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Abstract

The best known lower and upper bounds on the total variation mixing time for the
random-to-random insertions shuffle are

(
1
2
− o (1)

)
n logn and (2 + o (1))n logn. A

long standing open problem is to prove that the mixing time exhibits a cutoff. In
particular, Diaconis conjectured that the cutoff occurs at 3

4
n logn. Our main result is

a lower bound of tn =
(
3
4
− o (1)

)
n logn, corresponding to this conjecture.

Our method is based on analysis of the positions of cards yet-to-be-removed. We
show that for large n and tn as above, there exists f(n) = Θ(

√
n logn) such that, with

high probability, under both the measure induced by the shuffle and the stationary
measure, the number of cards within a certain distance from their initial position
is f(n) plus a lower order term. However, under the induced measure, this lower
order term is strongly influenced by the number of cards yet-to-be-removed, and is
of higher order than for the stationary measure.

Keywords: Mixing-time ; card shuffling ; random insertions ; cutoff phenomenon.
AMS MSC 2010: 60J10.
Submitted to EJP on April 15, 2012, final version accepted on December 29, 2012.
Supersedes arXiv:1112.5847v2.

1 Introduction

In the random-to-random insertions shuffle a card is chosen at random, removed
from the deck and reinserted in a random position. Assuming the cards are numbered
from 1 to n, let us identify an ordered deck with the permutation σ ∈ Sn such that σ (j)

is the position of the card numbered j. The shuffling process induces a random walk
Πt, t = 0, 1, . . ., on Sn. Let Pnσ be the probability measure corresponding to the random
walk starting from σ ∈ Sn.

Clearly, Πt is an irreducible and aperiodic Markov chain. Therefore Pnσ (Πt ∈ ·) con-
verges, as t → ∞, to the stationary measure Un, which, since the transition matrix is
symmetric, is the uniform measure on Sn. To quantify the distance from stationarity,
one usually uses the total variation (TV) distance

dn (t) , max
σ∈Sn

‖Pnσ (Πt ∈ ·)−Un‖TV = ‖Pnid (Πt ∈ ·)−Un‖TV ,
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A lower bound for the random insertions shuffle

where equality follows since the chain is transitive. The mixing time is then defined by

t
(n)
mix (ε) , min {t : dn (t) ≤ ε} .

In order to study the rate of convergence to stationarity for large n, one studies how
the mixing time grows as n → ∞. In particular, one is interested in finding conditions
on (tn)

∞
n=1 such that limn→∞ dn (tn) equals 0 or 1.

The random-to-random insertions shuffle is known to have a pre-cutoff of order
O (n log n). Namely, for c1 = 1

2 , c2 = 2:

(i) for any sequence of the form tn = c1n log n− knn with limn→∞ kn =∞,
limn→∞ dn (tn) = 1; and

(ii) for any sequence of the form tn = c2n log n+ knn with limn→∞ kn =∞,
limn→∞ dn (tn) = 0.

Diaconis and Saloff-Coste [4] showed that the mixing time is of order O (n log n).
Uyemura-Reyes [6] used a comparison technique from [4] to show that the upper bound
above holds with c2 = 4 and proved the lower bound with c1 = 1

2 by studying the longest
increasing subsequence. In [7] the upper bound is improved by Saloff-Coste and Zúñiga,
also by applying a comparison technique, and shown to hold with c2 = 2. An alternative
proof to the lower bound with c1 = 1

2 is also given there.
A long standing open problem is to prove the existence of a cutoff in TV (see [3, 2]);

that is, a value c such that for any ε > 0:

(i) for any sequence tn ≤ (c− ε)n log n, limn→∞ dn (tn) = 1; and

(ii) for any sequence tn ≥ (c+ ε)n log n, limn→∞ dn (tn) = 0.

In particular, in [3] Diaconis conjectured that there is a cutoff at 3
4n log n.

Our main result is a lower bound on the mixing time with this rate.

Theorem 1.1. Let tn = 3
4n log n − 1

4n log log n − cnn be a sequence of natural numbers
with limn→∞ cn =∞. Then limn→∞ dn (tn) = 1.

The proof is based on analysis of the distribution of the positions of cards yet-to-be-
removed. Let [n] = {1, . . . , n}, and denote the set of cards that have not been chosen for
removal and reinsertion up to time t by At = An,t. The following result describes the
limiting distribution for a card in At as the size of the deck grows (in the sense below).

Recall that for a permutation σ ∈ Sn, the image of j under σ, σ(j), is the position of
card j in the deck with corresponding ordering. Hence, for the random walk Πt, Πt(j)

corresponds to the position of card j after t random-to-random insertion shuffles. Let
⇒ denote weak convergence and N (0, 1) denote the standard normal distribution.

Theorem 1.2. Let jn ∈ [n] and tn ∈ N be sequences. Assume that γ , limn→∞
jn
n

exists, and that

lim
n→∞

n2

tnjn (n− jn)
= lim
n→∞

tn
jn (n− jn)

= 0.

Then

Pnid

(
Πtn (jn)− jn√

2tnλn
∈ ·
∣∣∣∣ jn ∈ Atn) =⇒ P (N (0, 1) ∈ ·) ,

where

λn =


jn
n if γ = 0,
n−jn
n if γ = 1,

γ (1− γ) if γ ∈ (0, 1) .
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A lower bound for the random insertions shuffle

This can be explained by the following heuristic. Conditioned on j ∈ At, Πm(j) − j,
m = 0, 1, . . . , t, is a Markov chain starting at 0 with increments in {0,±1}. If the in-
crements were independent and identically distributed as the first increment, Theorem
1.2 would have readily followed from Lindeberg’s central limit theorem for triangular
arrays ([1], Theorem 27.2). While this is not the case, if with high probability the con-
ditional increment distributions (given in (2.2) below),

Pnid
(

Πm+1 (j) = i+ k|Πm (j) = i, j ∈ At
)
, k = 0,±1,

are ‘close enough’ to be identical for all the states Πm(j) visits in times m = 0, 1, . . . , t,
one should expect a similar result. This, however, follows under mild conditions on t and
j, since the conditional transition probabilities above are very close to being symmetric,
and so, with high probability, Πm(j) remains up to time t in a small neighborhood of j,
where the transition probabilities hardly vary.

To prove the lower bound on the TV distance of Pnid(Πtn ∈ ·) and Un, we study the
size of sets of the form

4α (σ) ,
{
j ∈ Dn : |σ (j)− j| ≤ α

√
n log n

}
, σ ∈ Sn,

where Dn = [n]∩ [n (1− ε) /2, n (1 + ε) /2], for fixed ε ∈ (0, 1) and a parameter α > 0. We
shall see that for tn as in Theorem 1.1, as long as lim sup cn/ log n < 1/4,

|4α| /
(

2εα
√
n log n

)
=⇒ 1,

under both measures. However, the deviation |4α|−2εα
√
n log n, which for Pnid (Πtn ∈ ·)

is strongly influenced by |4α(Πtn) ∩Atn |, i.e. by the cards yet-to-be-removed, is of
different order for the two measures.

