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Abstract

We derive Donsker-Vardhan type results for functionals of the occupation times when
the underlying random walk on Z¢ is in the domain of attraction of an operator-
stable law on R?. Applications to random walks on wreath products (also known as
lamplighter groups) are given.
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1 Introduction

This work addresses two closely related questions of independent interests. From
the point of view of random walks on the lattices Z?, we extend the well-known large
deviation theorem of Donsker and Varadhan regarding the Laplace transform of the
number D,, of visited points before time n. The theorem of Donsker and Varadhan,
[8], treats random walks driven by measure p in the domain of normal attraction of a
symmetric stable law of index « € (0,2) (as well as the Gaussian case).

We generalize this result to random walks driven by a measure in the domain of
attraction of an operator-stable law. For instance, this includes laws that are “stable”
with respect to anisotropic dilations of the type

6p(m1, .. wq) = (/a1 agy) (1.1)

with «; € (0,2), 1 < ¢ < d. In this case, the generalization of the theorem of Donsker
and Varadhan reads as follows. Let 7 denote the Fourier transform of the distribution 7
on either Z<¢ or R“.

Theorem 1.1. Referring to the anisotropic dilations at (1.1), assume that u is a sym-
metric measure on Z¢ such that, uniformly on compact sets in R?,

n[l = (6, "€)] = O(¢)
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where ©(¢) as the form

M (dy) g (1.2)

00 = [ [ - coste.sm Y

for some symmetric finite measure M on $¢~! whose support generates R?. Then

: 1 —vD,\ _
'nh—>ngo W IOg E(e ) = k(V7 77) S (0,00)

d 1
1047;'

where 1) is the probability distribution on R¢ such that /) = e~© and % = )"

As in the classical Donsker-Varadhan theorem, the constant k(v,7n) is described by
a variational formula. In its most natural generality (see Theorem 3.9 with F(s) =
1(0,00)(5) = 1 — do(s)), this theorem involves more general dilation semigroups of the
form t¥ = Y";° (log;ﬂ where F is an invertible matrix with eigenvalues in [1/2, c0) (F
may not be diagonalizable and, even if F is diagonalizable, it may not be diagonalizable
in a basis of Z® vectors). In this case, the associated limit law 7 is “operator-stable” with
respect to the dilation structure t¥, t > 0, and the real « € (0, 2) is given by a = tr(E)/d.

In fact, we are also interested in a different generalization of the Donsker-Varadhan
Theorem. Given a random walk on Z¢ driven by a symmetric measure yu, let [(n,z)
denotes the number of visits at  up to time n. We are interested in obtaining a large
deviation result for the Laplace transform of more general functionals of the occupation
time vector (I(n,)),cz« than the number of visited sites, D,, = #{z : l(n,z) # 0}. For
instance, we are interested in the asymptotic behavior of

—logE (e—k > pczdlog l(n,w))

and, more generally,
_logE (e—A > ez F(l(mw)))

when F' belongs to some appropriate class of functions. For simplicity, in the next
theorem, we consider the case where the function F is simply F(s) = s7, v € (0,1) and
the dilation structure is given by (1.1).

Theorem 1.2. Referring to the anisotropic dilations at (1.1), assume that u is a sym-
metric measure on Z° such that, uniformly on compact sets of RY,

n[l — (6, 18)] = O(¢)
where © has the form (1.2). Then, fory € (0,1),

lim n~FHG= logE (e*”zw é("’g”W) = k(v,n,7) € (0,00)

n— oo
where 1) is the probability distribution on R¢ such thatj = ¢~ and 7 = 3¢ o

In the case of where p is symmetric finitely supported and the dilation structure
is the isotropic 0;(x) = Vtz (in this case, the limit law 7 is Gaussian), this result is
contained in [3]. See Theorem 1.2 (with p = 1 and H(s) = s”) and Section 2.3 in [3].
Indeed, one of the contributions of [3] is to show how to deduce results such as Theorem
1.2 from the Donsker-Varadhan large deviation principle for the scaled version of the
occupation measure of the underlying process. In order to treat processes that fall in
the operator stable realm, we modify some of the arguments in [3] and rely more on the
original techniques of Donsker and Varadhan.
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The version of Theorem 1.2 which treats dilations of the form t¥ and functionals
> . F(¢(n,x)) associated to more general functions F' than power functions is given in
Theorem 3.9 and in Section 5.2. Except for a few technical adaptations to the operator
stable context, the proofs of Theorem 1.1 is a routine generalizations of the proof given
by Donsker and Varadhan in the stable context. Similarly, the proofs of Theorems 1.2-
Theorem 3.9 involves an adaptation of the techniques of Donsker and Varadhan and
[3].

In developing these results in the operator stable context, we are motivated by appli-
cations to the study of random walks on a class of groups called wreath products. These
groups are also known as lamplighter groups. The wreath product K H, i.e., the lamp-
lighter group with base-group H and lamp-group K, will be defined precisely below. If
we think of the elements of K as representing different colors (possibly countably many
different colors), then an element of K ! H can be viewed as a pair (h,n) where h is an
element of H (the position of the lamplighter on the base H) and n = (kp)nen € K
is a finite configuration of colors on H in the sense that only finitely many » € H have
ky, # ex where ey is the identity element in K (only finitely many lamps are turned on).
This description does not explain the group law on K ! H but captures the nature of the
elements of the wreath product K¢ H. The identity element in K} H has the lamplighter
sitting at ey and all the lamps turned off (k;, = ex for all h € H). In one of the simplest
instance of this construction, H = Z (a doubly infinite street) and K = Z/2Z (lamps are
either off (0) or on (1)).

We are interested in a large collection of random walks on wreath products which
can be described collectively as the “switch-walk-switch” walks. See also [16, 22].
Namely, we are given two probability measures, one on H, call it 4, and one on K,
call it v. The measure p drives a random walk on H which describes the moves of
the lamplighter (i.e., the first coordinate, h, in the pair (h,n) € K ! H). The measure v
drives a random walk on K whose basic step is interpreted as “switching” between lamp
colors. Based on this input, we construct a probability measure ¢ = ¢(u, v) on K H (this
measure ¢ is defined precisely later in the paper). The basic step of the walk driven by
q can be accurately describes as follows: the lamplighter switches the color of the lamp
at its standing position (using v), takes a step in H (using i) and switches the color of
the lamp at its new position (using v). These different moves are, in the appropriate
sense, made independently of each other hence the name, switch-walk-switch. Let us
insist on the fact that we will be interested here in cases when the measures ;. and v
are not necessarily finitely supported. Now, an elementary argument shows that the
probability of return q(”)(e) of the random walk driven by ¢ on K H is given by

¢ () =E (H V(%("’h”(eK)l{Xn_eh}>

h

where (X,,)5° is the random walk on H driven by x and l.(n, h) is an essentially trivial
modification of the number of visits of (X,,)5° to h up to time n. The expectation is
relative to the random walk (X,,,)3° on H, started at ey. This observation goes back to
[22] and is the basis of the analysis developed in [16]. If we set F(m) = — log I/(Qm)(e]()
then it follows under mild assumptions that

log g™ (e) ~ log E (e— = F”("’h))) . (1.3)

In words, the log-asymptotic of the probability of return of a switch-walk-switch random
walk on the wreath product K ! H is given by the appropriate version of the Donsker-
Varadhan large deviation theorem for the random walk on the base H driven by p. The
particular functional ), F'(I(n, h) that needs to be treated depends on the nature of the
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lamp-group K and the measure v. Formula (1.3) is particularly interesting because, in
the general context of random walks on groups, precise log-asymptotic of the probabil-
ity of return are hard to obtain. The following result serves to illustrate this point.

Theorem 1.3 (Log-asymptotics on Z” { Z%). Fix two integers D,d > 1. Let v be any
finite symmetric measure on Z” with v(0) > 0 and generating support. Let §; be the
anisotropic dilation on RY defined at (1.1). Let u be a symmetric measure on 7% as in
Theorem 1.1 with ;' (™) = 1 and 7} = e~®. On the wreath product Z" { Z* consider
the switch-walk-switch random walks ¢ = v * % v. Then

1

lim — log ¢*™(e) = —¢(a,d, ©, D)
" (2n) 7 (log(20) T

where .
“ d+ao
cla,d,0.D) = (D)% (1+2) (452) 7
(67

1 11
== E —and Ao = inf {\(©,U)}.
o n (o3 U:|U|=1

Here, A\1(0,U) is the principle eigenvalue of the infinitesimal generator Lg with Dirich-
let boundary condition in U (By definition, Lg f = @f).

Remark 1.4. Assume that the dilations §; are isotropic with a; = o, i = 1,...,d and that
there is an Euclidean norm (Qx,x) such that ©(¢) = (Q&,£)*. Then \g is achieved on
an Euclidean ball for the Euclidean structure provided by Q~!, namely, the Euclidean
ball whose volume is one. Note that the volume is computed here with respect to the
Lebesgue measure corresponding to the fixed square lattice Z¢ C R®. This fact is well-
known when « = 2 and follows from [1] when « € (0, 2).

For any finitely generated group G and any a € (0, 2), [2] introduces a non-increasing
function _ B
P¢,. N30 — P, (n) € (0,00)

which, by definition, provides the best possible lower bound
Je>0, NeN, Vn, p®(e) > C$G7pa (Nn),
valid for every measure ;. on G satisfying the weak-a-moment condition

W(pa, 1) = iglg{su({g :palg) > s})} < oo

Here |g| is the word-length of G with respect to some fixed finite symmetric generating
set and p,(g) = (1 + |g|)“. For instance, it is well know and easy to see that

5Zd’pa (n) ~n~4,

Here and throughout this paper, we write f ~ g if lim f/g = 1 and f =~ ¢ if there are
constants ¢;, 1 < i < 4, such that ¢; f(cat) < g(t) < c3f(cat) on the relevant real interval
or on IN. We use ~ only when at least one of the functions f, g is monotone (or roughly
monotone).

The main results of the present work allow us to complement some of the lower
bounds proved in [2] for (AI;G.,pQ with matching upper bounds (note that upper bounds on
EIV>G7 . @re proved by exhibiting a measure with finite weak-a-moment and the appropri-
ate return probability behavior).
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Theorem 1.5. Fix a € (0,2). Let G be the group K1 Z.

