l′ of the form l + δ where δ is a positive random variable playing the role of the
shift.

If in addition A � (l + δ) · In, we will note

Lδ = A− (l + δ) · In

so that
Tr
(
B

1
2 (A− (l + δ) · In)−1B

1
2

)
=
〈
L−1
δ , B

〉
.

λ1, .., λn will denote the eigenvalues of A and v1, .., vn the corresponding normalized
eigenvectors. Note that (vi)i6n are also the eigenvectors of L−1

δ corresponding to the
eigenvalues 1

λi−(l+δ) .

6.2 Finding the shift

To find sufficient conditions for such δ to exist, we need a matrix extension of
Lemma 3.4 in [7] which, up to a minor change, is essentially contained in Lemma 20 in
[10] and we formulate it here in Lemma 6.2. This method uses the Sherman-Morrison-
Woodbury formula:

Lemma 6.1. Let E be an n×n invertible matrix, C a k× k invertible matrix, U an n× k
matrix and V a k × n matrix. Then we have:

(E + UCV )−1 = E−1 − E−1U(C−1 + V E−1U)−1V E−1

Lemma 6.2. Let A as above satisfying A � l · In. Suppose that one can find δ > 0

verifying δ 6 1
‖L−1

0 ‖
and 〈

L−2
δ , B

〉
φl+δ(A)− φl(A)

−
∥∥∥B 1

2L−1
δ B

1
2

∥∥∥ > 1

Then
λmin(A+B) > l + δ and φl+δ(A+B) 6 φl(A).

Proof. First note that 1
‖L−1

0 ‖
= λmin(A) − l, so the first condition on δ implies that

λmin(A) > l + δ.
Now using Sherman-Morrison-Woodbury formula with E = Lδ, U = V = B

1
2 , C = In

we get :

φl+δ(A+B) = Tr (Lδ +B)
−1

= φl+δ(A)− Tr

(
L−1
δ B

1
2

(
In +B

1
2L−1

δ B
1
2

)−1

B
1
2L−1

δ

)
6 φl+δ(A)−

〈
L−2
δ , B

〉
1 +

∥∥∥B 1
2L−1

δ B
1
2

∥∥∥
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Estimating the covariance of random matrices

Rearranging the hypothesis, we get φl+δ(A+B) 6 φl(A).

Since ‖L−1
0 ‖ 6 Tr

(
L−1

0

)
= φl(A) and

∥∥∥B 1
2L−1

δ B
1
2

∥∥∥ 6
〈
L−1
δ , B

〉
then in order to satisfy

conditions of Lemma 6.2, we may search for δ satisfying:

δ 6
1

φl(A)
and

〈
L−2
δ , B

〉
φl+δ(A)− φl(A)

−
〈
L−1
δ , B

〉
> 1 (6.1)

For t 6 1
φ , let us note :

q1(t, B) =
〈
L−1
t , B

〉
= Tr

(
B(A− (l + t) · In)−1

)
and

q2(t, B) =

〈
L−2
t , B

〉
Tr(L−2

t )
=

Tr (B(A− (l + t) · In)
−2

)

Tr (A− (l + t) · In)
−2

We have already seen in Lemma 6.2 that if t 6 1
φ 6 1

‖L−1
0 ‖

then A � (l + t) · In so the

definitions above make sense. Since we have

φl+δ(A)− φl(A) = Tr(A− (l + δ) · In)−1 − Tr(A− l · In)−1

= δTr((A− (l + δ) · In)−1(A− l · In)−1)

6 δTr(A− (l + δ) · In)−2,

then in order to have (6.1), it will be sufficient to choose δ satisfying δ 6 1
φ and

1

δ
q2(δ,B)− q1(δ,B) > 1 (6.2)

Note that q1 and q2 can be expressed as follows:

q1(t, B) =

n∑
i=1

〈Bvi, vi〉
λi − l − t

and q2(t, B) =

∑
i
〈Bvi,vi〉

(λi−l−t)2∑
i(λi − l − t)−2

.

Since φl(A) =

n∑
i=1

(λi − l)−1 6 φ, then (λi − l) · φ > 1 for all i. Thus

(1− t · φ)(λi − l) = λi − l − t · (λi − l) · φ 6 λi − l − t 6 λi − l

and therefore
q1(t, B) 6 (1− t · φ)−1q1(0, B)

and
(1− t · φ)2q2(0, B) 6 q2(t, B) 6 (1− t · φ)−2q2(0, B).

Lemma 6.3. Let s ∈ (0, 1) and take δ = (1 − s)3q2(0, B)1{q1(0,B)6s}1{q2(0,B)6 s
φ}. Then

A+B � (l + δ) · In and φl+δ(A+B) 6 φl(A).