In Section 2 we prove Theorem 1.2 and other related results. We analyze the distri-
bution of |4α(σ)| under Un, and the distributions of |4α(Πtn) ∩Atn | and |4α(Πtn) \Atn |
under Pnid in Section 3. The proof of Theorem 1.1, given in Section 4, then easily follows.
Lastly, in Section 5 we prove a result which is used in the previous sections.

2 The Position of Cards Yet-to-be-Removed

In this section we prove Theorem 1.2 and other related results.

The increment distribution of Πt is given by

µ (τ) =


1/n if τ = id,

2/n2 if τ = (i, j) with 1 ≤ i, j ≤ n and |i− j| = 1,

1/n2 if τ = ci,j with 1 ≤ i, j ≤ n and |i− j| > 1,

0 otherwise,

(2.1)

where ci,j is the cycle corresponding to removing the card in position i and reinserting
it in position j, that is

ci,j =


id if i = j,

(j, j − 1, . . . , i+ 1, i) if i < j,

(j, j + 1, . . . , i− 1, i) if i > j.

Let 2 ≤ n ∈ N and j ∈ [n]. Under conditioning on {j ∈ At}, Πm (j), m = 0, . . . , t is a
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time homogeneous Markov chain with transition probabilities

p
Π(j)
i,i+k , Pnid

(
Πm+1 (j) = i+ k|Πm (j) = i, j ∈ At

)

=



i(n−i)
n(n−1) if k = +1,
(i−1)(n−i+1)

n(n−1) if k = −1,
(i−1)2+(n−i)2

n(n−1) if k = 0,

0 otherwise.

(2.2)

One of the difficulties in analyzing the chain is the fact that the transition probabili-
ties pΠ(j)

i,i+k are inhomogeneous in i. To overcome this, we consider a modification of the
process for which inhomogeneity is ‘truncated’ by setting transition probabilities far
from the initial state to be identical to these in the initial state. As we shall see, a bound
on the TV distance of the marginal distributions of the modified and original processes
is easily established.

For j ∈ [n] and M > 0, let j ±M , [n] ∩ [j −M, j +M ], and let ζm = ζn,j,Mm , m =

0, 1, . . ., be a Markov process starting at ζ0 = j with transition probabilities pζ,j,Mi,i+k ,
P (ζm+1 = i+ k| ζm = i) such that

∀i ∈ j ±M : pζ,j,Mi,i+k = p
Π(j)
i,i+k,

∀i ∈ Z \ j ±M : pζ,j,Mi,i+k = p
Π(j)
j,j+k.

Clearly, for any sequence (km)
t
m=0 ∈ Zt+1 if max0≤m≤t |km − j| ≤M then

P
(

(ζm)
t
m=0 = (km)

t
m=0

)
= Pnid

(
(Πm (j))

t
m=0 = (km)

t
m=0

∣∣∣ j ∈ At) . (2.3)

Therefore, by taking complements, for any u ≤M

Pnid

(
max

0≤m≤t
|Πm (j)− j| > u

∣∣∣∣ j ∈ At) = P

(
max

0≤m≤t
|ζm − j| > u

)
. (2.4)

Moreover, (2.3) implies that for any B ⊂ Zt+1

Pnid

(
(Πm (j))

t
m=0 ∈ B

∣∣∣ j ∈ At)− P((ζm)
t
m=0 ∈ B

)
= Pnid

(
(Πm (j))

t
m=0 ∈ B, max

0≤m≤t
|Πm (j)− j| > M

∣∣∣∣ j ∈ At)
− P

(
(ζm)

t
m=0 ∈ B, max

0≤m≤t
|ζm − j| > M

)
.

Since both terms in the last equality are bounded from above by the equal expressions
of (2.4) (and from below by zero), it follows that∥∥∥Pnid ( (Πm (j))

t
m=0 ∈ ·

∣∣∣ j ∈ At)− P((ζm)
t
m=0 ∈ ·

)∥∥∥
TV

≤ P
(

max
0≤m≤t

|ζm − j| > M

)
.

(2.5)

A simple computation shows that
∣∣∣pΠ(j)
i,i+1 − p

Π(j)
i,i−1

∣∣∣ is bounded by 1
n for any i. On the

other hand, pΠ(j)
i,i±1 is roughly equal to i (n− i) /n2. Thus if j is large enough and M ,

and thus
∣∣j ±M ∣∣, is small compared to j, we can think of ζn,j,Mm as a perturbation of a

random walk with a very small bias. In order to make this precise, we decompose ζn,j,Mm

as a sum of a random walk determined by the increment distribution in state j and two
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additional random processes related to the ‘defects’ in symmetry and homogeneity in
state.

Consider the vector-valued Markov process

(Sm, Xm, Ym) =
(
Sn,j,Mm , Xn,j,M

m , Y n,j,Mm

)
starting at (S0, X0, Y0) = (0, 0, 0) with transition probabilities as follows. For each k ∈ Z
define

qk = min
{
pζ,j,Mk,k+1, p

ζ,j,M
k,k−1

}
, (2.6)

rk = max
{
pζ,j,Mk,k+1, p

ζ,j,M
k,k−1

}
.

For a state (i1, i2, i3) set i = i1 + i2 + i3 and define

wi = arg max
k=±1

(
pζ,j,Mj+i,j+i+k

)
,

zi = sgn (qj − qj+i) ,

where sgn is the sign function (the definition of sgn at zero will not matter to us). Define
the transition probabilities by

P ( (Sm+1, Xm+1, Ym+1) = (i1 + k1, i2 + k2, i3 + k3)| (Sm, Xm, Ym) = (i1, i2, i3))

=



min {qj+i, qj} if (k1, k2, k3) = (+1, 0, 0) ,

min {qj+i, qj} if (k1, k2, k3) = (−1, 0, 0) ,

|qj − qj+i| if (k1, k2, k3) =
(
+ 1+zi

2 ,−1, 0
)
,

|qj − qj+i| if (k1, k2, k3) =
(
− 1+zi

2 ,+1, 0
)
,

rj+i − qj+i, if (k1, k2, k3) = (0, 0, wi) ,

ci, if (k1, k2, k3) = (0, 0, 0) .

where ci is chosen such that the sum of probabilities is 1.
It is easy to verify that (Sm +Xm + Ym)

∞
m=0 is a Markov process with transition

probabilities identical to those of (ζm − j)∞m=0. Therefore the two processes have the
same law. It is also easy to check that Sn is a random walk with increment distribution

µ (+1) = µ (−1) = qj , µ (0) = 1− 2qj .

In order to study Xm and Ym we need the following proposition.

Proposition 2.1. Let {Am}∞m=0 and {Bm}∞m=0 be integer-valued random processes
starting at the same point A0 = B0. Suppose that there exist pAik ∈ [0, 1] such that for
any m ≥ 0 and k, i, i0, . . . , im−1 ∈ Z (such that the conditional probabilities are defined)

pAik = P (Am+1 = k|Am+1 6= i, Am = i)

= P (Am+1 = k|Am+1 6= i, Am = i, Am−1 = im−1, . . . , A0 = i0)

and similarly for Bm with pBik. Assume that for any i, k ∈ Z, pAik = pBik. Finally, suppose
that for any m ≥ 0 and k, i, i0, . . . , im−1, j0, . . . , jm−1 ∈ Z, (whenever defined)

P (Am+1 6= i|Am = i, Am−1 = im−1, . . . , A0 = i0)

≥ P (Bm+1 6= i|Bm = i, Bm−1 = jm−1, . . . , B0 = j0) .