1. Assume that K is finite. Then

log (iG,pa (n) ~ —pd/(d+a)

2. Assume that K has polynomial volume growth. Then
log &)G,pa (n) ~ _nd/(d+a)(10g n)a/(dJra)'

3. Assume that K is polycyclic with exponential volume growth. Then

log B¢y, (n) o —pldth)/(d+1+a),

Remark 1.6. The lower bounds are from [2]. The upper bound in the first statement is
already in [2] since it is based on the classical large deviation result in [8]. The upper
bounds in Statements 2 and 3 make use of the extensions of [8] in the spirit of [3]
developed here.

Iterated applications of this technique gives the following Theorem.

Theorem 1.7. Fix « € (0,2) and integers dy, ... ,d,. Given a group K, let
G=(-(K1Z")1---)1Z% andd = _d;.
1

1. Assume that K is finite. Then
—log (I’G.,pa (n) ~ pd/(d+e),
2. Assume that K has polynomial volume growth. Then

—log ‘56‘,% (n) ~ nd/(d+e) (log n)a/(dJra).

2 Operator-stable laws

For a € (0,2), the rotationally symmetric a-stable law with density f, on R is the
probability distribution whose Fourier transform is e~ ¢I”. It is embedded in a convo-
lution semigroup with density f! which satisfies f%(z) = t~%¥*f, o 6?/ , where 6 is the
isotropic dilation 0¢(x) = t'/*z, x € R?, ¢ > 0.

More generally, a probability measure ;. on R¢ is called a (non-degenerate) sym-
metric a-stable law if its support is R? and it is embedded in a probability semigroup
pt such that 6% (u) = p!. A necessary and sufficient condition for that property is that
[ = e~ © with

M (dy) dr

00 = [ [ 1 coste.azp T

where M is a finite Borel measure on $¢~! whose support generates R? (that is, the
Lévy measure W of y satisfies 03 (W) = tW and its support generates R%).

In the next section, we briefly review the definition of operator-stable laws. In this
definition, the role of the isotropic dilations is played by more general one-parameter
groups of transformations t¥ = Zgo % where E is an endomorphism of the

underlying vector space. For a detail account of the theory of operator-stable laws,
see [13, 15]. Given a Borel measure y, we let t¥(1) be the Borel measure defined by

tP () (A) = p(t=F(A)).
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2.1 Operator-stable laws

Let V be a finite dimensional vector space equipped with the Euclidean scalar prod-
uct (-,-). Let M!(V) denote the set of probability measures on V. Given u € M!, let
ft = e~¥ denotes its Fourier transform. Let ZD(V) denotes the set of infinitely divisi-
ble laws on V. Throughout this section, we use notation compatible with [13]. Recall
that if u € ZD(V) with Fourier transform e~% then e~*¥ is the Fourier transform of a
probability measure pf and (p');>0 is a continuous convolution semigroup of measure
(uniquely determined by p). Of course, for p € ZD(V), the function ¢ admits a Levy-
Khinchine representation so that xi — (&) is the sum of three terms, namely, the drift
term —i(c,£) with ¢ € V, the Gaussian term 1(Q¢, &), where Q € End*(V), and the
generalized Poisson term

_/* (ez«m - m) W (dz)

where W is a Levy measure. Following [13], we call the triple (¢, Q, W) the L-K triple of
1 (this triple is uniquely determined by p). We will be interested in the symmetric case
where ¢ = 0 and W(z) = W(—x). In this case, the Poisson term of the Levy-Khinchine
formula equals

/*(1 — cos(w, )W (da).

In general, we let g be the (Gaussian) law associated with the triple (0, @), 0) and e(W)
the (generalized-Poisson) law associated with (0,0, ).

Definition 2.1 (Definition 1.3.11 [13]). A law 5 € ZD(V) is said to be operator-stable if
there exist £ € End(V) and a mapping a : R} — V such that

t7(n) % 8ay =",

for all t € RY. In this case, F is called an exponent of 7. Let EXP(n) denote the set of
exponents of 5. If a = 0, n is said to be strictly operator-stable.

One can always split an operator-stable law into a Gaussian part and a generalized
Poisson part that are supported on supplementary linear subspaces of V.

The subspace supporting the Gaussian part is either trivial or associated with the
eigenvalues z of E with Re(z) = 1/2 of E. The subspace spanned by the support of W
is associated with the eigenvalues z of E with real part strictly larger than 1/2. Both
the Gaussian part e()) and the Poisson part ¢(W) are operator stable with exponent
E. Further, T¥(W) = tW. See the splitting theorem, [13, Lemma 1.3.12 and Theorem
1.3.14].

Now we restrict our attention to symmetric operator stable laws (so that ¢ = 0, W (dz) =
W (—dz)). Since t¥ (W) = tW, the Fourier transform of ¢(1¥) can be written (with $ C V,
the unit sphere)

[ 0otz nwian) = [ [ - costesra)

where M is a finite measure on $. Compare with the hypothesis in Theorem 1.1 and
Theorem 1.2.

Choose an orthonormal basis {e;} on V with respect to inner product <,> . The
generating functional A of (1");>0 (see [13, 1.3.16]) is given for f € C?(V) by

M (dy) dr

r T

1 0
<A f> = §Zngmf(O)

+ /V ) [f(w)—f(o)—zaif(@) e | W(d).

’ 2
1+ [z
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One can also write down the Dirichlet form of the continuous convolution semigroup
(n")e0 as

59
gn(f,g) = /]Rdij aLIJ 8.’1} ——dz
J

/ / (& +1) — F(@))(g(x + ) — g(x)W (dy)d,
R4 ]Rd
DE) = {feL*(V):&(f.f) < o).

From the splitting theorem [13, Theorem 1.3.14] it follows that (g;;) is semi-positive
definite and that the subspace where it is positive definite is the support of the Gaussian

part e(Q).

Example 2.1 (Anisotropic radial operator-stable laws). One can construct operator-
stable laws with respect to non-isotropic homogeneous norms. On V = R, let E be
a d x d diagonal matrix with diagonal entries a; € (3,00). We may assume that a; =
minlgigd a;. Since

10 0
5 0t 0
t7 = ’
0 0 e t%d

we can think of t¥ as dilations scaling differently in different coordinates. The following
norm was considered in [14]. Let B = {z : ||z|| < 1} be the open Euclidean unit ball,
define

|z, == inf{t : % Fz € B}

From Theorem 1 in [

‘||, g is a sub-additive homogeneous norm. Set

c

W(dx) = ——————.
( x) ||x||a1_E1+tr(a1_lE)

Clearly, t¥(W) = tW for all t € R . Let n be the generalized Poisson law with L-K triple

(0,0, W). Then 75 is operator-stable with exponent E. Note that the assumption a; > %

is needed so that W is a Lévy measure.

Example 2.2 (Anisotropic axial operator-stable laws). Let F be as in the previous ex-
ample. For a € (0,2) let v, be the one-dimensional symmetric a-stable law (so that
7*(y) = e~¥I"). Let n be the product measure on V = R¢ given by 7 = ®‘fu1/ai so that
() =e” S lelt Clearly, n is operator-stable with exponent E. Note that in this case,
the Levy measure is supported on the union of the axes.

2.2 Domain of operator-attraction

For full probability laws, the class of operator-stable laws coincides with limit dis-
tributions of normalized sums of i.i.d. random variables and convergence in law of nor-
malized sums can be characterized in terms of convergence of Fourier transforms or
convergence of generators as in Trotter’s theorem. More precisely, we have the follow-
ing equivalent characterizations of convergence.

Theorem 2.2 ([13, Theorem 1.6.12 and Corollary 1.6.181). Let p,n € MY(V) with
n € ID(V)and7 = e V. LetT, € GL(V) and set j,, = T,u. The following properties
are equivalent:

1o =
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N

,u%L"tJ) = 7', uniformly in t over compact subsets of [0, o).

3. n(1 — i) — 1 uniformly on compact subsets.

4. Forany f € C%(V), n(u,—60)*f(0) =< A, f > where A is the generating functional
of n.

Next, we introduce the definition of strict domain of operator-attraction.

Definition 2.3 (Definition 1.6.3 [13] ). Let n € M!(V). Then the strict domain of
operator-attraction DOA,(n) of 7 consists of all 4 € M (V) for which there exists a
sequence T, in GL(V) such that

n= lim T,(p™).
n—oo
Remark 2.4. With this definition, DOA,(n) # @ is equivalent to saying 1 can be obtained
as the limiting distribution of convolution powers of some u after normalization (but
without re-centering). The word “strict” refers to the absence of re-centering. When T,
can be taken as the isotropic matrix b, 1d, b,, € R, this agrees with the definition of the
strict domain of attraction.

Definition 2.5 (Definition 1.10.1 [13] ). Let n € M!(V) be operator-stable. Then its
strict domain of normal operator-attraction DNOA,(7) consists of all x4 € M*(V) such
that

n= lim n~" ()

n—oo

for some E € EXP(n).

Example 2.3. Let U (resp. V) be a random variable on Z in the domain of normal
attraction of the « (resp. 8) symmetric-stable law v, (v3 resp.) on R. The measure n on
R? n(dz,dy) = ve(dz) ® vg(dy) is operator stable with exponent

=5 1)

It is clear that the law of (U, V)T is in DNOA,(n). Set

X\ [ cosf —sinf U

Y ) \ sinf cosd v )’
and let ; denote the distribution of (X,Y)”. In order to obtain convergence of () we
need to rotate back by a rotation of angle # then normalize component-wise. That is,

setting
T n=% 0 cosf sinf
n 0 n® —sinf cosf )’

we have 7 = lim,_, o T,,(#™). So, in this case, € DOA,(n) but does not belong to
DNOA, (7).

OR=
= O

Remark 2.6. Theorem 4.11.5 of [15] gives a practical criterion to show that a given
measure v belongs to the domain of normal attraction of a full operator-stable law 7
without Gaussian part. More precisely, the following statement is a simple modification
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of [15, Theorem 4.11.5]. Let n be operator-stable, symmetric, with no Gaussian part
and Lévy measure W given by

W(B) = /S / T 15y M

r

Let E € EXP(n). A necessary and sufficient condition for a probability measure v to be
such that n=?(v(™) = 5 is that

tl'gn tv({sfPr:2e€Q, s>t})=MQ)

for any measurable Q2 € $; with M (9Q2) = 0.