Proof. As stated before in (6.2), it is sufficient to check that δ 6 1
φ and 1

δ q2(δ,B) −
q1(δ,B) > 1.
If q1(0, B) > s or q2(0, B) > s

φ then δ = 0 and there is nothing to prove since φl(A+B) 6
φl(A).

In the other case i.e. q1(0, B) 6 s and q2(0, B) 6 s
φ , we have δ = (1− s)3q2(0, B).

So δ 6 (1− s)3 s
φ 6 1

φ and
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1

δ
q2(δ,B)− q1(δ,B) =

1

(1− s)3q2(0, B)
q2(δ,B)− q1(δ,B)

>
1

(1− s)3q2(0, B)
(1− δφ)2q2(0, B)− (1− δφ)−1q1(0, B)

>
(1− s)2

(1− s)3
− s

(1− s)
= 1.

6.3 Estimating the random shift

Now that we have found δ, we will estimate Eδ using the property (MWR). We will
start by stating some basic facts about q1 and q2.

Proposition 6.4. Let as above A � l · In and φl(A) 6 φ, B satisfying (MWR) and
EB = In. Then we have the following :

1. Eq1(0, B) = φl(A) 6 φ and Eq1(0, B)p 6 Cpφ
p.

2. Eq2(0, B) = 1 and Eq2(0, B)p 6 Cp.

3. P(q1(0, B) > u) 6 Cp(
φ
u )p and P(q2(0, B) > u) 6 Cp

up .

Proof. Since EB = In then Eq1(0, B) = φl(A) and Eq2(0, B) = 1.
Now using the triangle inequality and Property (MWR) we get :

(Eq1(0, B)p)
1
p =

[
E

(
n∑
i=1

〈Bvi, vi〉
λi − l

)p] 1
p

6
n∑
i=1

(E 〈Bvi, vi〉p)
1
p

λi − l
6

n∑
i=1

C
1
p
p

λi − l
6 C

1
p
p φ

With the same argument we prove that Eq2(0, B)p 6 Cp. The third part of the propo-
sition follows by Markov’s inequality.

Lemma 6.5. If δ is as in Lemma 6.3. Then

Eδ > (1− s)3

[
1− 2Cp

(
φ

s

)p−1
]
.

Proof. Using the above proposition and H
..
older’s inequality with 1

p + 1
q = 1 we get :

Eδ = E(1− s)3q2(0, B)1{q1(0,B)6s}1{q2(0,B)6 s
φ}

= (1− s3)
[
Eq2(0, B)− Eq2(0, B)1{q1(0,B)>s or q2(0,B)> s

φ}

]
> (1− s)3

[
1− (Eq2(0, B)p)

1
p .

(
P

{
q1(0, B) > s or q2(0, B) >

s

φ

}) 1
q

]

> (1− s)3

[
1− C

1
p
p

(
Cp

(
φ

s

)p
+ Cp

(
φ

s

)p) 1
q

]

> (1− s)3

[
1− 2Cp

(
φ

s

)p−1
]
.
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Now it remains to make good choice of s and φ in order to finish the prove Theo-
rem 4.1. Take l′ = l + δ, the choice of δ being as before with s = ε

4 .
As we have seen, we get A+B � l′ · In and φl′(A+B) 6 φl(A). Moreover,

El′ = l + Eδ > l + (1− s)3

[
1− 2Cp

(
φ

s

)p−1
]
> 1− ε,

by the assumption on φ. This ends the proof of Theorem 4.1.

7 Proof of Theorem 5.1

7.1 Notations

We work under the assumptions of Theorem 4.1. We are looking for a random vari-
able u′ of the form u + ∆ where ∆ is a positive random variable playing the role of the
shift.

We will denote
Ut = (u+ t) · In −A,

so that
Tr
(
B

1
2 ((u+ t) · In −A)−1B

1
2

)
=
〈
Ut
−1, B

〉
.

As before, λ1, .., λn will denote the eigenvalues of A and v1, .., vn the corresponding
normalized eigenvectors. (vi)i6n are also the eigenvectors of U−1

t corresponding to the
eigenvalues 1

u+t−λi .

7.2 Finding the shift

To find sufficient conditions for such ∆ to exist, we need a matrix extension of
Lemma 3.3 in [7] which, up to a minor change, is essentially contained in Lemma 19

in [10]. For the sake of completeness, we include the proof.

Lemma 7.1. Let A as above satisfying A ≺ u · In. Suppose that one can find ∆ > 0

verifying 〈
U−2

∆ , B
〉

ψu(A)− ψu+∆(A)
+
∥∥∥B 1

2U−1
∆ B

1
2

∥∥∥ 6 1. (7.1)

Then
A+B ≺ (u+ ∆) · In and ψu+∆(A+B) 6 ψu(A).