Then for any t ∈ N and δ > 0

P

(
max

0≤m≤t
|Am| ≥ δ

)
≥ P

(
max

0≤m≤t
|Bm| ≥ δ

)
.
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Proof. The processes {Am} and {Bm} can be coupled so that they jump from a given
state to a new state according to the same order of states, say according to the order
{km}∞m=0, and such that the amount of time that {Bm} spends in any given state km
before jumping to state km+1 is at least as much as {Am} spends there. The proposition
follows easily from this.

The only nonzero increments of Xm are ±1. Note that

P
(
Xm+1 = im + 1

∣∣∣Xm+1 6= im, {Xp}mp=0 = {ip}mp=0

)
=

∑
(k1,k2)∈Z2

P
(
Xm+1 = im + 1

∣∣∣Xm+1 6= im, {Xp}mp=0 = {ip}mp=0 , . . .

Sm = k1, Ym = k2

)
P
(
Sm = k1, Ym = k2

∣∣∣Xm+1 6= im, {Xp}mp=0 = {ip}mp=0

)
=

1

2
.

The last equality follows from Markov property of (Sm, Xm, Ym). The same, of course,
holds for the negative increment. In addition, again by Markov property,

P
(
Xm+1 6= im| {Xp}mp=0 = {ip}mp=0

)
=

∑
(k1,k2)∈Z2

P
(
Xm+1 6= im

∣∣∣ {Xp}mp=0 = {ip}mp=0 , Sm = k1, Ym = k2

)
×

P
(
Sm = k1, Ym = k2

∣∣∣ {Xp}mp=0 = {ip}mp=0

)
≤ max
k1,k2

P
(
Xm+1 6= im

∣∣∣Xm = im, Sm = k1, Ym = k2

)
≤ 2 max

i∈j±M
|qi − qj |

≤ 2M max
x∈[1,n]

(
max

{∣∣∣∣ ddx x (n− x)

n (n− 1)

∣∣∣∣ , ∣∣∣∣ ddx (x− 1) (n− x+ 1)

n (n− 1)

∣∣∣∣})
≤ 2M

n− 1
,

where the maximum in the first inequality is over all k1, k2 such that the conditional
probability is defined.

Thus, according to Proposition 2.1, for δ > 0,

P

(
max

0≤m≤t

∣∣Xn,j,M
m

∣∣ ≥ δ) ≤ P( max
0≤m≤t

∣∣Wn,M
m

∣∣ ≥ δ) , (2.7)

where Wm = Wn,M
m is a random walk starting at 0 with increment distribution

ν (+1) = ν (−1) =
M

n− 1
, ν (0) = 1− 2

M

n− 1
.

Similarly, for the process Ỹt =
∑t
m=1 |Ym − Ym−1|, whose increments are 0 and 1, we

have

P

(
Ỹm+1 = im + 1

∣∣∣ {Ỹp}m
p=0

= {ip}mp=0

)
≤ max
k1,k2,k3

P (Ym+1 6= k1|Ym = k1, Sm = k2, Xm = k3)

≤ max
i∈Z

(rj+i − qj+i) = max
i∈j±M

∣∣∣∣ i (n− i)
n (n− 1)

− (i− 1) (n− i+ 1)

n (n− 1)

∣∣∣∣
= max
i∈j±M

∣∣∣∣n− 2i+ 1

n (n− 1)

∣∣∣∣ ≤ 1

n
.
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Therefore, for δ > 0,

P

(
max

0≤m≤t

∣∣Y n,j,Mm

∣∣ ≥ δ) ≤ P(Ỹt ≥ δ) ≤ P (Nn
t ≥ δ) , (2.8)

where Nt = Nn
t ∼ Bin

(
t, 1
n

)
.

Since the increment distributions of Wm and Sm are symmetric, the classical Lévy
inequality ([5], Theorem 2.2) yields, for any δ > 0,

P

(
max

0≤m≤t
|Wm| ≥ δ

)
≤ 4P (Wt ≥ δ) . (2.9)

and

P

(
max

0≤m≤t
|Sm| ≥ δ

)
≤ 4P (St ≥ δ) . (2.10)

Having established the connections between the different processes, we are now
ready to prove Theorem 1.2.

Proof of Theorem 1.2. The case where γ = 1 follows by symmetry from the case with
γ = 0. Assume γ ∈ [0, 1). In this case, the hypothesis in the theorem are equivalent to

lim
n→∞

n

tnjn
= lim
n→∞

tn
njn

= 0.

Let n ∈ N, j ∈ [n] and M > 0. Based on (2.7)-(2.9) and a union bound, for u ∈ R,
δ > 0, we have

P (ζt − j ≥ u)

≤ P (St ≥ u− δ) + P

(
max

0≤m≤t
|Xm| ≥

δ

2

)
+ P

(
max

0≤m≤t
|Ym| ≥

δ

2

)
≤ P (St ≥ u− δ) + 4P

(
Wt ≥

δ

2

)
+ P

(
Nt ≥

δ

2

)
.

Similarly,

P (ζt − j ≥ u)

≥ P (St ≥ u+ δ)− P
(

max
0≤m≤t

|Xm| ≥
δ

2

)
− P

(
max

0≤m≤t
|Ym| ≥

δ

2

)
≥ P (St ≥ u+ δ)− 4P

(
Wt ≥

δ

2

)
− P

(
Nt ≥

δ

2

)
.

Assume δ
2 −

t
n > 0. By computing moments and applying the Berry-Esseen theorem

to approximate the tail probability function of St, and applying Chebyshev’s inequality
to bound the tail probability functions of Wt and Nt, we arrive at

P
(
ζn,j,Mt − j ≥ u

)
≤ Ψ

(
u− δ√

2tqj

)
+

C√
2tqj

+
32Mt

δ2 (n− 1)
+

t
n
n−1
n(

δ
2 −

t
n

)2 (2.11)

and

P
(
ζn,j,Mt − j ≥ u

)
≥ Ψ

(
u+ δ√

2tqj

)
− C√

2tqj
− 32Mt

δ2 (n− 1)
−

t
n
n−1
n(

δ
2 −

t
n

)2 , (2.12)

where qj is defined in (2.6), C is the constant from the Berry-Esseen theorem and Ψ is
the tail probability function of a standard normal variable.
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For two sequences of positive numbers vn, v′n let us write vn � v′n if and only if

limn→∞ vn/v
′
n = 0. By assumption,

√
tnjn
n � jn, therefore we can choose a sequence

Mn such that tn
n , 1 �

√
tnjn
n � Mn � jn. Similarly, since Mn � jn we can set δn with√

tnMn

n � δn �
√

tnjn
n , which also implies that

√
tn
n ,

tn
n � δn.

Now, let x ∈ R and set un = x
√

2tnλn. Let us consider the inequalities derived from
(2.11) and (2.12) by replacing each of the parameters by a corresponding element from
the sequences above. Based on the relations established for the sequences and the
assumptions on tn and jn it can be easily verified that, upon letting n → ∞, all terms
but those involving Ψ go to zero. Relying, in addition, on the fact that Ψ is continuous,
it can be easily verified that

lim
n→∞

Ψ

(
un ± δn√

2tnqjn

)
= Ψ (x) .