Example 2.4. For v € (0,2), let 773 be symmetric stable law on R with Fourier transform
e !1€I" . On Z, fix a doubly infinite symmetric sequence z, = —z_j, k € Z, and reals
pr = p—x > 0 with > pr, = 1. Consider the probability measure

H = Zpklzk-

keZ

Consider the case when 2z, = |k°] and p, = co(1 + |k])™ with a > 1, 3 > 1 and
~v = fB/(a—1) < 2. Then, by Remark 2.6 (in fact, in this particular case, by [15, Theorem
4.11.5]), =7 (™ = ¢ for some fixed ¢ > 0.

Note that if 2, = LngJ and py = 27 with a, 8 > 0 and v = B/« then tv({s” : s > t})
stays in a compact interval in (0, co) but does not converges.

Notation 1. A measure u € M!(V) is said to be adapted if x is not supported by a
proper linear subspace of V. Let M} (V) denote the set of adapted probability measures
on V.

The theorem below is a characterization of strictly operator-stable laws as those
adapted distributions whose domain of strict operator-attraction is non-empty.

Theorem 2.7 (Theorem 1.6.4 [13]). Forn € ML(V) the following assertions are equiv-
alent:

1. n is strictly operator-stable.
2. n € DOA4(n).
3. DOA;(n) # @.

For i« € DOA4(n), the choice of normalization sequence T, is in general not unique.
In particular, we can adjust 7;, using the symmetries of the limiting distribution n and
the convergence still holds.

Definition 2.8 (Definition 1.2.8. [13]). Let n € M!(V) be non-degenerate. Let Sym(7)
be the set of all A € GL(V) such that there exists some a € V such that A(n) *J, = 7.
The group Sym(n) is called the symmetry group of . It is a closed subgroup of GL(V).
The invariance group Inv(n) is the set of all A € GL(V) such that A(n) = n. The group
Inv(n) is a closed subgroup of Sym(n).

The following technical result is important for our purpose. It says that we can
always adjust the normalization sequence by elements in Inv(r), so that the new nor-
malization sequence has nice regular variation properties.
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Theorem 2.9 (Theorem 1.10.19 [13] ). Suppose p is in the strict domain of attraction
of a full operator stable law 7, that is, there exists a sequence of invertible matrices
B, € GL(V) such that

B;lﬂ(n) = 1.

Then there exists a modified normalization sequence {B!, = B,,S,}, S, € Inv(n), hence
still fulfilling
(By) 'l =,

with the property that { B],} has regular variation in the sense that
- -E
B;l( i_nt]) ! — 1 y
where the convergence is uniform in t on compact subsets of ]Ri.

2.3 Two more examples on Z?

In this subsection we discuss two examples on Z? that are in the strict domain of
operator-attraction of some operator-stable laws. For later use, we include the addi-
tional requirement that the inverse of the normalization sequence preserve the lattice
72,

Note that a key point in these examples is that they describe probability measures
supported on the square lattice Z? C R? which implies a certain rigidity in the choice
of the Euclidean structure on R2.

Example 2.5. Let e;, e; be the standard basis for R2. Consider the two unit vectors
Uy = %(61 +e) and up = ﬁ(el + mes). Let i, us be probability measures defined
by
c1
= 71 r1=x )
Ml('Tl,fL'Q) (1+ |331|)0‘+1 {z1=x2}

C2
pa (1, 22) = Wl{lm—mlélb

where ¢; and ¢ are normalizing constants and «, 8 € (0, 2). Take

1
5 (1 + po) -

1
i ) andEP<
1472

that for Q € B(S3) with uy, us & 99, we have

M:

Write P = (uy,uz) = ) P~ Then we can check

ORI~
= O

S-S
i

; E,.. . _
tll>nolo tu({s¥z € Q, s >1t}) = M1y, 3 (Q) + Aol (),

where \; and )\, are positive constants determined by u. Consider the generalized
Poisson law 1 with Lévy measure W given by

A d
g / 15( rEu, ——T
r

7=1,2

Note that W is supported on the union of the one-dimensional subspaces Ru; and Rus
and 7 is operator-stable with exponent E. The law 7 can be viewed as a product of
two one-dimensional symmetric stable laws supported on Ru; and Rus and of expo-
nents « and [, respectively (the exact scale parameter for each of these stable laws
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is determined by the constants \{, A3). From the convergence theorem, Theorem 2.2,

i € DNOA,(n). Set
P < b Oi > P_lJ
0 mns

where |-| means take integer parts of each matrix entry. Then n” — B,, is a matrix with
entries in [0, 1) and it follows that B,, - n= — I. We conclude that B, (™ = 1.

B, =

Example 2.6. Take uq,us, P,, 8 and F the same as in the previous example. Write
6p(z1,22) = (r*/®zy,7'/Px5). Let $ denote the Euclidean unit circle, o the Lebesgue
measure on $. Let I' be the union of the two arcs [0, ] and [r, 3] of $. Define the Lévy

measure W as
/ / dx) dr
15(8

Then W is supported in the cone {z € R? : z12o > 0}. Consider measure PW(-) =
W(P~1.), that is the pushforward of measure W under linear transformation P. Let n
be the generalized Poisson law with Lévy measure PW. Take a discrete approximation
u of PW supported on Z? by setting

w(x) = PW([x1,21 + 1) X [22, 22 + 1)).

One can check that nB, 'y — PW weakly with B,, = |n*| . It follows from Theorem 2.2
that

Bt =1,

3 Functionals of the occupation time vector

Given a probability measure y on the lattice Z¢, let (X;)$° be the associated random
walk. Let (I(n,x)),cze be the occupation time vector at time n where I(n,z) = #{k €
{0,...n}: X =x}. Let F : [0,00) — [0,00).

In this section we introduce basic natural hypotheses on p and F' under which we
can derive the log-asymptotic behavior of

E (67 Y oeza F(l(m))) _

Definition 3.1 (Convergence assumption). We say that u satisfies the convergence
assumption (C-B,) if there exists a sequence of invertible matrices B,, € Z%*¢ and a
probability distribution 7 such that

B — . (C-By)

Remark 3.2. Note that (C-B,) requires the matrices B, to have integer entries so that
B, 7% C 7Z%. Note also that the distribution 7 is strictly operator-stable.

Under the convergence assumption (C-B,,), [12] provides a local limit theorem that

plays an important role in the proof of the uniform large deviation principle.

Theorem 3.3 (Theorem 6.4 [12]). Suppose u is in the domain of attraction of a sym-
metric, adapted strictly operator-stable law n on R? with density g, that is, there exists
a sequence of invertible matrices B,, such that

B;lu(") = .

Then
lim sup sup |det B,| |p™ (z ’detB 1‘9 (B, x)’ 0.

n—00 zeZd
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Remark 3.4. Note that the density g of an operator-stable law is always smooth. In [8]
it is essentially proved, although not stated explicitly, that given the local limit theorem,
the scaled occupation time measures satisfy a uniform large deviation principle in £;.
We will state and outline the proof of the large deviation principles later in this paper.

Remark 3.5. It is somewhat surprising that, in this case, the “weak limit assumption”
always implies the local limit theorem. The proofin [12] relies on the Fourier transform.
On the Heisenberg group, there are measures that converges to a (Heisenberg group)
Gaussian law, but do not satisfy the local limit theorem.

Example 3.1. Fix a, 3 € (0,2) and consider the probability measure ; on Z? C R? given

by
1 e 1o
p=s (Z Ca(1+|2)) T 00 + > es(1+ [y~ ﬁ(S(o,y)) .
TEZ T€Z
/a0 .
Set £ = 0 1/8 and 7 = 1, ® 7 where 7,,7n3 are (appropriately scaled) one

dimensional symmetric stable laws with parameters «, 3, respectively. Then condition

1/a
(C-B,) is satisfied with B,, = ( [n*/] 0

0 Ini/8 | ) Theorem 3.3 provides a local limit

theorem for (™ ((z,y)) in the form
!/ TV (2, y)) — = V/OHVE) fa (e nl/ ) f52 (y /' P)] = 0

where f! is the density of the symmetric stable semigroup, i.e., has Fourier transform
e t€l" and ¢y, ¢, are appropriate constants.

Next we introduce a scaling assumption regarding the function F'. It is the operator-
stable analog of the scaling assumption in [3].

Definition 3.6 (Scaling assumption). Let B,, be as in condition (C-B,). We say that a
function F' : [0,00) — [0, 00) satisfies the scaling assumption (S-B,-a,) if F' is concave,
sub-additive, increasing with F(~O) = 0 and there exist a non-decreasing sequence n —

a, € N and a limiting function F : [0,00) — [0, 00), F' not identically zero, such that for
y >0,

. Qpn det(Ba ) n -~
1 Uy =F -B, -
nLH;o n (det(Ban)y) (y)7 (S-Bp-ay)

uniformly over compact sets in (0, c0).

The following technical proposition is crucial. It is analogous to [3, Proposition 1.1].
The proof is given in the Appendix.

Proposition 3.7. Assume the convergence assumption (C-B,,) and the scaling assump-
tion (S-B,,-a,) as above. Then there exists v € [0, 1] such that

F(y)=F1)y", y >0,
Moreover, there exists k > 0 such that

n 1 n
lim Y2 s forall A € RY and lim 2% — 4

noo  ap, n—oo logn

Definition 3.8. Following [3], given p satisfying (C-B,,) and a function F : [0,00) —
[0,00), we say that the pair (F,(B,)) is in the y-class, if there is a sequence a, such
that the scaling assumption (S-B,-a,) is satisfied, and the limiting function F is homo-
geneous with exponent ~.
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The following statement is the main result of this paper. The proof is given in Section
5.2.

Theorem 3.9. Fix a symmetric probability measure y on Z® and a function F : [0, c0) —
[0,00). Under the convergence assumption (C-B,,) and the scaling assumption (S-B,-
an), there exists a constant k(n, F) € (0,00) such that

lim an logE (e_ 2 sezd F(l("’l))) = -k (77, ﬁ) . (3.1)

n—oo N

Further, for any € > 0 small enough there is R > 1 such that

lim 2 log E (e_ ezt FU(W)1B(R)(B;n1(xn))) > (1+e)k (nﬁ) . (3.2)

n—oo N
Here B(R) is the ball of radius R in R9.