Proof. Since
〈
U−2

∆ , B
〉

and ψu(A)− ψu+∆(A) are positive, then by (7.1) we have∥∥∥B 1
2U−1

∆ B
1
2

∥∥∥ < 1 and

〈
U−2

∆ , B
〉

1−
∥∥∥B 1

2U−1
∆ B

1
2

∥∥∥ 6 ψu(A)− ψu+∆(A).

First note that
∥∥∥B 1

2U−1
∆ B

1
2

∥∥∥ =
∥∥∥U− 1

2

∆ BU
− 1

2

∆

∥∥∥ < 1, so U
− 1

2

∆ BU
− 1

2

∆ ≺ In. Therefore we

get B ≺ U∆ which means that A+B ≺ (u+ ∆) · In.
Now using the Sherman-Morrison-Woodbury (see Lemma 6.1) with E = U∆, U = V =

B
1
2 , C = In we get :
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ψu+∆(A+B) = Tr (U∆ −B)
−1

= ψu+∆(A) + Tr

(
U−1

∆ B
1
2

(
In −B

1
2U−1

∆ B
1
2

)−1

B
1
2U−1

∆

)
6 ψu+∆(A) +

〈
U−2

∆ , B
〉

1−
∥∥∥U− 1

2

∆ BU
− 1

2

∆

∥∥∥ 6 ψu(A)

We may now find ∆ satisfying (7.1). Let us note :

Q1(t, B) =
∥∥∥B 1

2U−1
t B

1
2

∥∥∥ =
∥∥∥B 1

2 ((u+ t) · In −A)
−1
B

1
2

∥∥∥
and

Q2(t, B) =

〈
U−2
t , B

〉
ψu(A)− ψu+t(A)

=
Tr
(
B ((u+ t) · In −A)

−2
)

ψu(A)− ψu+t(A)
.

Since Q1 and Q2 are both decreasing in t, we work with each separately. Note that
by (5.1), we have 4c · ψ 6 1/2. Fix θ ∈ (4c · ψ, 1/2) and define ∆1,∆2 as follows :

∆1 the smallest positive number such that Q1(∆1, B) 6 θ

and

∆2 the smallest positive number such that Q2(∆2, B) 6 1− θ.

Now take ∆ = ∆1 + ∆2, then Q1(∆, B) +Q2(∆, B) 6 θ + 1− θ = 1. So this choice of
∆ satisfies (7.1) and it remains now to estimate ∆1 and ∆2 separately.

7.3 Estimating ∆1

We may write Q1(∆1, B) =

∥∥∥∥∥
n∑
i=1

B
1
2 viv

t
iB

1
2

u+ ∆1 − λi

∥∥∥∥∥.
Put ξi = B

1
2 viv

t
iB

1
2 , µi = ψ(u−λi) and µ = ψ∆1. Denote PS the orthogonal projection

on span ({vi}i∈S), clearly rank(PS) = |S|. Then we have :

E‖ξi‖ = E〈Bvi, vi〉 = 1.

P

(∥∥∥∥∥∑
i∈S

ξi

∥∥∥∥∥ > t

)
= P (‖PSBPS‖ > t) 6 c

t1+η ∀t > c |S| .

n∑
i=1

1

µi
=
ψu(A)

ψ
6 1.

µ is the smallest positive number such that
n∑
i=1

ξi
µi + µ

� θ

ψ
In.

We will need an analog of Lemma 3.5 appearing in [24]. We extend this lemma to a
matrix setting:
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Lemma 7.2. Suppose {ξi}i6n are symmetric positive semi-definite random matrices
with E‖ξi‖ = 1 and

P

(∥∥∥∥∥∑
i∈S

ξi

∥∥∥∥∥ > t

)
6

c

t1+η
provided t > c|S| = c

∑
i∈S

E‖ξi‖,

for all subsets S ⊂ [n] and some constants c, η > 0. Consider positive numbers µi such
that

n∑
i=1

1

µi
6 1.

Let µ be the minimal positive number such that

n∑
i=1

ξi
µi + µ

� K · In,

for some K > C = 4c. Then Eµ 6 c(η)
K1+η .

Proof. For any j > 0, denote

Ij =
{
i/ 2j 6 µi < 2j+1

}
and let nj = |Ij |. Note that

+∞∑
j=0

nj
2j+1

6
+∞∑
j=0

∑
i∈Ij

1

µi
=
∑
i6n

1

µi
6 1.