Hence we conclude that

lim
n→∞

P
(
ζn,jn,Mn

tn − jn ≥ un
)

= Ψ (x) . (2.13)

Based on (2.7)-(2.10),

P

(
max

0≤m≤t

∣∣ζn,j,Mm − j
∣∣ ≥M) ≤ P( max

0≤m≤t
|Sm| ≥M − δ

)
+ P

(
max

0≤m≤t
|Ym| ≥

δ

2

)
+ P

(
max

0≤m≤t
|Xm| ≥

δ

2

)
≤ 4P (St ≥M − δ) + 4P

(
Wt ≥

δ

2

)
+ P

(
Nt ≥

δ

2

)
≤ 8tqj

(M − δ)2 +
32Mt

δ2 (n− 1)
+

t
n
n−1
n(

δ
2 −

t
n

)2 ,
(2.14)

where the last inequality follows from Chebyshev’s inequality.

As before, consider the inequality derived from (2.14) by replacing each of the pa-
rameters by a corresponding element from the sequences above. The middle and right-
hand side summands of (2.14) were already shown to go to zero as n → ∞. Since

δn �
√

tnjn
n � Mn the additional term also goes to zero. Combined with (2.5) and

(2.13) this gives

lim
n→∞

Pnid
(

Πtn (jn)− jn ≥ un| jn ∈ Atn
)

= Ψ (x) ,

which completes the proof.

In Theorem 1.2 for each n only a single card jn of the deck of size n is involved. The
following gives a uniform bound (in initial position and in time) for the tail distributions
of the difference from the initial position.

Theorem 2.2. Let α > 0 and let tn be a sequence of natural numbers such that
limn→∞ tn = limn→∞ n2/tn =∞. Then

lim sup
n→∞

max
j∈[n]

Pnid

(
max

0≤m≤tn
|Πm (j)− j| > α

√
tn
2

∣∣∣∣∣ j ∈ Atn
)
≤ 4Ψ (α) .
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Proof. Set un = α
√

tn
2 and jn =

⌊
n
2

⌋
. Let Mn ≥ un and δn > 0 be sequences to be

determined below. From (2.4) it follows that

max
j∈[n]

Pnid

(
max

0≤m≤tn
|Πm (j)− j| > un

∣∣∣∣ j ∈ Atn)
= max
j∈[n]

P

(
max

0≤m≤tn

∣∣ζn,j,Mn
m − j

∣∣ > un

)
≤ max
j∈[n]

{
P

(
max

0≤m≤tn

∣∣Sn,j,Mn
m

∣∣ ≥ un − δn)+

P

(
max

0≤m≤tn

∣∣Wn,Mn
m

∣∣ ≥ δn
2

)
+ P

(
Nn
tn ≥

δn
2

)}
.

It is easy to check that for the random walks Sn,j,Mn
m , j ∈ [n], the probabilities of the

nonzero increments, ±1, are maximal when j = jn. Therefore according to Proposition
2.1 and equations (2.9) and (2.10),

max
j∈[n]

Pnid

(
max

0≤m≤tn
|Πm (j)− j| > un

∣∣∣∣ j ∈ Atn)
≤ P

(
max

0≤m≤tn

∣∣Sn,jn,Mn
m

∣∣ ≥ un − δn)+

P

(
max

0≤m≤tn

∣∣Wn,Mn
m

∣∣ ≥ δn
2

)
+ P

(
Nn
tn ≥

δn
2

)
≤ 4

{
P
(
Sn,jn,Mn

tn ≥ un − δn
)

+ P

(
Wn,Mn

tn ≥ δn
2

)
+ P

(
Nn
tn ≥

δn
2

)}
.

Finally, note that jn and tn meet the conditions of Theorem 1.2 with γ = 1
2 . There-

fore, defining Mn and δn as in the proof of the theorem (which also implies Mn ≥ un)
and following the same arguments therein, as n → ∞ the expression in the last line of
the inequality above converges to

4Ψ

(
lim
n→∞

un − δn√
tn/2

)
= 4Ψ (α) .

This completes the proof.

3 Cards of Distance O(
√
n log n) from their Initial Position

The results of Section 2 show that the position of a card that has not been removed
is fairly concentrated around the initial position. This, of course, is a rare event for
each card under the uniform measure Un. In this section we shall develop the tools
to exploit this to derive a lower bound for the TV distance between Un and Pnid (Πt ∈ ·)
whenever sufficiently many (in expectation) of the cards have not been removed. Here,
‘sufficiently many’ means, of course, that t is not too large.

More precisely, we shall consider the size of sets of the form

4α (σ) ,
{
j ∈ Dn : |σ (j)− j| ≤ α

√
n log n

}
, σ ∈ Sn,

where Dn = [n] ∩ [n (1− ε) /2, n (1 + ε) /2], and ε ∈ (0, 1) is arbitrary and will be fixed
throughout the proofs. Under Un, for i 6= j, the events {i ∈ 4α} and {j ∈ 4α} are
‘almost’ independent, as n → ∞. Therefore one should expect |4α| − EU

n {|4α|} to be

of order
(
EU

n {|4α|}
)1/2

. Under Pnid, if |Atn | is relatively small, it seems natural that the
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positions of the cards that have been removed are distributed approximately as they
would under Un. Thus, |4α(Πtn) \Atn | under Pnid should be distributed roughly as |4α|
is under Un. By this logic, we need to choose tn so that |4α(Πtn) ∩Atn | is larger than(
EU

n {|4α|}
)1/2

with high probability, which leads us to set tn to be as in Theorem 1.1.
The three subsections below are devoted to separately study the distribution of |4α|

under Un and the distributions of |4α(Πtn) ∩Atn | and |4α(Πtn) \Atn | under Pnid.

3.1 The distribution of |4α| under Un

In this case, the first and second moments of |4α| can be easily computed in order
to apply Chebyshev’s inequality. In what follows, let Rj denote the event {j ∈ 4α}.

Lemma 3.1. For any α, k > 0,

lim sup
n→∞

Un
(∣∣∣|4α (σ)| − 2εα

√
n log n

∣∣∣ ≥ k√2εα (n log n)
1
4

)
≤ 1

k2
.

Proof. Suppose n is large enough so that n (1− ε) /2 ≥ α
√
n log n. Then

EU
n

{|4α (σ)|} =
∑
j∈Dn

Un (Rj) = |Dn|
1 + 2

⌊
α
√
n log n

⌋
n

= 2εα
√
n log n+O (1) .

The second moment satisfies the bound

EU
n
{
|4α (σ)|2

}
=
∑
j∈Dn

Un (Rj) +
∑

i,j∈Dn:i 6=j

Un (Ri ∩Rj)

≤ EU
n

{|4α (σ)|}+ |Dn|2
(
1 + 2

⌊
α
√
n log n

⌋)2
n (n− 1)

= EU
n

{|4α (σ)|}+
n

n− 1

(
EU

n

{|4α (σ)|}
)2

,

which implies

VarU
n

{|4α (σ)|} ≤ 2εα
√
n log n+ 4ε2α2 log n+O (1) .

Applying Chebyshev’s inequality and letting n→∞ yields the required result.