Example 3.2. Theorems 1.1 and 1.2 are special cases of Theorem 3.9. In both cases,
let E be the diagonal matrix with i-th diagonal entry 1/«; € (2,0). Let ) be an operator-
stable law with exponent E and Fourier transform 7 = ¢~©. Let ;1 be a measure such
that

n(1 — fi(n=€)) = O(&). 3.3)
Let B,, be the diagonal matrix with i-th diagonal entry Lnl/o‘iJ. By Theorem 2.2, (3.3)
implies that condition (C-B,,) is satisfied.

To obtain Theorem 1.1, set F'(s) = 1(g,o)(s). Define a,, = [a;,| where a;, is given by
al,det(By ) = n, thatis, a, = n'/(1+7) where 7 = 3" 1/q; is the trace of E. It is easy to
see that condition (S-B,,-a,,) with F = 10,00)-

For Theorem 1.2, we simply set F(s) = F(s) = s7, v € (0,1) and a/, = n(1=/(+7(1=7)
Condition (S-B,,-a,,) follows.

Example 3.3. Assume that y € DNOA,(n), B, = |nf], tr(E) = 7 and F(y) = y'/(y)
where v € [0, 1] and / is a slow varying function (at infinity) such that ¢(t*£()?) ~ c(a)£(t)
for any « > 0 and b € R. (e.g., £(t) = (logt)?, B € R). Then F(y) = cy” and a, is
determined by solving

a}fT(l_V)E(na;T) ~ntTY,

nl=v 1/(1+7(1=7))
ap ~ C ) .

In this case the theorem yields the existence of a constant k € (0, 00) such that

that is

1/(1+7(1=7))
logE | exp | — Z F(l(n,z)) ~ —k (n"’JrT(l*W)é(n)) s

z€Z4

Example 3.4. The previous examples treat cases where p belongs to the domain of
normal attraction of n. It is worth pointing out that Theorem 3.9 does not require
normal attraction. For example, consider the case where u is supported on Z and is of
the form u(k) = % where ¢ : [0,00) — [1,00) is continuous and regularly varying of
index 1+ «, a € (0,2). By a classical result (see [10]), u is in the domain of attraction
of an a-stable law 7 on R. The normalizing sequence b,, such that b, 1(u(")) —> 1) can
be chosen as the solution of the equation b,2G(b,) = 1/n where G(n) = Y g k?u(|k|),
that is b, ~ ki(1/n) where ¢ is the inverse of s — s/¢(s). Note that ¢ is regularly
varying of index —1/«. Suppose that F(s) = s7, v € (0,1). The sequence a,, in Theorem
3.9 is then given by equation (S-B,-a,), that is, n=ta,b,, (n/b,,)? = 1, equivalently,
anp(1/a,)' =7 = kY~ In'=7. It follows that a, varies regularly of index a(1—7)/(1+a—7~).
Of course, a, can be computed more explicitly in terms of ¢.

EJP 18 (2013), paper 93. ejp.ejpecp.org
Page 13/35


http://dx.doi.org/10.1214/EJP.v18-2439
http://ejp.ejpecp.org/

Large deviations for stable like random walks

4 Applications to random walks on groups

This section applies the large deviation asymptotics of Theorem 3.9 to obtain precise
information about the decay of the return probability of random walks on wreath prod-
ucts with base Z?. We treat certain classes of random walks with unbounded support
on the base and we allow a large class of lamp groups.

4.1 Random walks on wreath products

First we briefly review definition of wreath products and a special type of random
walks on them. Our notation follows [16]. Let H, K be two finitely generated groups.
Denote the identity element of K by ex and identity element of H by ey Let Ky denote

the direct sum:
Kp =Y K.
heH

The elements of Ky are functions f : H — K, h — f(h) = kj, which have finite support
in the sense that {h € H : f(h) = k, # ex} is finite. Multiplication on Ky is simply
coordinate-wise multiplication. The identity element of Ky is the constant function
ex : h — exg which, abusing notation, we denote by ex. The group H acts on Ky by
translation:

mnf(W' " R'), h,h' € H.

The wreath product K ! H is defined to be semidirect product
KU1H =Kg %, H,

(fa h)(f/ah/) = (f : Thflvhhl)'

In the lamplighter interpretation of wreath products, H corresponds to the base on
which the lamplighter lives and K corresponds to the lamp. We embed K and H natu-
rally in K ! H via the injective homomorphisms

k — k= (key,en), keylen) ==k, ke, (h) =ex ifh#ey
h —s h=(ex,h).

Let 1 and v be probability measures on H and K respectively. Through the embedding,
1 and v can be viewed as probability measures on K ¢ H. Consider the measure

q=V*[*V

on K ¢ H. This is the switch-walk-switch measure on K ! H with switch-measure v and
walk-measure pu.

Let (X;) be the random walk on H driven by u, and let I(n, h) denote the number of
visits to A in the first n steps:

Iln,h)=#{i:0<i<n, X; =h}.

Set also
l(n,h) ifh ¢ {en, g}
U(n,h) =< l(n,eg)—1/2 ifh=g
l(n,eg) —1 if h =ep.
From [16], probability that the random walk on K ! H driven by ¢ is at (h,g) € K1 H
at time n is given by

" ((f.9) =E (H V(mg("’h))(f(h))l{xn—.a})

heH
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Note that E stands for expectation with respect to the random walk (X;)5° on H started
ategy.
From now on we assume that v satisfies v(ex) = € > 0 so that

" D(eg) < v (eg) < e ) (eg).

c
Write f < g if C71f < g < Cf. Under these circumstances, we have

n 1/53 n
7" ((ek,9)) =< E (H p M ’h))(ex)l{xn—g}>

heH

so that we can essentially ignore the difference between [ and /..
Set

Fi(n) == — log " (ex)

so that, forany g € H,
q(”)((ex,g)) ~E (67 Xu FK(l(n’h))l{Xn=g}) . 4.1)

Definition 4.1 (weak scaling assumption). We say that v satisfies the upper weak scal-
ing assumption (US-B,,-a,,) if there exist a constant ¢y > 0 and a function F : [0,00) —
[0, 0) satisfying (S-B,-a,) and such that

VneN, ¢F(n) < Fg(n). (US-By-ay))

We say that v satisfies the lower weak scaling assumption (LS-B,,-a,) if there exist a
constant Cjy < oo and a function F : [0,00) — [0, c0) satisfying (-B,,-a,, ) and such that

VnelN, Fi(n)<CoF(n) (LS-By-ay))
If Fx satisfies both the upper and lower conditions,
VneN, ¢F(n) < Fg(n) <CoF(n) (WS-By,-ay,)
then we say it satisfies the weak scaling assumption (WS-B,,-a,,).

We can now use the large deviation asymptotics to estimate the return probability
on wreath product K Z%.

Theorem 4.2. Let i be a symmetric probability measure on Z% which satisfies the
convergence assumption (C-B,,). Let v be a symmetric probability measure on K with
V(SK) > 0.

e Assume that v satisfies (US-B,-a,). Then the switch-walk-switch measure q =
v p+ v on K7 satisfies

lim sup a—"log q(”)(e) < -k (n,coﬁ) .

n—oo N
e Assume instead that v satisfies (LS-B,,-a,). Then we have

lim inf aﬁlogq@")(e) > —k (n,Coﬁ) .

n—oo 2n
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Remark 4.3. Roughly speaking, this theorem says the following: Assume we know how
to normalize ;(™ on the base Z? via a transformation B, so that it converges to a
limiting distribution 7. Assume we know the behavior of the probability of return of
the random walk on K driven by v in the sense that log(v*")(ex)) ~ —F(n). Then

n

"™ (e) ~ exp(—->), where a,, can be computed from the scaling relation

an, det(Ban)F n 1
n det(By,)

Proof. The first statement follows immediately from (3.1) in Theorem 3.9. The second
statement is deduced from (3.2) as follows. Since ¢ is symmetric, we have ¢*™ (ey) >
q®™(g) for any g € K Z". In particular, if B(r) = Bya(r) is the ball of radius r in the
lattice Z¢ then, by (4.1),

#B(r)q*™ ()

v

¢ Z q(zn)(eK,h)

heB(r)

~ E (e, Su FK(l(’ﬂ,h))lB(r)(XZR)) )

Picking » = Ras, and using the fact that a, has regular variation of order x > 0 (see
Proposition 3.7), one easily deduces from (3.2) that

lim inf a;" log ¢*™ (e) > —k (17, C’Oﬁ) .

n—oo 2n

as desired. O

Example 4.1 (K Z%). (See Example 3.3) Let ;2 be a symmetric probability measure on
74, u € DNOA,(n) , B, = [nf], tr(E) = 7 (this implies 7 > d/2). Let v be a symmetric
probability measure on K with v(ex) > 0 and such that

logv®™ (ex) ~ —F(n).

Assume that F is of the form F'(y) = y"¢(y) where v € [0,1] and ¢ is a slow varying
function (at infinity) such that £(t%((t)*) ~ c(a){(t) for any a > 0 and b € R. (e.g.,
{(t) = (logt)?, B € R). Let q be the switch-walk-switch measure on K ! Z? associated
with x4 and v. Then

1/ (147 (1-7))
log ¢®™ (e) ~ — (n”*T(I*V)K(nD .

For a concrete example on (7 Z) Z%, let u be the uniform probability on
{0,£s1,...,£s4} C 24

where s1,. .., sq are the unit vectors generating the square lattice Z¢. Obviously, j is in
domain of normal attraction of the Gaussian measure and 7 = d/2. On K =ZZ, let v
be the switch-walk-switch measure on Z ! Z where both the switch-measure and walk-
measure are simple random walk on Z with holding. In this case, F(y) = y/3(logy)?/?
and v = 1/3 (see, e.g., [16]). Hence the measure ¢ = v * px v on K 7% satisfies

log ¢ (e) & —n(Fd/G+d) (160 )2/ (G+d).