Define µ′ as the minimal positive number such that

∀j > 0,
1

2j + µ′

∥∥∥∥∥∥
∑
i∈Ij

ξi

∥∥∥∥∥∥ 6 εj ,

where εj = K
2

nj
2j+1 ∨ K

2a2−j
η

2+2η and a =
∑
j 2−j

η
2+2η . First note that µ 6 µ′; indeed,

∥∥∥∥∥
n∑
i=1

ξi
µi + µ′

∥∥∥∥∥ =

∥∥∥∥∥∥
+∞∑
j=0

∑
i∈Ij

ξi
µi + µ′

∥∥∥∥∥∥ 6

∥∥∥∥∥∥
+∞∑
j=0

1

2j + µ′

∑
i∈Ij

ξi

∥∥∥∥∥∥
6

+∞∑
j=0

1

2j + µ′

∥∥∥∥∥∥
∑
i∈Ij

ξi

∥∥∥∥∥∥
6
∞∑
j=0

εj

6
K

2
+
K

2
= K,

and since µ is the minimal positive number satisfying the inequality above, then µ 6 µ′.
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We may now estimate Eµ′; to this aim, we need to look at P {µ′ > t}. For t > 0,

P {µ′ > t} = P

∃j > 0/
1

2j + t

∥∥∥∥∥∥
∑
i∈Ij

ξi

∥∥∥∥∥∥ > εj


6

+∞∑
j=0

P

 1

2j + t

∥∥∥∥∥∥
∑
i∈Ij

ξi

∥∥∥∥∥∥ > εj


=

+∞∑
j=0

P


∥∥∥∥∥∥
∑
i∈Ij

ξi

∥∥∥∥∥∥ > εj(2
j + t)


6

+∞∑
j=0

c

[εj(2j + t)]
1+η ,

where the last inequality comes from the fact that εj(2j + t) > K
4 nj > c|Ij | and by

applying the hypothesis satisfied by the ξi. Now since εj > K
2a2−j

η
2+2η , we have

P {µ′ > t} 6
(

2a

K

)1+η +∞∑
j=0

c

2−j
η
2 (2j + t)

1+η 6
c(η)

K1+η

+∞∑
j=0

1

(2j + t)1+ η
2

.

Now by integration we get,

Eµ′ =

∫ +∞

0

P {µ′ > t} dt 6 c(η)

K1+η

+∞∑
j=0

∫ +∞

0

1

(2j + t)1+ η
2

dt 6
c(η)

K1+η
.

Applying Lemma 7.2 we get Eµ 6 c(η)
(
ψ
θ

)1+η

, so that

E∆1 6 c(η)
ψη

θ1+η
. (7.2)

7.4 Estimating ∆2

Since
ψu(A)− ψu+t(A) = t · Tr

(
(u · In −A)

−1
((u+ t) · In −A)

−1
)
,

we can write

Q2(t, B) =

∑
i
〈Bvi,vi〉

(u+t−λi)2

t
∑
i(u+ t− λi)−1(u− λi)−1

6
1

t

∑
i

〈Bvi,vi〉
(u+t−λi)(u−λi)∑

i(u+ t− λi)−1(u− λi)−1
(7.3)

:=
1

t
P2(t, B).

First note that P2(t, B) can be written as
∑
i αi(t) 〈Bvi, vi〉 with

∑
i αi(t) = 1. Having

this in mind, one can easily check that EP2(t, B) = 1 and

EP2(t, B)1+ 3η
4 6 c(η), (7.4)

where for the last inequality, we used the fact that B satisfies (MWR) with p = 1 + 3η
4 .

In order to estimate ∆2, we will divide it into two parts as follows:

∆2 = ∆21{P2(0,B)6 θ
4ψ }

+ ∆21{P2(0,B)> θ
4ψ }

:= H1 +H2.
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Let us start by estimating EH1. Suppose that P2(0, B) 6 θ
4ψ and denote

x = (1 + 4θ)P2(0, B).

Since ψu(A) 6 ψ, we have (u− λi).ψ > 1 ∀i and therefore u+ x− λi 6 (1 + xψ)(u− λi).
This implies that

P2(x,B) 6 (1 + xψ)P2(0, B).

Now write

Q2(x,B) 6
1

x
P2(x,B) 6

1 + xψ

x
P2(0, B) 6

1 + (1 + 4θ) θ4
1 + 4θ

6 1− θ,

which means that

∆21{P2(0,B)6 θ
4ψ} 6 (1 + 4θ)P2(0, B),

and therefore

EH1 = E∆21{P2(0,B)6 θ
4ψ} 6 1 + 4θ. (7.5)

Now it remains to estimate EH2. For that we need to prove a moment estimate for
∆2. First observe that using (7.4) we have

P{∆2 > t} = P{Q2(t, B) > 1− θ} 6 P{P2(t, B) > t.(1− θ)} 6 c(η)

t1+ 3η
4

.

By integration, this implies

E∆
1+ η

2
2 =

∫ ∞
0

P{∆2 > t}(1 +
η

2
)t
η
2 dt 6

∫ 1

0

(1 +
η

2
)t
η
2 dt+

∫ ∞
1

c(η)

t1+ η
4

6 c(η).