3.2 The distribution of |4α(Πtn) ∩Atn | under Pnid

We begin with the following lemma which, when combined with Theorem 2.2, yields
a bound on the probability that |4α(Πtn) ∩Atn | is less than a fraction of its expectation.
This bound is the content of Lemma 3.3 which takes up the rest of the subsection.

Lemma 3.2. Let n, t ∈ N, let B ⊂ [n] be a random set, and let D ⊂ [n] be a deterministic
set. Suppose that for some c > 0

min
j∈D

Pnid
(
j ∈ B| j ∈ At

)
≥ c.

Then, denoting K = Enid |D ∩At|, for any r ∈ (0, 1),

Pnid
(∣∣B ∩D ∩At∣∣ ≤ r · Enid {∣∣B ∩D ∩At∣∣}) ≤ K +

(
1− c2

)
K2

(1− r)2
c2K2

.
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Proof. By our assumption,

Enid
{∣∣B ∩D ∩At∣∣} =

∑
j∈D

Pnid
(
j ∈ B| j ∈ At

)
Pnid

(
j ∈ At

)
≥ cK.

Write

Enid

{∣∣B ∩D ∩At∣∣2} ≤ Enid {∣∣D ∩At∣∣2}
=
∑
j∈D

Pnid
(
j ∈ At

)
+

∑
i,j∈D:i 6=j

Pnid
(
i, j ∈ At

)
= K + |D| (|D| − 1)

(
n− 2

n

)t
.

Since K = |D|((n− 1)/n)t it follows that

Enid

{∣∣B ∩D ∩At∣∣2} ≤ K +K2,

therefore
Varnid

{∣∣B ∩D ∩At∣∣} ≤ K +
(
1− c2

)
K2.

Applying Chebyshev’s inequality completes the proof.

Now, let Rj,t and RA
c

j,t denote the events {j ∈ 4α (Πt)} and {j ∈ 4α (Πt)} ∩ {j /∈ At},
respectively. Let pt,n , Pnid (j ∈ At) (which is, of course, independent of j).

Lemma 3.3. Let v (α) = 1− 4Ψ
(
α
√

8
3

)
. Let tn be a sequence of natural numbers such

that tn ≤ 3
4n log n and suppose α satisfies v (α) > 0. Then, for any r ∈ (0, 1),

lim sup
n→∞

Pnid
(∣∣4α (Πtn) ∩Atn

∣∣ ≤ rv (α) εnptn,n
)

≤ (1− r)−2 (
v−2 (α)− 1

)
.

Proof. With S (n, α) defined by

S (n, α)

, min
j∈Dn

Pnid

(
max

0≤m≤ 3
4n logn

|Πm (j)− j| ≤ α
√
n log n

∣∣∣∣∣ j ∈ Ab 3
4n lognc

)
≤ min
j∈Dn

Pnid

(
Rj,tn | j ∈ Ab

3
4n lognc

)
= min
j∈Dn

Pnid
(
Rj,tn | j ∈ Atn

)
,

Lemma 3.2 yields

Pnid
(∣∣4α (Πtn) ∩Atn

∣∣ ≤ r · Enid {∣∣4α (Πtn) ∩Atn
∣∣})

≤
Ktn +

(
1− S2 (n, α)

)
K2
tn

(1− r)2 S2 (n, α)K2
tn

,

where Ktn , Enid {|Dn ∩Atn |} .
A simple calculation shows that limn→∞Ktn =∞. Theorem 2.2 (with tn =

⌊
3
4n log n

⌋
)

implies that

lim inf
n→∞

S (n, α) ≥ 1− 4Ψ

(
α

√
8

3

)
= v (α) > 0. (3.1)
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Therefore
lim sup
n→∞

Pnid
(∣∣4α (Πtn) ∩Atn

∣∣ ≤ r · Enid {∣∣4α (Πtn) ∩Atn
∣∣})

≤ 1

(1− r)2 lim sup
n→∞

(
1− S2 (n, α)

)
S2 (n, α)

≤ (1− r)−2 (
v−2 (α)− 1

)
.

(3.2)

Note that by (3.1), for any δ ∈ (0, 1) and sufficiently large n,

Enid
{∣∣4α (Πtn) ∩Atn

∣∣} =
∑
j∈Dn

Pnid
(
Rj,tn | j ∈ Atn

)
Pnid

(
j ∈ Atn

)
≥ |Dn| pt,nS (n, α) ≥ δεnptn,nv (α) .

Together with (3.2), this implies

lim sup
n→∞

Pnid
(∣∣4α (Πtn) ∩Atn

∣∣ ≤ rv (α) εnptn,n
)

≤ (1− r/δ)−2 (
v−2 (α)− 1

)
.

By letting δ → 1, the lemma follows.

3.3 The distribution of |4α(Πtn) \Atn | under Pnid

As in Subsection 3.1, we shall use Chebyshev’s inequality to bound the deviation of
|4α(Πtn) \Atn | from its expectation with high probability. Here, however, the computa-
tions are much more involved, and the main difficulty is to compute probabilities that
depend to joint distributions of Πt(i) and Πt(j), for general i 6= j in Dn, conditioned on
i and j not being in At. This is treated in the lemma below, in which we denote by τ tm
the last time up to time t at which the card numbered m is chosen for removal, and set
τ tm =∞ if it is not chosen up to that time.

Lemma 3.4. Let i, j ∈ [n] such that i 6= j, let δ > 0, and let 1 ≤ t1 < t2 ≤ t be natural
numbers with t ≤ n log n. Then

Pnid
(

(Πt (i) ,Πt (j)) ∈ i± δ × j ± δ
∣∣ τ ti = t1, τ

t
j = t2

)
≤ 1

n2

(
(1 + 2 bδc)2

+ 4δ + g (n)
)
,

where g (n) = Θ
(
log2 n

)
is a function independent of all the parameters above.

The proof of Lemma 3.4 is given in Section 5. Now, let us see how it is used to prove
the following.

Lemma 3.5. Let tn be a sequence of integers such that 0 ≤ tn ≤
⌊

3
4n log n

⌋
and let

k, α > 0 be real numbers. Then,

lim sup
n→∞

Pnid

(∣∣∣∣∣4α (Πtn) \Atn
∣∣− 2εα (1− ptn,n)

√
n log n

∣∣∣ . . .
. . . ≥ k

√
6εα(n log n)1/4

)
≤ 1

k2
.

Proof. For some t1 ≤ t, consider the Markov chain Πt′ (j), t′ = t1, . . . , t, conditioned
on τ tj = t1. By definition, its initial distribution is the uniform measure on [n]. One
can easily check that the transition matrix of this chain is symmetric. Therefore its
stationary measure, and thus its distribution at time t, is also the uniform measure.
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Thus, assuming n(1− ε)/2 ≥ α
√
n log n,

Enid
{∣∣4α (Πt) \At

∣∣} =
∑
j∈Dn

Pnid

(
RA

c

j,t

∣∣∣ j /∈ At)Pnid (j /∈ At)
= |Dn|

1 + 2
⌊
α
√
n log n

⌋
n

(1− pt,n) .