We note that this result can also be obtained from Erschler’s results [9]. Finally, keeping
K and v as above, we replace the measure ; on Z? by the measure pu,(z) = c(1 +
lz])~%=, a € (0,2), ||z|| = (Z‘f|xi|2)/2. Note that u, € DNOA,(n,) where 7, is the
rotationally symmetric a-stable law on R? and 7 = d/a. If we set q, = v * ji, * v then we
obtain

log q((fn) (6) ~ _n(1+2d/oz)/(3+2d/a)(10g n)2/(3+2d/a)'
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The next theorem captures the fact that a better understanding of the return prob-
ability on the lamp-group K leads to a more precise asymptotics for ¢() (e).

Theorem 4.4. Let yu be a symmetric probability measure on Z? which satisfies the
convergence assumption (C-B,). Let v be a symmetric probability measure on K with
v(ex) > 0. Assume that the function Fg(n) = —logv®™ (e ) satisfies the scaling as-
sumption (S-B,-a,). Then the measure q = v * pu*xv on K 7 satisfies

im %2n () (o) = _ P
lim om log ¢*“™ (e) k <n,FK) .

Example 4.2. Referring to the setting of Theorem 4.4, assume that v(>")(ex ) satisfies
v (ex) ~n~% so that Fx(n) ~ flogn. Assume y is in the domain of normal attraction
of 7). Let E' € EXP(n) such that n=¥(u(™) = n. Set B,, = |n¥| (take integer values of
all entries). Let 7 = tr(E) be the trace of F. Solving for ¢ in the scaling equation

i+ n
n log (tT) =1

=Lt~ <1ogn> o

Then Fi satisfies the scaling assumption

. apdet(Bg,) n B

yields

Hence Theorem 4.4 yields

. 1 . -
lim —log g (e) = —k (nF)
n=0 (9p) T (log 2n) T+

where the limiting function F is given by ﬁ(y) =0-1(~0-

4.2 Assorted examples

In this section we describe a number of explicit applications of Theorems 4.2 and
4.4,

Example 4.3. Let Z¢ be equipped with the canonical generating d-tuple S = (81y.+-48d)
and fix a = (ay,...,aq) € (0,2)%. Consider the probability measure 1, given by

fha( dzz 1+\n| 1+a7 Loy (20), o= (21,...,24). (4.2)
i=1nez

This measure is quite obviously in the domain of normal operator attraction of n, =
®{n,, where 7,, is a measure on R which is symmetric and «;-stable. In particular, the
diagonal d x d matrix E, with i-th diagonal entry 1/c«; is in EXP(#,). The Dirichlet form
&, associated to the limit law 7, is best described via Fourier transform as &, (f, f) =
21 Ci [ga |F(€)2|€&: 2 dg, ¢; > 0, i = 1,...d (the scale parameters ¢; are related but not
equal to c¢(a;)).

Theorem 4.5. On H = 7%, consider the measures . defined above, a € (0, 2)d. Define

a € (0,2) by
iy L
— Qi

QMH
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1. Let K be a finite group and let v be the uniform measure on K. On K74, let
da = V * [io * v. Then there exists a constant k = k(d, a, |K|) such that

log ¢\™ (e) ~ —kn/(d+e),

2. Let K = ZP and v be a symmetric probability measure on Z" with v(ex) > 0
which is in the domain of normal attraction of an adapted strictly operator-stable
lawn. On ZP 74, let q, = v * juq * v. Then there exists a constant k = k(d,a, D, v)
such that

log ¢{™ (e) ~ —kn®/(4+) (1og n)e/(d+a),

Example 4.4. Set H = 7% K = 7ZP”, G = K1 H = Z” 1 Z% One natural set of
generators of G is obtained by joining the canonical generators of H = Z% and K = ZP
as follows. Let (s){ and (sX)P be the canonical generators of H and K, respectively.
Let S = (s )‘”D be the generating tuple of G given by

s; = (ex,s?) foric {1,...,d} and s; = (sX,ey) forie {d+1,...,d+ D}.

Of course, e = 0in ZP and ey = 0 in Z%. Let
a = (041, .. .7ad+D) S (0,2)d+D

be a (d+ D)-tuple. Let b = b(a ) (ﬁl) and ¢ = c¢(a) = (v;)P with 8; =, i =1,...,d and
Y = Qgyi, @ = 1,...,D. Let uf, X be the probability measures on H = Z¢ K = 7P,
respectively, deﬁned at (4.2). Let ¢ be the switch-walk-switch measure on G = K H
given by ¢ = X « ;LbH * 1. The theorem stated above applies and yields

R

For S and a as defined above, let ug, the the probability measure on G = K H
defined by

log q(n)( ) ~ —k(d, D,a)n d/(d+B) (log n)ﬁ/(d+6

Q\H
&\H

— . —1—a;
15.a(9 kzzl{s" pi(n),  pi(n) = ci(1+[n|) . (4.3)

i nEZ

In words, this walk takes steps along the (discrete) one parameter groups (s;) = {s",n €
Z} C G and the steps along (s;) are distributed according to a symmetric stable-like
power law with exponent «;. These measures g, are very natural from an algebraic
point of view and one expects that the properties of the associated random walks de-
pend in interesting way on the structure of the group G, the generating k-tuple S and
the choice of the k-dimensional parameter a.

The Dirichlet forms &, , and &, associated with the measures ys , and g on G satisfy

gIJ'S,a = gq'
Hence it follows from [17] that

log M(n)( ) & —nd/(@46) (1og 1) B/ (@+5)

where [ is as above. Note that 8 depends only on the first d coordinates of the pa-
rameter a = (ai)erD . In this sense, the random walks associated with the collection
of the measures us, when a varies can distinguish among the d + D generators s;,
1 <i<d+ D of K H between those which come from H and those which come from

K.
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Example 4.5. Consider the iterated wreath product
(. (ZZM) 2 Z2) . ) 2%

Note that ? is not associative so that this iterated wreath product is different from the
iterated wreath product Zy ! (---1(Z17Z)...) considered in [9]. Here we are iterating
the lamps while in [9] the base is iterated. Set

%

dj .
’Yizzaij77,:1,...,k.
1

Foreachi=1,...,k, fix a; € (0,2) and a probability measure p; on 7% which is sym-
metric, satisfies i;(0) > 0 and is in the domain of normal attraction of the rotationally
a;-stable law 1; on R%. Let go be the uniform measure on Z, = {0, 1}. Iteratively, define
the switch-walk-switch probability measure

qi = qi—1 * Hi * gi—1

on (... (Zo 1 Z¥) 1 Z%) .. ) 1 7%
Applying Corollary 4.4 iteratively, we obtain

lim n~ ™% log g (e) = —cx
n—oo

where the constant ¢, can be obtained as follows. The constant c¢; is given by [8]
whereas, for 2 < ¢ < k and referring to (3.1)-(3.2), ¢; = k (vi, E) where

~ Yi—1

Fi(y) = ciy it

Similarly, we can consider the iterated wreath product
(... (2% 242 Z%) ..) 7%,

starting with lamp group Z% instead of Z, and ¢y = j in the domain of normal at-
traction of the rotationally symmetric aq-stable distribution on R%. In this case, we
obtain

lim [n75/0H7%) (log n) Y/ ()] L og ¢ (e) = —¢y,.

n—oo
The constant ¢; can be obtained iteratively with ¢; = k (n, %1{y>0}) andc¢; =k (vi, E) ,
with E as above for 1 < i < k.

4.3 Application to fastest decay under moment conditions

This section describes applications of Theorem 4.2 to the computation of the group
invariants ®¢ , introduced in [2]. Recall that [17] introduce a group invariant ®; which
is a decreasing function of n (defined up to the equivalence relation ~) such that

¢ (e) ~ g (n)

for all finitely supported symmetric probability measure ¢ with generating support.
Let p be a function
p:G—[1,00).

The weak p-moment of the probability measure p is defined as

W(p, p) = sup sp(x = p(x) > s).
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Definition 4.6 (Definition 2.1 [2]: Fastest decay under weak p-moment). Let G be
a locally compact unimodular group. Fix a compact symmetric neighborhood 2 of e.
Let ggf be the set of all symmetric continuous probability densities ¢ on G with the
properties that [|¢| ., < K and W (p, pd\) < K supgz{p}. Set

&N (n) == inf{¢®")(e) : ¢ € ST}

Here we will only consider the case when G is finitely generated and p is one of
the power function p,(z) = (1 + |2])¥, « € (0,2) where || is the word distance on a
fixed Cayley graph of G. We are concerned with the decay of 52:/‘1 when n is large. By
Proposition 1.2 [2], we can drop the reference to 2 and K. Lower bounds on (i)g’ o follow
from general comparison and subordination results, see [2]. Here, we are interested in
obtaining upper bounds on <T>G, o

By definition, for any probability measure ¢ on G which satisfies the weak p-moment
condition, n — q§(2")(e) provides an upper bound for 5G7p. When G is a wreath product
G = K1 7% we can use measures of the form ¢ = v * uu * v and apply Theorem 4.2 to
estimate ¢(*™)(e). Also because of the natural embedding of K and Z? in the wreath
product K ! Z¢, it’s not hard to estimate the needed weak p-moment of ¢. We shall see
that, in certain cases, the measures ¢ of this type actually achieve the fastest decay
rate given by &)G,p, up to the equivalence relation ~. This technique was already used
in [2, Theorem 5.1] to determine ;IV)ZZZZzi’ .- In this case, the classical result of Donsker
and Varadhan [8] is all one needs. In the examples below, we use Theorem 4.2 to obtain
precise upper bounds on ®y,z« in some other cases.

Example 4.6. In this example we consider G = K { Z¢ when K is either finite or has
polynomial growth or has exponential volume growth and @ (n) ~ exp(—nl/ 3). The first
case is already treated in [2]. We note that these three cases exhaust all possibilities
when K is a polycyclic group. The third case also covers the situations when K is the
Baumslag-Solitar group or the lamplighter group Z, Z.