Let p′ = 1 + η
2 , applying H

..
older’s inequality with 1

p′ + 1
q′ = 1 we have :

EH2 = E∆21{P2(0,B)> θ
4ψ} 6

(
E∆p′

2

) 1
p′
(
P

{
P2(0, B) >

θ

4ψ

}) 1
q′

(7.6)

6 c(η)

((
ψ

θ

)1+ η
2

EP2(0, B)1+ η
2

) 1
q′

6 c(η)

(
ψ

θ

) η
2

.

Looking at (7.5) and (7.6) we have

E∆2 6 1 + 4θ + c(η)

(
ψ

θ

) η
2

.

Putting the estimates of ∆1 and ∆2 together we deduce

E∆ 6 1 + 4θ + c(η)

(
ψ

θ

) η
2

+ c(η)
ψη

θ1+η
.

We are now ready to finish the proof. Take u′ = u + ∆ with θ = ε
8 . Then taking ψ =

c(η)ε1+ 2
η with the constant depending on c and η properly chosen, we get E∆ 6 1 + ε.
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8 Isotropic log-concave matrices

A natural way to define a log-concave matrix is to ask that it has a log-concave
distribution. We will define the isotropic condition as follows:

Definition 8.1. Let A be an n×m random matrix and denote by (Ci)i6m its columns. We
will say that A is an isotropic log-concave matrix if A′t =

√
m(Ct1, .., C

t
m) is an isotropic

log-concave random vector in Rnm.

Remark 8.2. Let (ai,j) the entries of A. Saying that A′ is isotropic means that

Eai,jak,l =
1

m
δ(i,j),(k,l)

This implies that for any n×m matrix M we have

E 〈A,M〉A = ETr
(
AtM

)
A =

1

m
M.

One can view this as an analogue to the isotropic condition in the vector case: in fact if
A = X is a vector (i.e an n× 1 matrix), the above condition would be

E 〈X, y〉X = y for all y ∈ Rn,

which means that X is isotropic in Rn.

In [19] and [20], Paouris established large deviation inequality and small ball prob-
ability estimate satisfied by an isotropic log-concave vector. Moreover, Guédon-Milman
obtained in [12] what is known as thin-shell estimate for isotropic log-concave vector.
We will derive analogue properties for isotropic log-concave matrices using the results
above.

Proposition 8.3. Let A be an n×m isotropic log-concave matrix and denote B = AAt.
Then for every orthogonal projection P on Rn we have the following large deviation
estimate for Tr(PB)

P {Tr(PB) > c1t} 6 exp
(
−
√
t.m
)
∀t > rank(P ) (8.1)

and a small ball probability estimate

P {Tr(PB) 6 c2ε.rank(P )} 6 εc2
√
m.rank(P ) ∀ε 6 1. (8.2)

Moreover, we also have a thin-shell estimate

P {|Tr(PB)− rank(P )| > t.rank(P )} 6 C exp
(
−ct3

√
m.rank(P )

)
∀t 6 1. (8.3)

Proof. Let P be an orthogonal projection on Rn and denote P ′ = Im ⊗ P . As we have
seen before Tr(PB) = ‖PA‖2HS = 1

m‖P
′A′‖22 and rank(P ′) = m.rank(P ). Since P ′A′ is

an isotropic log-concave vector, then using the large deviation inequality [19] satisfied
by P ′A′, we have

P
{
‖P ′A′‖22 > c1u

}
6 exp

(
−
√
u
)
∀u > rank(P ′).

Let t > rank(P ) and write u = t.m. Since u > m.rank(P ) = rank(P ′) we have

P {m.Tr(PB) > c1t.m} 6 exp
(
−
√
t.m
)
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which gives the large deviation estimate stated above.

For the small ball probability estimate, we apply Paouris result [20] to P ′A′:

P
{
‖P ′A′‖22 6 c2ε.rank(P ′)

}
6 εc2

√
rank(P ′) ∀ε 6 1.

Writing this in terms of B and P , we easily get the conclusion. Using the thin-shell
estimate obtained in [12] and following the same procedure as above, we get the last
part of the proposition.

Remark 8.4. Recently, it was shown in [11] that s-concave random vectors satisfy a
thin-shell concentration similar to the log-concave one. Therefore, all results of this
section extend to the case of s-concave random matrices.

In [24], it was shown that an isotropic log-concave vector satisfies (SR) and we
showed in Proposition 2.3 how to pass from (SR) to (MSR∗). Therefore, we may apply
Theorem 1.3 to log-concave matrices and get the following:

Proposition 8.5. Let A be an n × m isotropic log-concave matrix. Then B = AAt

satisfies (MSR). Moreover ∀ε ∈ (0, 1), taking N > c(ε)n independent copies of B we
have

E

∥∥∥∥∥ 1

N

N∑
i=1

Bi − In

∥∥∥∥∥ 6 ε.