For the second moment write

Enid

{∣∣4α (Πt) \At
∣∣2} = Enid

{∣∣4α (Πt) \At
∣∣}+

∑
i,j∈D:i 6=j

Pnid

(
RA

c

i,t ∩RA
c

j,t

)
.

From Lemma 3.4,

∑
i,j∈D:i 6=j

Pnid

(
RA

c

i,t ∩RA
c

j,t

)
≤ |D

n|2

n2
(1− pt,n)

2×

{(
1 + 2

⌊
α
√
n log n

⌋)2

+ 4α
√
n log n+ Θ

(
log2 n

)}
.

Therefore,

lim sup
n→∞

Varnid {|4α (Πtn) \Atn |}√
n log n

≤ 4ε2α+ 2εα ≤ 6εα.

By Chebyshev’s inequality, the lemma follows.

Remark 3.6. Assume tn is of the form in Theorem 1.1 with cn satisfying lim sup cn/ log n <

1/4. From Lemma 3.5, ∣∣4α(Πtn) \Atn
∣∣ /(2εα

√
n log n

)
=⇒ 1.

By a simple computation, taking into account our restriction on cn, it is seen that
Enid |Atn | = o(

√
n). Therefore

|4α| /
(

2εα
√
n log n

)
=⇒ 1, (3.3)

under Pnid(Πtn ∈ ·). From Lemma 3.1, the convergence in (3.3) clearly holds under the
stationary measure Un as well.

4 Proof of Theorem 1.1

In order to prove the lower bound on TV distance we consider the deviation of |4α|
from 2εα

√
n log n. Assume tn is as in the theorem. Let k > 0 and α be real numbers such

that v (α) > 0 (where v (α) was defined in Lemma 3.3). The parameters k and α will be
fixed until (4.5), where we derive a lower bound on the TV distance which depends on
them. Then, maximizing over the two parameters, we shall obtain the required bound
on TV distance.

Suppose that for some n∣∣∣∣∣4α (Πt) \Atn
∣∣− 2εα (1− ptn,n)

√
n log n

∣∣∣ < k
√

6εα(n log n)1/4, (4.1)

and ∣∣4α (Πtn) ∩Atn
∣∣ > 1

2
v (α) εnptn,n. (4.2)
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Then, if n is sufficiently large,

|4α (Πtn)| − 2εα
√
n log n

≥ εnptn,n
(

1

2
v (α)− 2α

√
n log n/n

)
− k
√

6εα(n log n)1/4

≥ k
√

2εα(n log n)1/4,

(4.3)

where the last inequality follows from the following calculation: writing

log
nptn,n

(n log n)1/4
=

3

4
log n− 1

4
log log n+ log ptn,n,

substituting ptn,n = (1− 1/n)tn and tn = 3
4n log n− 1

4n log log n− cnn, and using the fact
that log (1 + x) = x+O

(
x2
)

as x→ 0, we arrive at

log
nptn,n

(n log n)1/4
= cn + o (1)→∞. (4.4)

Now, since for large n (4.1) and (4.2) imply (4.3), by a union bound, Lemma 3.3 and
Lemma 3.5 imply

lim inf
n→∞

Pnid

(
|4α (Πtn)| − 2εα

√
n log n ≥ k

√
2εα(n log n)1/4

)
≥ 1− 1

k2
−
(

1− 1

2

)−2 (
v−2 (α)− 1

)
, φ(k, α).

In addition, from Lemma 3.1,

lim sup
n→∞

Un
(
|4α (σ)| − 2εα

√
n log n ≥ k

√
2εα(n log n)1/4

)
≤ 1

k2
.

Thus,

lim inf
n→∞

‖Pnid (Πtn ∈ ·)−Un‖TV ≥ φ(k, α)− 1

k2
. (4.5)

Since k and α were arbitrary, and since as k, α→∞, φ(k, α)→ 1 and 1
k2 → 0,

lim
n→∞

‖Pnid (Πtn ∈ ·)−Un‖TV = 1.

Remark 4.1. In Section 3, we have seen that the standard deviation of both |4α| under
Un and |4α(Πtn) \Atn | underPnid is of order Θ((n log n)

1
4 ). SinceEnid {|4α(Πtn) ∩Atn |} =

Θ(nptn,n), by (4.4), it is of higher order than Θ((n log n)
1
4 ), if and only if tn is of the form

in Theorem 1.1. In particular, this shows why the term − 1
4n log log n is essential to us in

the choice of tn.

5 Proof of Lemma 3.4

In this section we prove Lemma 3.4 and additional results needed for the proof.

Proof of Lemma 3.4. For m1 ∈ [n− 1], m2 ∈ [n] and 0 ≤ t′ ∈ Z, let σ ∈ Sn be some
permutation such that σ (j) = m2 and

σ (i) =

{
m1 + 1 if m2 ≤ m1,

m1 if m2 > m1,
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and let Pt′m1,m2
= Pn,t′m1,m2

be the probability measure on [n]× [n] defined by

Pn,t
′

m1,m2
(·) = Pnσ

(
(Πt′ (i) ,Πt′ (j)) ∈ · | i, j ∈ At

′
)
.

(Which, obviously, does not depend on the values σ (k) for k /∈ {i, j}.)
That is, starting with a deck whose ordering is obtained by inserting the card num-

bered j in position m2, in a deck composed of the n− 1 cards with numbers in [n] \ {j}
in which the position of card i is mi, Pt

′

m1,m2
is the joint probability law of the positions

of the cards numbered i and j after performing t′ random-to-random insertion shuffles,
conditioned on not choosing either of the cards i and j.

Now, let t, t1 and t2 be natural numbers as in the statement of the lemma, which will
be fixed throughout the proof. Define the events

Q+
m = {Πt2−1 (i) = m,Πt2−1 (j) > m} ,

Q−m = {Πt2−1 (i) = m,Πt2−1 (j) < m} ,

and define q+
m and q−m by

q±m = Pnid
(
Q±m

∣∣ τ ti = t1, τ
t
j = t2

)
.

Define the probability measure µ on [n]× [n] by

µ (·) ,Pnid
(

(Πt (i) ,Πt (j)) ∈ · | τ ti = t1, τ
t
j = t2

)
=

1

n

n∑
m2=1

{
n−1∑
m1=1

q+
m1
Pt−t2m1,m2

(·) +

n∑
m1=2

q−m1
Pt−t2m1−1,m2

(·)

}
.

Considering the Markov chain Πt′(i), t′ = t1, . . . , t2 − 1, conditioned on τ ti = t1 and
τ tj = t2, by an argument similar to that given in the beginning of the proof of Lemma
3.5, Πt2−1(i) is uniformly distributed on [n]. Thus, for any m ∈ [n],

q+
m + q−m =

1

n
. (5.1)

Similarly, for any s ∈ N, the transition matrix of the chain (Πt′ (i) ,Πt′ (j)), t′ =

0, . . . , s, conditioned on i, j ∈ As, is symmetric, and therefore the uniform measure on{
(m1,m2) ∈ [n]

2
: m1 6= m2

}
, which we denote by Un(2), is a stationary measure of the

chain (the chain is reducible, thus the stationary measure is not unique). It therefore
follows that for any 0 ≤ t′ ∈ Z,

1

n (n− 1)

n−1∑
m1=1

n∑
m2=1

Pt
′

m1,m2
(·) = Un(2) (·) . (5.2)

Our next step is to define two additional Markov chains Π−t′ and Π+
t′ , t

′ = t2, t2 +

1, . . . , t, with state space Sn, such that on
{
τ ti = t1, τ

t
j = t2

}
,

Π−t′ (i) ≤ Πt′ (i) ≤ Π+
t′ (i) and Π−t′ (j) = Πt′ (j) = Π+

t′ (j) , (5.3)

for any t′ = t2, t2 + 1, . . . , t. Once we have done so, defining µ+, µ− by

µ± (·) , Pnid
((

Π±t (i) ,Π±t (j)
)
∈ ·
∣∣ τ ti = t1, τ

t
j = t2

)
,

it will follow that

µ
(
i± δ × j ± δ

)
≤ µ

(
[n]× j ± δ

)
− µ−

(
((i+ δ, n] ∩ [n])× j ± δ

)
− µ+

(
([1, i− δ) ∩ [n])× j ± δ

)
.