Theorem 4.7. Fix a € (0,2). Let G be the group K1 Z.
1. Assume that K is finite. Then

log ig,pa (n) o~ —pd/(d+a)

2. Assume that K has polynomial volume growth. Then

log E)G,pa (n) ~ —n/(d+0) (1og )/ (d+e)

3. Assume that K has exponential growth and satisfies ® i (n) ~ exp(—n'/3). Then

log B NOE _p(d+D)/(d+1+a)

Proof. The lower bounds can be obtained by applying [2, Theorem 3.3]. For this pur-
pose, one needs to compute the function ®. For ¢ = v+ u*v on G = K1Z%, where ;. and
v are associated with simple random walk (with holding) on Z¢ and K respectively, we
can apply Theorem 4.2 to obtain ¢(*"(e) ~ ®;(n). The case when K is finite is already
treated in [16, 2]. When K has polynomial volume growth, then »(2")(0) < n~% and, as
in Example 4.2,

1
lim ——— 1o (2n) €) = —Cq.
nesoo nﬁg(logn)%ﬂ g4q ( ) q
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If K is such that ® (n) ~ exp(—n'/3) then Example 4.1 yields

log ¢®™ (e) ~ log B (n) ~ =y
These estimates on @4 allow us to appeal to [2, Theorem 3.3] to obtain the stated lower
bounds for ®¢ , .
To prove the stated upper bounds, it suffices to exhibit a probability measure mea-
sure in S¢ ,, that has the proper decay. On 74, set

(2) = T
x) = .
HelE T A+ T+
Then pu, is in the domain of normal attraction of the rotationally symmetric a-stable
distribution on R? and it has a finite weak a-moment.
In the case when K is of polynomial volume growth, take g, = v * u, * v, where v is
simple random walk on K. Then v * u, * ¥ has weak a-moment and, by Example 4.2,
lim % log g™ (e) = —cy,.-
n=o0 pata (logn) Tra “ °
Therefore in this case B .
log ®¢ ., (n) < —cn@a (logn)@+a.

This matches the previously proved lower bound.
In the second case, when K has exponential growth, let U be a symmetric generating
set of K. As in [2, Theorem 4.10], pick p; = Cad™i with Zfo p; = 1 and set

8

Then v, has weak a-moment on K and, by [2, Theorem 4.1]
v (eg) < exp(—cnﬁ).

Then v, * 1o * v, has weak a-moment on GG. Applying Theorem 4.2 and the computations
of Example 4.1 to g, = V4 * o * Vo, We Obtain

1
lim sup log ¢?™(e) < —c,...
n— 00 ndi«:il g [e]) ( ) qo

This gives the desired upper bound on ¢¢ ,, . O
Example 4.7. Consider the iterated wreath product
G=(..(K1z%.. )z, dieN,.

Set

d=> d.

1
Fix a € (0,2). If K is finite then we we have

log ‘T)G,pm (n) ~ —pata
If K has polynomial volume growth, then
log EI;GWQ (n) ~ —cna¥a (logn)=+a.

These are the results stated as Theorem 1.7 in the introduction.
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Proof. As in the previous example, the lower bounds follows from [2, Theorem 3.3] and
a lower bound on log . By example 4.5,
log ®;(n) ~ nz¥a (log n)zu%d
Hence [2, Theorem 3.3] gives
log ég,pa (n) > —C,nata (logn)a+d,

For the upper bound, let 1, ; be a symmetric a-stable like probability measure on
Z%. Let ga1 = Ha,0 * fla.1 * fla0, and iteratively define ¢, i+1 = qa.i * flai+1 * Goi- Then
it’s clear that ¢, , has a finite weak a-moment on G and, as in example 4.5,

- 1 (2n)
lim d o log o ,r (6) = —Ca,r-
n=o patd (log n)a+d 7 '
Therefore
~ d el
log ®¢ ,., (n) < —cnatd (logn)a+d.

5 Donsker and Varadhan type large deviations

The goal of this section is to outline the proof of Theorem 3.9, the key result of this
article. The proof follows [8] closely. Several other classical sources are also needed to
put together the necessary details.

5.1 Statement of the large deviation principle in L'

On Z?, we fix a symmetric probability measure ; and an operator-stable law 7 such
that the convergence assumption (C-B,,) is satisfied.

We need to introduce some notation from [8] in order to state the results. Let 7 be
the projection map 7 : R? — R?/Z9, and let T denote the d-dimensional torus which we
also identify with the fundamental domain [—1, 1)4

For A > 0, set

) = (B, (29).
That is, we take the image of the original lattice Z¢ under the transformation BfAle,L |
and project it to the torus T. Then E(A") is a cocompact lattice on T and the volume of
the fundamental domain T/ E(;L) is ‘det Bt_,\lan | ’ . This is the case because we assume that

the matrices B,,, m = 1,2..., have integer entries so that B,,Z% c Z<.

In what follows, symbols decorated with™ are always used to describe quantities
associated with the projected random walk on the torus. Note that the construction
depends on the choice of sequence a, and parameter A, for simplicity we will drop
reference to a,, and A when no confusion arises.

Under the projection map 7, we can push forward the measure Bf)\lanj [ on B[)\lanj (7%

to a measure [i,, ) on Eg\"), that is
/jn,)\(y) = Z M(.Q?)
wEZ":Tr(BD\lanJ (w)) =y

Let §,§") be the random walk on ﬁf\n) associated with i, 5, starting at 0. It’s easy to
check that .
a(n) law —1
S (B, (5K)
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Consider the occupation time measure Z,(;") defined as

k
Z/(:) (4) = %ZXA (gl(fn)) ’
j=1

for any Borel set A in T.

For T =T or T = Q with Q an open set in R¢, let M;(T) be the space of probability
measures on T endowed with the weak topology. Let £1(T) the space of all probability
densities on T endowed with the L1 topology

Let P(n be the distribution of L in M;(T), a measure on measures. Define the

scaled 1ndlcat0r function y,, : [—3, 5) — R by setting

Xn(#) = |det Bpaa, |7 Xp1  (Z3.100)-

[Xan]
Define

Ly =L % .
Let P} be the distribution of L} in M;(T). With this mollification, L} is absolutely
continuous with respect to Lebesgue measure on T. Let f,g”/\) denote the density of 13,?

with respect to Lebesgue measure. Let Q,(C"; be the distribution of f(") in £1(T).
We will use the following function spaces (this notation is con31stent with [7, 8]):

U = {uecC®RY,infu>0,supu < oo},
Ur = {ueC>®(T),u> 0},
Fr = {feC(T),f=0,[fll, =1},
Fo = {feCX@),fz0Ifl, =1}

where (2 is an open subset of R?.

Theorem 5.1 (Large deviation principle in £;(T)). Assume that the convergence as-
sumption (C-B,) is satisfied. Let a,, to be any sequence of positive integers increasing
to infinity and satistying a,, |det By, | < n. Let Q") be the distribution of f\") on £;(T).
Then we have the large deviation principle in the strong L£1(T) topology. 7Name]y, for
any Borel set D in £4(T),

! < Tlimi ) p
AT inf Ip, (f) < lggg;fnanlogQM( )
< limsup —— loan/\( )< —A"tinf I (f),
n—00 TL/ Gnp feD

and the rate function is given by

ILﬁ(f):— inf/Lu( Vf( dx_5~f\f

u€UT u

This result will be useful in the upper bound direction. To obtain a lower bound, we
need to have a version with Dirichlet boundary condition.

Let L,g") be the occupation time measure of the random walk S,g”) = B, !(Sy). Per-
form the same mollification as above but on R?, setting

k= L;(f) * Xn-

Then L} is absolutely continuous with respect to Lebesgue measure. Let f,g”) denotes
the corresponding density. Let G be the collection of all bounded domain €2 in R? such
that 0 € Q and 99 has Lebesgue measure 0. For any Borel set A C £1(f2), define

o) =P (" e a).
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That is, Q;"gz is the distribution of the occupation time measure of SJ@’) at time k£ with
Dirichlet boundary on 9. As in the case of the projected version, we have the following
large deviation principle.

Theorem 5.2 (Large deviation principle in £;(2)). Under the convergence assump-
tion (C-B,), let a,, be any sequence of positive integers increasing to infinity satisfying
a, |det By, | < n. Let QEL" ) be the distribution of f\" in £,(Q). Then we have large
deviation principle in the strong L(f)) topology. Namely, for any Borel set A C L1(f2),

— inf Ip (f) < liminf logQ(n)( A)

feA° n—00 n/an

<

nQ( )<71anL()

n—oo N feA

and

ILn(f)=—inf/L"’u() )z = E,(VT, V).

ueUu Q u

The outline of the proof of these results is given in Section 5.3. It follows [8] closely.

5.2 Asymptotics of functional expressions

Throughout this short section, we fix a symmetric probability measure y on Z? and
an operator-stable law 7 on R? such that the convergence assumption (C-B,,) and scal-
ing assumption (S-B,-a,) of Definitions 3.1-3.6 are satisfied. In particular, in what
follows, (a,) is the non-decreasing and regularly varying sequence of integers provided
by Definition 3.6 (see also Proposition 3.7). The functions F' and F are as in Definition
3.6. Let (I(n,x)),eze be the occupation time vector up to time n for the random walk
driven u. The goal of this subsection is to use the large deviation principles in L' to
prove Theorem 3.9.

Proposition 5.3. Under the above hypotheses, we have the lower bound

. . Qn
hmnlggo;ng exp [ — Zd F(l(n,x)) L supp(20) )
T€EZ

Z—mf{ VTV + / )dx}

Proof. The proof is essentially the same as for [3, Lemma 4.2]. Use the lower bound in
Theorem 5.2 and Varadhan’s lemma (see [21, Theorems 2.2, 2.3]). O

Proposition 5.4. Under the above hypotheses, we have upper bound

lim sup —logE exp [ — Z F(l(n,x))

n—0o0 IeZd
< —sup inf {)\_15;7(\/}, \/}) + oA~V trE/ ﬁ(f(x))dx} ‘
A>0 fEFT T

Proof. First, since I’ is sub-additive, write

Elep |~ 3 Fima) | | <B|ep| - X F(iny)

d (n)
TEZ yeLl”

Bqun (exp ( det(Bxa,) /T F (det(g,\a")f(m)) dm)) :
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Next, follow the line of reasoning used to prove the Corollary of Theorem 6 in [8], using
the large deviation upper bound in £;(T) and Varadhan’s lemma. From the (lower
bound part of) the scaling assumption and the regular variation property of det B, , we
have for any parameter A > 0,

L. ap, det(Bxg,) n (1— _
n > y)tr E
hmnlggo - F <det(B,\an)y) > A F(y), y> 0.

Setting D,, = det(B),,, ), we obtain

lim sup a—nlogE exp | — Z F(l(n,z))

n—oo T

€74
n

< ; _
< hmnsg]go - IOgEQi,i (exp( Dn/TF D” >dx)>)
= lim sup a—nlogEQ(n) (exp (n/ an nF< flx )> ))

n—oo N n,A a T
< —flnf { ALV F) + A0 V)trE/ﬁ(f(a:))dx}.