Proof. Note first that since A is isotropic in the sense of definition 8.1, then B = AAt

satisfies EB = In.
By proposition 8.3, B satisfies

P (Tr(PB) > c1t) 6 exp(−
√
tm) ∀t > rank(P ) and ∀P orthogonal projection of Rn.

and therefore (MSR∗). Applying Theorem 1.3 we deduce the result.

8.1 Eigenvalues of the empirical sum of a log-concave matrix

The concentration inequalities satisfied by log-concave matrices will allow us obtain
some results with high probability rather than in expectation as was the case before.
Precisely, we can prove the following :

Theorem 8.6. Let n,m and N some fixed integers. Let A be an n × m isotropic log-
concave matrix and denote B = AAt. For any ε ∈ (0, 1), if m > C

ε6 [log(CnN)]
2, then with

probability > 1− exp(−cε3
√
m) we have

λmax

(
1

N

N∑
i=1

Bi

)
6 1 + ε+

6n

εN
,

where (Bi)i6N are independent copies of B.

Proof. The proof of Theorem 8.6 follows the same ideas developed in the previous sec-
tions. Let ε ∈ (0, 1), we only need the following property satisfied by our matrix
B = AAt:

P
(
〈Bx, x〉 > 1 +

ε

2

)
6 exp(−cε3

√
m) ∀x ∈ Sn−1.
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This is obtained by applying (8.3) for rank 1 projections and looking only at the large
deviation part.

Define ∆, ψ and α as follows:

∆ = 1 + ε; ψ =
ε

6
and α =

1 + ε
2

1 + ε
.

Recall some notations

A0 = 0, A1 = B1, A2 = A1 +B1, .., AN = AN−1 +BN =

N∑
i=1

Bi.

Denote

u0 =
n

ψ
, u1 = u0 + ∆, u2 = u1 + ∆, .., uN = uN−1 + ∆ = (1 + ε)N +

6n

ε
.

Define
ψui(Ai) = Tr (ui.In −Ai)−1

,

the corresponding potential function when Ai ≺ ui.In. Denote by =i the event

=i := “Ai ≺ ui.In and ψui(Ai) 6 ψ”.

Clearly P (=0) = 1. Suppose now that =i is satisfied; as we have seen in Lemma 7.1, the
following condition is sufficient for the occurrence of the event =i+1 :

Q2(∆, Bi+1) +Q1(∆, Bi+1) 6 1.

Note that

Q2(∆, Bi+1) 6
1

∆
P2(∆, Bi+1),

where P2 is defined in (7.3) but with Ai instead of A. Now denoting λj the eigenvalues
of Ai and vj the corresponding eigenvectors, taking the probability with respect to Bi+1

one can write

PBi+1
{Q2(∆, Bi+1) +Q1(∆, Bi+1) > 1} 6 PBi+1

{
1

∆
P2(∆, Bi+1) +Q1(∆, Bi+1) > 1

}
6 PBi+1

{
1

∆
P2(∆, Bi+1) > α

}
+ PBi+1

{Q1(∆, Bi+1) > 1− α}

6 PBi+1


n∑
j=1

〈Bi+1vj , vj〉
(ui+1 − λj)(ui − λj)

> α∆

n∑
j=1

1

(ui+1 − λj)(ui − λj)


+ PBi+1


n∑
j=1

〈Bi+1vj , vj〉
ui+1 − λj

> 1− α


6 PBi+1

{
∃j 6 n | 〈Bi+1vj , vj〉 > 1 +

ε

2

}
+ PBi+1

{
∃j 6 n | 〈Bi+1vj , vj〉 >

1− α
ψ

}
6 2Cn. exp(−cε3

√
m).

Keeping in mind that Bi are independent, we have shown that

P (=i+1|=i) > 1− 2Cn. exp(−cε3
√
m).

Moreover, we have
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P

{
λmax

(
1

N

N∑
i=1

Bi

)
6 1 + ε+

6n

εN

}
> P (=N )

> P (=N |=N−1)P (=N−1|=N−2) · · · P (=0)

> 1− 2CNn. exp(−cε3
√
m).

Therefore, Theorem 8.6 follows by the choice of m.

Remark 8.7. Note that in the previous proof, we only used the large deviation inequal-
ity given by the thin-shell estimate (8.3). If one uses the deviation inequality given by
(8.1), then by the same proof it can be proved that

λmax

(
1

N

N∑
i=1

Bi

)
6 C(1 +

n

N
),

with high probability and with similar condition on m. The advantage of using thin-shell
is that we can get an estimate close to 1.

By the same techniques, we also get an estimate of the smallest eigenvalue.

Theorem 8.8. Let n,m and N some fixed integers. Let A be an n × m isotropic log-
concave matrix and denote B = AAt. For any ε ∈ (0, 1), if m > C

ε6 [log(CnN)]
2, then with

probability > 1− exp(−cε3
√
m) we have

λmin

(
1

N

N∑
i=1

Bi

)
> 1− ε− 3n

εN
,

where (Bi)i6N are independent copies of B.