(5.4)
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For each m1 ∈ [n] \ {1, n} define the events Q̂+
m1

, Q̂−m1
, Q̂+ and Q̂− by

Q̂±m1
=Q±m1

⋂
{Πt2 (j) 6= m1}

⋂{
τ ti = t1, τ

t
j = t2

}
,

Q̂± =
⋃

m1=2,...,n−1
Q±m1

.
(5.5)

Let us define Π+
t′ and Π−t′ by setting, for t′ = t2, t2 + 1, . . . , t,

Π+
t′ =Π0

t′ on Q̂−, Π+
t′ =Πt′ on

(
Q̂−
)c
,

Π−t′ =Π0
t′ on Q̂+, Π−t′ =Πt′ on

(
Q̂+
)c
,

where Π0
t′ is an additional Markov chain defined on Q̂+ ∪ Q̂− as described below.

The random walk Πt′ on Sn corresponds to the ordering of a deck of n cards as it
is being shuffled by random-to-random insertion shuffles. Let us call this deck of cards
deck A, and for each time t′ let us denote by ct′ and dt′ the number of the card removed
from the deck at that time and the position into which it is reinserted, respectively. (To
avoid any confusion – we refer to the ordering of the deck after the removal the card
numbered ct′ and its reinsertion to position dt′ as the state of the deck at time t′, and
not t′ + 1.)

In order to define Π0
t′ , we describe a shuffling process on a deck of n cards, which

we shall refer to as deck B, on the set of times t′ = t2, t2 + 1, . . . , t, and set Π0
t′ to be

the permutation corresponding to the ordering of the deck at time t′ (i.e., Π0
t′ (k) is the

position of the card numbered k).

We begin by defining the state of deck B at time t′ = t2 on Q̂+ (respectively, Q̂−)
as the deck obtained by taking a deck of n cards ordered as deck A is ordered at the
same time and transposing the card numbered i with the card which has position lower
(receptively, higher) by 1 from the card numbered i.

For a given state of decks A and B, let us say that two cards with numbers in [n] \
{i, j}, one in each of the decks, ‘match’ each other, if after removing the cards numbered
i and j from both decks they have the same position.

At each of the times t′ = t2+1, . . . , t, suppose deck B is shuffled based upon how deck
A is as follows: when the card numbered ct′ is removed from deck A, we also remove
the matching card from deck B; then, we reinsert both cards to their decks in the same
position, dt′ . This defines the state of deck B, and thus Π0

t′ , for times t′ = t2 + 1, . . . , t.

A concrete example of a simultaneous shuffle of both decks with n = 8, i = 5 and
j = 7 is given in Figure 1. Cards i and j are colored gray. Card 1 is chosen for removal
in deck A, and so the matching card, 4, is the one removed from deck B. Then, they are
reinserted in the same position.

Removal Insertion

3Deck A: 8
1

5 4 7 6 2 3 8 5 4 7
1

6 2

1Deck B: 5 2
4

8 7 3 6 1 5 2 8 7
4

3 6

Figure 1: A shuffle of deck A and deck B.
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Directly from definition, (5.3) holds for t′ = t2. It is also easy to verify that every
single shuffle of decks A and B as described above preserves the relations in (5.3),
which implies that, indeed, (5.3) holds for any t′ = t2, t2 + 1, . . . , t.

Note that, by definition,

µ+ (·) =

n−1∑
m=1

q+
mP

n
id

((
Π+
t (i) ,Π+

t (j)
)
∈ ·
∣∣ Q+

m, τ
t
i = t1, τ

t
j = t2

)
+

n∑
m=2

q−mP
n
id

((
Π+
t (i) ,Π+

t (j)
)
∈ ·
∣∣ Q−m, τ ti = t1, τ

t
j = t2

)
=

1

n

n−1∑
m1=1

n∑
m2=1

q+
m1
Pt−t2m1,m2

(·) +
1

n

n∑
m1=2

q−m1
Pt−t2m1−1,m1

(·)

+
1

n

n∑
m1=2

∑
m2∈[n]\{m1}

q−m1
Pt−t2m1,m2

(·) .

From this, together with (5.1) and (5.2), we obtain

µ+ (·) =
n− 1

n
Un(2) (·) +

1

n2

n∑
m=1

Pt−t2n−1,m (·)

+
1

n

n−1∑
m=2

{
q−mP

t−t2
m−1,m (·)− q−mPt−t2m,m (·)

}
.

(5.6)

Similarly,

µ− (·) =
n− 1

n
Un(2) (·) +

1

n2

n∑
m=1

Pt−t21,m (·)

+
1

n

n−1∑
m=2

{
q+
mPt−t2m,m (·)− q+

mP
t−t2
m−1,m (·)

}
.

(5.7)

According to (5.3), µ
(
[n]× j ± δ

)
= µ+

(
[n]× j ± δ

)
. Hence, by substitution of (5.6)

and (5.7) in (5.4), and using (5.1), it can be easily shown that

µ
(
i± δ × j ± δ

)
≤ n− 1

n
Un(2)

(
i± δ × j ± δ

)
+

1

n2

n∑
m=1

Pt−t2n−1,m

(
[n]× j ± δ

)
+

1

n2

n−1∑
m=2

Pt−t2m−1,m

(
[n]× j ± δ

)
.

(5.8)

The first summand is bounded by

n− 1

n
Un(2)

(
i± δ × j ± δ

)
≤ (1 + 2 bδc)2

n2
.

Note that, for fixed m2, Pt2−t′m1,m2

(
[n]× j ± δ

)
is identical for all m1 such that m1 < m2,

and for all m1 such that m1 ≥ m2. Thus,

n−1∑
m=2

Pt−t2m−1,m

(
[n]× j ± δ

)
=

n−1∑
m=2

Pt−t21,m

(
[n]× j ± δ

)
.

Corollary 5.2 below provides an upper bound for this sum. Bounding the additional sum
in (5.8) by the same bound can be done similarly, which completes the proof.

Corollary 5.2, used in the previous proof, will follow from the following.
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Lemma 5.1. For any real number δ ≥ 0, integers r, t ≥ 0, i, j ∈ [n], and m ∈ [n− 1],

Pn,t1,m+1

(
[n]× j ± δ

)
≤ Pn−1

id

(
Πt (1) > r | 1 ∈ At

)
+

Pn−1
id

(
Πt (m) ∈ j ± (δ + r)

∣∣∣ m ∈ At) .
Before we turn to proof of the lemma, let us state and prove the above mentioned

corollary.