€F T

The last step comes from Varadhan’s lemma. Since the choice of parameter A is arbi-
trary, we can optimize over all A > 0. O

The following lemma is proved in the appendix. It shows that the constants appear-
ing in the upper and lower bounds actually match up. In particular, since this constant
appears as both a sup and an inf of some nonnegative quantities, it follows clearly that
the constant k(n, ') defined below takes value in (0, c0).

Lemma 5.5. Suppose Fis a homogeneous function with exponent v € [0,1], that is
F(0) =0,F(y) = F(1)y” fory > 0; and 7 is a full operator-stable law with exponent E.
Then there exists a constant k(n, F) € (0, 00) such that

k(n,F) = sup inf {Algﬁ(\/ﬁ \/f)H(lv)trE/TF(f(x))dx}

A>0 f€FT

— inf inf {5,7(\/?, ﬂ)—&—/ﬂﬁ(f(x))dx}.

Qeg feFa

5.3 Proof of the large deviation principle in L!

In this section we indicate how to adapt [8] to prove the large deviation principles
as stated in Theorems 5.1 and 5.2. For this purpose we first develop a large deviation
principle in the weak topology following Lemma 3.1 and Appendix A in [11].

Throughout this subsection we assume

B ™ = 1. (C-By)

First we establish asymptotics for exponential moment generating functions. Com-
pare with [11, Lemma A.1] which treats simple random walk on Z¢.

Proposition 5.6. For the projected occupation measure, for any f € C(T) and any
sequence (a,,) satisfying a,, — oo and a,, = o(n) as n — oo,

lim

1 ~
i log F | exp < £, L >
n—oo n/an Qp

= s { [ @@ vD) )

gE€Fm
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For the occupation measure with Dirichlet boundary condition, for any function f €
00(9)7

1 n
n (n)
A e B (eXp ( <)L >> 1{supp<L£f'>>cﬂ}>

— s { [ foita)is - &5 va) |

g€Fa

Proof. In the lower bound direction, we have the following Feynman-Kac estimates as
consequences of functional limit theorem. For the proof, adapt the arguments given in
[4, Theorem 7.1]. For any sequence (a,,) satisfying a,, — oo and a,, = o(n) asn — oo,

and any f € C(T),
. 1 1 S =)
ol B (exp (an ; f(Sy >>)

lim inf
sup { [ f(@lgta)ds 376516,V |-

gEFT

Similarly, for f € Cy(Q?),

(n)
fim nli)1<f>o n/an log E (exp ( Z F(Sy ) 1{suPP(L£1">)CQ}>

nk}l

sup {/f 2)dz — n<¢§,¢§>}.

gEFaQ

In the upper bound direction, as a consequence of the convergence assumption, we
can adapt the proof of [8, Theorem 3] to have the following large deviation upper bound.
Let C be a closed of M;(T). Then

n—oo 1/0p ’ vel

1 ~
limsup/ilogPén)?(C) < -A"Yinf Ir_ (),

where

. L,~7u
I (v) =~ ulenz/f{’T/T ” (x)dv(x).
Similarly, if C is compact in Ml(ﬁ)

li log P"(C) < — inf I
lﬂsolipn/an og P 0(C) < — inf I, (v),

where

Ip,(v) = — inf /QL “1 ) d ().

u€EUq u
Either on T or in 2, apply Varadhan’s lemma ([21, Theorem 2.2]) to the large deviation
upper bound to obtain the upper bounds needed for Proposition 5.6. O

By the Gartner-Ellis theorem (e.g., [5, Theorem 4.5.20]), we obtain the large devia-
tion principle in the weak topology stated in the following Theorem. Compare with [11,
Lemma 3.1].

Theorem 5.7. For any Borel set B in M;(T) and any sequence (a,,) satisfying a,, — oo
and a,, = o(n) asn — oo,

1y
A fleanOILﬁ(f)

A
\E.

5

=8

IN

lim sup ——
n—o00 n/ Qn feB
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Similarly, for any Borel set A in M; (),
1

~inf T < liminf log P (A
flenAo L,(f) = oo 7 an og Fal4)
. 1 (n) .
< 1 log P A< —inf I .
< limsup /an og P, o(A) < }Ielz L, (1)

Next, following [8], we use the local limit theorem to upgrade the large deviation
principle in the weak topology to a result in the strong L'-topology. This is a rather tech-
nical task. As shown in [8, Theorem 6], the key point is to obtain a super-exponential
estimate on the L!-distance of the density function to its smooth mollification. This, in
turn, requires uniform properties of the transition probabilities that are provided by the
local limit theorem.

Let {1}, ¢ — 0, be an approximation of the identity on R¢ with 1), is smooth, sym-
metric, compactly supported inside (-5, ;)d. Thinking of . also as a function on T, set
K.: LYT) — LY(T) as

K. f(x) = /T F)e(x — v)dy.

Theorem 5.8. For every 6 > 0, A > 0 and sequence a,, tending to infinity such that

an, |det By, | < n, we have
1 n
lim sup lim sup logQ;; <f :/ |Kef(z) — f(z)|dx > 5) = —00.
e—0 n—oo N/ Qn ! T

We follow step by step the proof of [8, Theorem 5]. To this end, we adapt to our
situation the sequence of lemmas in [8] that are used to prove this theorem. The first
lemma provides an elementary way to select a d-net of functions. Recall that

_ —1
Xa(@) = [det Ba | xp, (2440
Lemma 5.9. Let M,, . C C(T) be the set of functions
M, = {V=(Kc—=1I)xng: g€ C(T), HgHoo <1}

For any § > 0, there exist functions Vi, ..., V; such that for any V € M, ,

inf  sup |V(x)—V;(z)|] < g,

1<i<J

zeLl(n)
and
8 ‘det B\.)\(lnj‘
J:J(n,e75)<<5+1> .
Proof. The proof is identical to [8, Lemma 4.1 ]. O

The second lemma is similar to [8, Lemma 4.2] and concerns the uniform control
of the transition probabilities. Such uniform control appears as Assumption (U) in [6,
Section 4.1] and [5, Section 6.3] to obtain the large deviation principle in £;.

Lemma 5.10. There exists ng € IN and constant ¢ < oo such that for all n > ny,

sup fii(z) Sc inf jin (o).
serm weLm
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Proof. Recall the local limit theorem in [12],

lim sup sup |det By,| - ‘,u(")(x) — |det B;1|g(B;1x)‘ =0.
n—oo peZd
Applying this local limit result along the sequence {|\a, ]|} and projecting onto T, we
have

lim sup sup |[[det Bq, | " (y) — gr-1(y)| = 0.

n—00 yc £(n)

Since the density g is continuous, the desired result follows. O
We have the following uniform estimate with respect to the starting point.

Lemma 5.11. Let x and y be any two points in EE\"). There exists an integer ng such
that for any n > ng and any 6 > 0,

exp <0 Z V(§,(§n))>] < CpoE;

k=1

E,

exp (0 z": V(g,gn))>] ,

k=1
where C,, g = cexp(46a,,) and ¢ and ny are as in Lemma 4.2.

Proof. This follows from Lemma 5.10 as in the proof of [8, Lemma 4.3]. O

Lemma 5.12. There exists an integer ng such that for any n > ny and any 6 > 0,

exp (9 i V(glin))>
k=1

By < Crgexp (nL;(0V))

where C,, ¢ is as in Lemma 5.11 and f;j is Legendre transform of

T ﬁnu

In(n) = — inf : log ==dn,
that is,
vy = sw { [ovar-Lw}.
nemy(T) Wy
Proof. Follow [8, Lemma 4.4]. O

Finally, we need the following technical lemma that controls error terms as n — oc.

Lemma 5.13. Let 1 be a probability measure on £(™ such that I,,(n) < 2 whereo > 0.
LetV = (K. — I)xng where g € C(T), ||g||., < B. Then for any t > 0,

/ Vidn < B[2h(to) + 2A(n) + k(e)],

T

where

h(l) := 2 inf l+a—log(l+a)

a>0 a
Ay(n) = /

ki(e) = sup / |Ge/a(x = y) = Geya ()] da.

€ €

ye(—-5,5)4Jr

and

Yo LD (@) = G ()| de

Moreover, we have that h(l) — 0 as ! — 0 and, for any fixed t > 0, Ay(n) — 0 asn — oo
and ki(e) —» 0 ase — 0.
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Proof. See [8, Lemma 4.5] O

With these five lemmas, the line of reasoning used in [8, Theorem 5] gives us Theo-
rem 5.8.

6 Appendix

6.1 Proof of regular variation properties

In this subsection we deduce from the regular variation of the sequence (B,,) the
properties of F' stated in the technical proposition 3.7. We follow [3] closely.

Proof of Proposition 3.7. By Theorem 2.9 (i.e., [13, Theorem 1.10.19 ]), under the con-
vergence assumption B! 1" = 7, there exists a modified normalization sequence
(B}) with B], = B,,S,,, Sy, € Ivn(n), such that (B},) has the regular variation property

B’I/’L( i_nt])_l - t_E

where the convergence is uniform in ¢ on compact subsets of R} . Since S,, € Ivn(n) we
have

(Br) "'t =,
Further, since Inv(n) is a compact group, we must have detS,, = 1, det B, = det B,,.
Hence we can replace B,, in the scaling assumption by B, and we have

ap det(B), ) n _
li an) o —F
v n <det(Bg”) y) W),

uniformly over compact sets in (0, co).

Set det(B! )
~ an det(5, n
Fuly) = n F (det(B’ )y> '

an

The scaling assumption now reads lim,_, ., ﬁn(y) = ﬁ(y) Note that by assumption,

F :[0,00) = [0,00) is a concave, increasing function with F'(0) = 0, therefore both ),

and F' are concave, non-decreasing, not identically zero with value 0 at 0. Hence F,

ﬁn ()
Yy

and F are continuous and strictly positive in (0,00), and by concavity, y — and

Yy — % are both non-increasing functions.