Proof. Here we will use the lower and the upper estimate given by thin-shell (8.3).
Applying (8.3) for rank 1 projections, we have:

P
(

1− ε

2
6 〈Bx, x〉 6 1 +

ε

2

)
> 1− C exp(−cε3

√
m) ∀x ∈ Sn−1.

Define δ, φ and α as follows:

δ = 1− ε; φ =
ε

3
and α =

1− ε
2

1− ε
.

Recall some notations

A0 = 0, A1 = B1, A2 = A1 +B1, .., AN = AN−1 +BN =

N∑
i=1

Bi.

Denote

l0 = −n
φ
, l1 = l0 + δ, l2 = l1 + δ, .., lN = lN−1 + δ = N(1− ε)− 3n

ε
.

Define
φli(Ai) = Tr (Ai − li.In)

−1
,

the corresponding potential function when Ai � li.In. Note also that δ 6 1
φ .

Denote by =i the event

=i := “Ai � li.In and φli(Ai) 6 φ”.

EJP 18 (2013), paper 107.
Page 21/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2579
http://ejp.ejpecp.org/


Estimating the covariance of random matrices

Clearly P (=0) = 1. Suppose now that =i is satisfied, following what was done after
Lemma 6.2, condition (6.2) is sufficient for the occurrence of the event =i+1 :

1

δ
q2(δ,Bi+1)− q1(δ,Bi+1) > 1

Denoting λj the eigenvalues of Ai and vj the corresponding eigenvectors, taking the
probability with respect to Bi+1 one can write :

PBi+1

{
1

δ
q2(δ,Bi+1)− q1(δ,Bi+1) < 1

}
6

6 PBi+1

{
1

δ
q2(δ,Bi+1) < α

}
+ PBi+1

{q1(δ,Bi+1) > α− 1}

6 PBi+1


n∑
j=1

〈Bi+1vj , vj〉
(λj − li+1)2

< αδ

n∑
j=1

1

(λj − li+1)2

+ PBi+1


n∑
j=1

〈Bi+1vj , vj〉
λj − li+1

> α− 1


6 PBi+1

{
∃j 6 n | 〈Bi+1vj , vj〉 < 1− ε

2

}
+ PBi+1

{
∃j 6 n | 〈Bi+1vj , vj〉 >

α− 1

φ

}
6 2Cn. exp(−cε3

√
m).

Keeping in mind that Bi are independent, we have shown that

P (=i+1|=i) > 1− 2Cn. exp(−cε3
√
m).

Moreover, we have

P

{
λmin

(
1

N

N∑
i=1

Bi

)
> 1− ε− 3n

εN

}
> P (=N )

> P (=N |=N−1)P (=N−1|=N−2) · · · P (=0)

> 1− 2CNn. exp(−cε3
√
m).

Therefore, Theorem 8.8 follows by the choice of m.

Remark 8.9. Note that in the previous proof, we used the large deviation inequality
alongside the small ball probability estimate given by thin-shell (8.3). If one uses the
deviation inequality given by (8.1) alongside the small ball probability estimate given
by (8.2), then by the same proof it can be proved that

λmin

(
1

N

N∑
i=1

Bi

)
> −c+ C

n

N
,

with high probability and with similar condition on m. The advantage of using thin-shell
is that we can get an estimate close to 1.

Combining the two previous results, we will be able to obtain, with high probability,
a similar result to Proposition 8.5 for log-concave matrices:

Theorem 8.10. Let A be an n ×m isotropic log-concave matrix. For any ε ∈ (0, 1), if

m > C
ε6

[
log(Cnε )

]2
, taking

N >
96n

ε2
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copies A1, ..., AN of A, then with probability > 1− exp(−cε3
√
m) we have∥∥∥∥∥ 1

N

N∑
i=1

AiA
t
i − In

∥∥∥∥∥ 6 ε.

Proof. Let ε ∈ (0, 1), N > 6n
ε2 and suppose that m satisfies the assumption of the theo-

rem. Note that

P

{∥∥∥∥∥ 1

N

N∑
i=1

AiA
t
i − In

∥∥∥∥∥ > 4ε

}
6 P

{
λmax

(
1

N

N∑
i=1

AiA
t
i

)
> 1 + 2ε

}

+ P

{
λmin

(
1

N

N∑
i=1

AiA
t
i

)
< 1− 2ε

}
and therefore it is sufficient to apply Theorem 8.6 and Theorem 8.8.