Corollary 5.2. For any real number δ ≥ 0, integer 0 ≤ t ≤ n log n, and j ∈ [n],

n−1∑
m=2

Pn,t1,m

(
[n]× j ± δ

)
≤ 2δ + ĝ (n) ,

where ĝ (n) = Θ
(
log2 n

)
is a function independent of the parameters above.

Proof. From Lemma 5.1, for any real δ ≥ 0, integers r, t ≥ 0, and j ∈ [n],

n−1∑
m=2

Pn,t1,m

(
[n]× j ± δ

)
≤ (n− 2)Pn−1

id

(
Πt (1) > r | 1 ∈ At

)
+

n−1∑
m=1

Pn−1
id

(
Πt (m) ∈ j ± (δ + r)

∣∣∣ m ∈ At) . (5.9)

Clearly, the transition probabilities of Πt′ (m), t′ = 0, 1, . . . , t, conditioned on m ∈ At
do not depend on m. Thus, up to a factor of n − 1, the sum on the right-hand side
above is equal to the probability that at time t, the state of the Markov chain with those
transition probabilities and with uniform initial distribution belongs to j ± (δ + r). Since
the transition matrix of this chain is symmetric, the stationary measure for this chain is
the uniform measure. Thus,

n−1∑
m=1

Pn−1
id

(
Πt (m) ∈ j ± (δ + r)

∣∣∣ m ∈ At) ≤ 1 + 2 (δ + r) . (5.10)

By (2.4) and by the same argument as in (2.14), setting tn = bn log nc, for any se-
quence of integers rn ≥ 0,

Pn−1
id

(
Πt (1) > rn | 1 ∈ Atn

)
≤ Pn−1

id

(
max

0≤t′≤tn
|Πtn (1)− 1| ≥ rn

∣∣∣∣ 1 ∈ Atn
)

= P

(
max

0≤t′≤tn

∣∣∣ζn−1,1,rn
t′ − 1

∣∣∣ ≥ rn) ≤ 4P
(
Sn−1,1,rn
tn ≥ rn/3

)
+ 4P

(
Wn−1,rn
tn ≥ rn/3

)
+ P

(
Nn−1
tn ≥ rn/3

)
.

Using Bernstein inequalities ([5], Theorem 2.8), it is easy to verify that one can choose
a sequence rn = Θ

(
log2 n

)
such that the last part of the inequality above is o

(
log2 n/n

)
.

From this, together with (5.9) and (5.10), the corollary follows.

We now turn the proof of Lemma 5.1.

Proof of Lemma 5.1. The proof is based on a coupling of the Markov chains correspond-
ing to the shuffling of two decks of cards. The first of the two decks contains n cards,
numbered from 1 to n, and at time 0 (the initial state) has card i at position 1 and card
j at position m + 1. The second deck contains n − 1 cards, numbered from 1 to n − 1,
and at time 0 is ordered lexicographically, i.e., according to the numbers of the cards.
Let us call the decks deck 1 and deck 2, respectively.

We want to define a procedure to simultaneously shuffle the decks such that:
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1. At each step deck 1 is shuffled by choosing a random card, different from i and
j, removing it from the deck, and inserting it back into the deck at a random
position; with shuffles at different steps being independent.

2. At each step deck 2 is shuffled by choosing a random card, different from m,
removing it from the deck, and inserting it back into the deck at a random position;
with shuffles at different steps being independent.

3. For all t ≥ 0,
Jt − It ≤Mt ≤ Jt − 1, (5.11)

where Jt (respectively, It) denotes the position of the card numbered j (respec-
tively, i) in deck 1 after completing t shuffles, and Mt denotes the position of card
m in deck 2 after completing t shuffles.

We shall also need the notation J̄t (respectively, Īt) for the position of the card num-
bered j (respectively, i) in deck 1, after completing t − 1 shuffles and performing only
the removal of the t-th shuffle. Note that since after the removal the deck contains
only n − 1 cards, these positions are values in [n− 1]. Similarly, M̄t shall denote the
corresponding position of the card numbered m in deck 2.

The definition of the shuffling shall be done inductively, and so, let us begin by
assuming that (5.11) holds for some time t′. Under the assumption, one can easily
define a bijection from the set of cards in deck 1 that are different from i and j, to the
set cards in deck 2 that are different from m, such that at time t′:

1. any card with position between the cards numbered i and j in
deck 1 is mapped to a card below m in deck 2; and

2. any card below m in deck 2 is the image of some card below j

in deck 1.

See, for example, Figure 2.

∗Deck 1: ∗ ∗ ∗ i ∗ ∗ ∗ ∗ j ∗ ∗ ∗ ∗

∗Deck 2: ∗ ∗ ∗ ∗ ∗ m ∗ ∗ ∗ ∗ ∗ ∗

Figure 2: A bijection for decks 1 and 2.

Once the bijection is defined, one can perform the removal of step t′ + 1 from both
decks by choosing a random card (different from i and j) from deck 1 and removing this
card from deck 1 and its image under the bijection from deck 2. This ensures that

J̄t′+1 − Īt′+1 ≤ M̄t′+1 ≤ J̄t′+1 − 1. (5.12)

Denote

V1 , (Jt′+1 − It′+1)−
(
J̄t′+1 − Īt′+1

)
,

V2 ,Mt′+1 − M̄t′+1 , V3 , Jt′+1 − J̄t′+1,

EJP 18 (2012), paper 20.
Page 19/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-1950
http://ejp.ejpecp.org/


A lower bound for the random insertions shuffle

and note that V1, V2, V3 ∈ {0, 1}.
If we assume that the first two of the three conditions we need the shuffling to satisfy

hold, then the conditional probabilities

pi = pi(Īt′+1, J̄t′+1, M̄t′+1) , P(Vi = 1|Īt′+1, J̄t′+1, M̄t′+1) , i = 1, 2, 3,

satisfy

p1 =
J̄t′+1 − Īt′+1

n
≤ p2 =

M̄t′+1

n− 1
≤ p3 =

J̄t′+1

n
.

Therefore, since {V1 = 1} ⊂ {V3 = 1}, it is possible to couple the reinsertions of the
cards back to their decks at step t′ + 1, so that the position of each of the cards after
reinsertion is uniform in its deck, and so that (5.11) also holds for time t′ + 1.

By induction, this completes our definition of the shuffling of the two decks and
implies that for any integers t, r ≥ 0,

Pn,t1,m+1

(
[n]× j ± δ

)
≤ Pn,t1,m+1 (([n] \ [1, r])× [n]) +

Pn−1
id

(
Πt (m) ∈ j ± (δ + r)

∣∣∣ m ∈ At) .
To finish the proof, note that by a coupling argument (remove cards as described

in the proof of Lemma 3.4 for decks A and B, with the difference of removing card
m instead of cards i and j from the smaller deck in order to compare positions for
‘matchings’, and define the random insertion appropriately),

Pn,t1,m+1 (([n] \ [1, r])× [n]) ≤ Pn−1
id

(
Πt (1) > r | 1 ∈ At

)
.
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