Now we show that for any A € (0, 1), a&;—’” tends to a finite non-zero limit as n — oo .
Fix a y > 0 and write

Fan (9) ) det(B!

Ay det(Bg ) ( |An y)
aL)\nJ )
Q| An| det(szM"J)F ( n [An] /n )

) det(B), ) det(B,, )/ det(B] )"

@A)
ajyn det(Ba )/det(Bén)ﬁ ( e )
an [An] /n "\ det(By,,, )/ det(B;, )" )

A an)

As (a,) is an increasing sequence and det(B,,) is non-decreasing with respect to n,

we have det(B(’mn | )/ det(B;, ) <1 Since y — F"T(y) is non-increasing, we have

I [An]/n -

Fn (det(B; )/ det(B7 )y> Ia (M )
[An] n AN Y
[An]/n — [An] :

)/ dew(B;, )Y n J

det(B{lL/\ |
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Therefore

F|_>\ J( ) an, [An]

n

Letting n — oo on both sides, the scaling assumption yields

~ i 1~
F(y) <lim inf 2n) —F(\y).

n—oo A, A

Therefore

lim inf Srn) > )LF(y)

a a
= ﬂglimsupmgl.
F()\y) n—=oo  Gp n—oo An

Replacing A by 5, we conclude that for all A € (0,00), “L is uniformly bounded
away from 0 and uniformly bounded from above.

aMnJ

. Namely,

L*th

Let ¢(\) be defined for each A € (0,00) as a sub-sequential limit of
choose some (A-dependent) sub-sequence ¢, — oo and set ¢(\) = lim, 0 . From

the above reasoning we know that ¢(\) € (0, c0). Consider the equation

arn) det(Bg,, J)/det(Bé")ﬁ ( - )
det( )7 )

Flany () = an An] /n B! )/ det(B!

@ an]

and take the limit along the sub-sequence (t,,). We can indeed take the limit on the right
hand side of the equation because F is continuous, and the convergences F, (y) — F(y)
and B, (B’Lm J) — t~% are uniform over compact sets. This yields

- tr B __
F) = o) F (555w

ZtrE~ )\
z — 3 F (ZtrEy>

Fy)

Note that the function

F
is non-decreasing because y — (y)

ing, the solution zg = z(\,y) to

ﬁ(y) SrE A
z = )\ F ZtrEy

is unique. Hence the limit ¢(\) = lim,, o “&;—:J exists in (0,00) for all A € (0,00).
Observe that

is non-increasing. As z — is strictly decreas-

a n
$(MAe) = lim —22en)
n—oo an
_ hm a[>\1)\2nJ . aL)\QTLJ
"0 G| Agn| @|n]
= o(A)o(A2).
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Therefore ¢ is multiplicative and ¢(\) = A* with k = log, ¢(2). Plugging this back in

. tr &
F(y) = ¢(\) - ¢(/\>)\ - <¢()\/)\trEy> ’

we have

- . )\ntrE‘ . A

Setting y = 1 gives _ B
F(l) _ /\;{JrntrEfl _F(/\lfntrE),

so that
~ ~ l1—rktr E—kK

Fly) = F(1)y' 7555

The fact that
. logay,
lim =K
n—oo logn

)

follows exactly from the reasoning in [3]. O

6.2 Discussion of the constant k(1, F) of Lemma 5.5

In this subsection, we follow the truncation argument in [7] to prove Lemma 5.5.
With the notation of Section 5, let

simsup ing {37165 (VEVT) 4200 [ Fipa)

be the upper bound appearing in Proposition 5.4. Let ¢ > 0 be an arbitrary small
number. To prove Lemma 5.5, it suffices to find €2 € G and g € F such that

&1 (3, /3) + / Flg(a))de < T +e.

For any A (we will choose )\ large enough later on), by the definition of J, there exists
f € Fr such that

AWV A0 “E/ F(f(z))dz < J+ %
T

We can think of functions on T also as functions on the fundamental domain [0, 1).
Following [7, Lemma 3.4], let

PO (fosns Ut

Note that there exists a € T such that the translated function f,(z) = f(z — a) satisfies

2d
%

Because of translation invariance of the expression on the torus, we can replace f by
fa in the expression without changing the value. Therefore we may assume that f € Frp
satisfies

fadx

ALV ANF) + A0 ““E/T (f(z))dz < J—i— (6.1)
and od
fdx \4?
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Consider a smooth bump function ¢, on R such that ¢ = 1 on [%ﬁ, 1 - 4—\5} it

vanishes outside (ﬁ,l - ﬁ) and [Vdo| < 3. Let do(z1, ..., 2q) = do(21)...00(z4)
and ¢(z) = do(z)%. Then HWOH <3vd- Y

Let Ty := A¥ ([0,1)4), that is the image of the fundamental domain [0, 1) under the
transformation A”. Given a function h defined on [0,1)¢, let hy be the function on T)

defined by
ha(z) == |det(A™F)| (A~ Fa).

Now, set Q = A\F(0,1)? where )\ is sufficiently large and
o)z
PR CONC
Jra(f)A(2)da
Then, we claim that

E0 (VI VT) + /Q Flg(a))de < T +c.

To see this, first note that g is supported on 7% and that, by the scaling properties
tE(W) =t - W of the Lévy measure, we have

€y (V3 v/9) < A5 (V17 /G1)x) -

Also, since F(y) = F(1)y”, we have

/ F(g(z))dz = \I-) 0 E / Flgua(0))da.
Q T

Hence we obtain

&, (V3. \/§)+/Ql5(g(z))dx
< A (AT V) A [ Byt

Since f satisfies (6.1), the choice of the bump function and the fact that real part of
the eigenvalues of F are all > % guarantee that for A sufficiently large,

AL (Vaime /i) + AT trE/ Flgia(x))dz < J +e.
T

6.3 Explicit computation of constants

In this section, we illustrate Theorem 4.4 concerning switch-walk-switch random
walks on certain wreath products K ! H and give some indications concerning exact the
computation of the constant k(7, ﬁK). Let v denote a symmetric probability measure
on the lamp-group K and let F : (0,00) — (0,00) be such that F(n) = —logv®™ (ex).
Assume that p is a symmetric measure on the base-group H = Z? satisfying the conver-
gence assumption

n M =,

that is, p is in the domain of normal attraction of  where 7 is an operator-stable law
with exponent F. Set
fi=e® and Lo f = OFf.
We will treat cases where F' satisfies the scaling assumption (S-nf-a,,) for some se-
quence a,,. Let F be the corresponding limit function and ~« be the associated scaling
exponent. See Definition 3.6 and Proposition 3.7.
Let ¢ be the switch-walk-switch measure on G = K Z? given by ¢ = v * pu * v.
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Example 6.1 (Power decay on K, v = 0). This is the continuation of Example 4.2.
Namely, assume cn=? < v")(ex) < Cn~%. This means that [F(y) — flogy| < C’ and
F(y) = 01(9,00)(y), that is, v = 0. Under this hypothesis, Theorem 4.4 yields

1
(Qn)tr E/(tr E41) (10g m

)1/t B D) log ¢*™(e) = —k(n,01(0,00))-

A simple scaling argument as in [7, 8] shows that the constant k(7,01 ) as in Lemma
5.5 can be written as

(6.2)

M\ (@) tr E/(tr E4+1)
tr B '

k(n,01(,00)) = 0T ETD (tr B 4+ 1) (

Here

/\1(@) = B:fg\le )\1(@, B)

where the infimum is taken over all bounded open sets B ¢ R? such that the Lebesgue

measure |B| = 1,|0B| = 0, and A\, (0, B) is the principle eigenvalue for Lg with Dirichlet
boundary on B.

Example 6.2 (Nonamenable K, v = 1). Suppose the lamp group K is nonamenable
and let p denote the spectral radius of v so that

1

(1/(2") (eK)> o P

By [16, Theorem 3.16], the switch-walk-switch measure ¢ = v+ p*xv on G = K 74 has
spectral radius p?, namely,

(@)™ = 52

We can recover this result using Theorem 4.4 (actually, a rather trivial special case).
We have

F(y) = (log p*)y + o(y) and F = (log p*)y.

The variational problem giving the constant (7, f) becomes

k(n,F) = logp® +inf{&€(f, f): [ >0, fll, =1}
= logp°.

Further, if a more precise local limit theorem is known for the random walk driven
by v on K, we can derive a log-limit for p~*"¢(?")(e). For example, assume that

v erc) ~ c(w)n0p",
for some 6 > 0. Then we have

log (p—4nq(2n) (e)) ~ —k(777 91(0700))(211)“ E/(tr E+1)(log 2n>1/(tr E+1)

where the constant k(7,01 ) is given by (6.2).

Example 6.3 (Cases when v € (0,1)). The case when logv®™) (ex) ~ —cn?, v € (0,1),
presents two different difficulties. First, there are very few examples of group K for
which such asymptotics is known (even so, we do produce such examples above). Sec-
ond, the corresponding variational problem describing k(7, s — ¢s?) is not as well stud-
ied and explicit solutions are not known except for certain cases. See [18] where is 7 is
half of our ~.
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Assume that K, v are such that log @™ (ex) ~ —en?, v € (0,1) so that F(y) = cy”.
Assume further that H = Z and &, (f, f) = a [ |V f|* dz. In this case, [18, Proposition
5.1] provides an explicit solution for the variational problem describing the constant

k(n, F') and one obtains
1ty

log ¢*")(e) ~ —k(n, F)(2n) 5=

where

A (35)\
() /o

and the minimizer is the function (cos |x\)ﬁ1[0m/2}(|x
ized.

When H =Z%, &, (f, f) = a [pa IV f|? dz, and ~ is 1/2 — for example, this is achieved
by the switch-walk-switch random walk on the wreath product Zs { Z? — the minimizer
is given by a Bessel function and the constant k(n, s — cs'/?) is explicitly computable,
see [18, Proposition 5.2].

~ 2 1—vy 37")/
k(n, F) = ¢57 (2a) 5=
.F) = e )t (117

), properly dilated and normal-
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