8.2 Concrete examples of isotropic log-concave matrices

For x ∈ Rk, we denote by x∗ the vector with components |xi| arranged in nonin-
creasing order. Let f : Rk −→ R, we say that f is absolutely symmetric if f(x) = f(x∗)

for all x ∈ Rk. (For example, ‖ · ‖p is absolutely symmetric).
Define F a function on Mn,m by F (A) = f (s1(A), .., sk(A)) for A ∈ Mn,m and k =

min(n,m). It was shown by Lewis [16] that f is absolutely symmetric if and only if
F is unitary invariant. Moreover, f is convex if and only if F is convex.
Let A be an n × m random matrix whose density with respect to Lebesgue measure
is given by G(A) = exp (−f (s1(A), .., sk(A))), where f is an absolutely symmetric con-
vex function. By the remark above, G is log-concave. This covers the case of random
matrices with density of the form exp (−

∑
i V (si(A))), where V is an increasing con-

vex function onR+. When V (x) = x2, this would be the gaussian unitary ensemble GUE.

Proposition 8.11. Let A be an n × m random matrix whose density with respect to
Lebesgue is given by

G(A) = exp (−f(s1(A), ..., sk(A))) ,

where f is an absolutely symmetric convex function and k = min(n,m). Suppose that
E‖A‖2HS = n, then A is an isotropic log-concave matrix, and

√
n
mA

t is an m×n isotropic
log-concave matrix.

Proof. Since f is an absolutely symmetric convex function, then G is log-concave as we
have seen above. It remains to prove the isotropic condition.

Let (ai,j) be the entries of A. Fix (i, j) and (k, l) two different indices. Note Dj =

diag(1, ..,−1, .., 1) the m×m diagonal matrix where the −1 is on the jth term. Let E(i,k)

be the n × n matrix obtained by swapping the ith and kth rows in the identity matrix.
Note also F(j,l) the m×m matrix obtained by swapping the jth and lth rows in the iden-
tity matrix.

It is easy to see that α := ADj change the jth column of A to its opposite and keep
the rest unchanged. Note that ADj has the same singular values as A.

Similarly, β := E(i,k)AF(j,l) permute ai,j with ak,l and keep the other terms un-
changed. Note also that E(i,k)AF(j,l) has the same singular values as A.
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Finally note that these α and β have a Jacobian equal to 1, and since f is absolutely
symmetric, these transformations, which preserve the singular values, don’t affect the
density.
If j 6= l, by a change of variables M = ADj the density is invariant and we have∫

ai,jak,lG(A)dA = −
∫
ai,jak,lG(A)dA.

Doing the change of variables M = DiA when i 6= k, we can conclude that

Eai,jak,l = 0 if (i, j) 6= (k, l).

Now by a change of variables M = E(i,j)AF(k,l) the density is invariant and we have∫
a2
i,jG(A)dA =

∫
a2
k,lG(A)dA.

This implies that∫
a2
i,jG(A)dA =

1

nm

∑
k6n,l6m

∫
a2
k,lG(A)dA =

1

nm

∫
‖A‖2HSG(A)dA =

1

m
.

As a conclusion, we have shown that

Eai,jak,l =
1

m
δ(i,j),(k,l),

which means that A is isotropic.

Remark 8.12. The condition E‖A‖2HS = n can be obtained by a good normalization of
the function f . Indeed, suppose that

1

n

∫
‖A‖2HSG(A)dA = c.

Define f̂(x) = f(
√
cx)− nm log(

√
c) and Ĝ(A) = exp

(
−f̂(s1(A), .., sk(A))

)
.

Note that Ĝ is a probability density. Indeed, by the change of variables M =
√
cA

we have

∫
Ĝ(A)dA =

∫
exp

(
−f(
√
cs1(A), ..,

√
csk(A))

)
(
√
c)nmdA

=

∫
exp (−f(s1(M), .., sk(M))) dM = 1.

Note also that Ĝ satisfies the isotropic condition. Indeed, by the same change of vari-
ables we can write

1

n

∫
‖A‖2HSĜ(A)dA =

1

cn

∫
‖M‖2HSG(M)dM = 1.

Applying Theorem 8.6 and Theorem 8.8 for A and At we get:

Proposition 8.13. Let A be an n × m random matrix whose density with respect to
Lebesgue is given by

G(A) = exp (−f(s1(A), ..., sk(A))) ,
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where f is an absolutely symmetric convex function, properly normalized as above and
k = min(n,m).

Suppose that m > C
ε6

[
log(Cnε )

]2
and n > C

ε6

[
log(Cmε )

]2
, taking N = 96 max(n,m)

ε2 then with

probability > 1− exp(−cε3
√
k) we have

1− ε 6 λmin

(
1

N

N∑
i=1

AiA
t
i

)
6 λmax

(
1

N

N∑
i=1

AiA
t
i

)
6 1 + ε

and

(1− ε) n
m

6 λmin

(
1

N

N∑
i=1

AtiAi

)
6 λmax

(
1

N

N∑
i=1

AtiAi

)
6 (1 + ε)

n

m
.
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